Abstract
Mesozoic granitic rocks are widely developed in the Great Xing’an Range, and determining their emplacement age and genesis is crucial for reconstructing the tectonic-magmatic evolution of Northeast China. This paper reports the petrographic, geochronological, geochemical and zircon Hf isotopic characteristics of granites in the Huolin Gol area of the southern Great Xing’an Range to determine the formation age, source nature and geodynamic background of the rocks in this area. Zircon U–Pb dating results show that the granites in the study area were formed in the Early Cretaceous (134–130 Ma), rather than the Late Jurassic as previously thought. The granites have SiO2 contents ranging from 75.02 to 78.53 wt.%, Na2O = 3.55–3.89 wt.%, K2O = 3.98–5.11 wt.%, Na2O/K2O = 0.72–0.97, A/CNK = 1.04–1.14. Their rare earth element (REE) distribution patterns are all right-inclined, with LREE/HREE = 3.89–12.41, (La/Yb)N = 2.39–18.86, Eu/Eu* = 0.02–0.17. Trace element spider diagrams show significant enrichment in Rb, Th, U, K, Pb and LREEs, and depletion in Ba, Nb, Ta, Sr, P, Ti and HREEs. The zircon εHf(t) values range from +6.4 to +15.0, and the two-stage Hf model ages (TDM2) range from 773 to 226 Ma. These characteristics indicate that the granitic rocks belong to the weakly peraluminous high-K calc-alkaline I-type granite, derived from partial melting of newly generated juvenile continental crust materials. Combined with the coeval magmatic associations, spatial distribution patterns, and regional tectonic evolution, we propose that the Early Cretaceous granitic rocks in the study area formed in an active continental margin setting, with their geodynamic mechanism linked to the subduction of the Paleo-Pacific Plate beneath the East Asian continent.
1. Introduction
The Central Asian Orogenic Belt (CAOB), stretching from Kazakhstan in the west to eastern Siberia and the western Pacific orogenic belts in the east, is sandwiched between the East European Siberian plates to the north and the Tarim, North China plates to the south [1,2,3]. It represents one of the most significant Phanerozoic continental orogenic belts globally, characterized by extensive crustal accretion and reworking, and is also a critical polymetallic metallogenic belt [4,5,6,7]. The Great Xing’an Range (GXR), located in the eastern segment of the CAOB, has experienced intense Phanerozoic magmatic activity, particularly marked by Mesozoic intrusive rocks. These rocks are closely associated with the tectonic evolution of the Mongol-Okhotsk Ocean and the Paleo-Pacific tectonic domains [8,9,10,11,12]. Therefore, conducting petrological, geochronological, and geochemical studies on Mesozoic magmatic rocks in the GXR is crucial for understanding regional crust–mantle interaction, as well as ocean-continent and crust–mantle interactions during accretionary orogenesis and post-collisional vertical crustal growth. These studies are also essential for revealing the tectonic evolutionary history of the paleo-oceanic plate and regional mineralization [7,13,14,15].
In recent years, research on the extensive Early Cretaceous magmatism in the GXR region and its geodynamic mechanisms has become a focal point [9,16,17,18]. Although it is widely accepted that the genesis of the Early Cretaceous magmatic rocks in this region was controlled by the closure of the Mongol-Okhotsk Ocean and the subduction of the Paleo-Pacific Plate, significant controversy remains regarding whether the magmatism was primarily associated with post-orogenic gravitational collapse and extension related to the closure of the Mongol-Okhotsk Ocean [19,20], westward subduction and rollback of the Paleo-Pacific Plate [17,21,22], or the upwelling of a deep thermal mantle plume triggered by crust–mantle interaction [23,24]. The southern segment of the GXR is relatively distant from both the Mongol-Okhotsk suture zone and the Paleo-Pacific subduction zone. Whether its spatial effects influenced magmatic activity and tectonic evolution in the region during the Early Cretaceous remains unclear. Furthermore, current research on Early Cretaceous granites in the southern GXR has primarily focused on the Zhalute–Linxi and Ulanhot–Zhalantun areas [10,16,17,25,26,27], which restricted the comprehensive understanding of the genesis and tectonic evolution of granitic rocks across the entire GXR.
In light of this, this study selects granites from the Huolin Gol area in the southern segment of the GXR for petrographic, zircon U–Pb geochronological, geochemical, and zircon Hf isotopic analyses. By determining the formation age of the rocks, this study further explores the source characteristics and genesis of the rocks by integrating previously published regional data, so as to further reveal the geodynamic mechanism of their formation.
2. Geological Background and Sample Descriptions
The GXR is situated in the eastern part of the Xing’an-Mongolian Orogenic Belt (XMOB). It is characterized by extensive Phanerozoic granitic rocks and abundant metal and non-metal mineral resources, making it an important polymetallic metallogenic belt within the CAOB [2,9,28,29]. From northwest to southeast, the XMOB is primarily distributed across the Erguna Block, the Xing’an Block, and the Songliao Block. These blocks are bounded by suture zones or faults and were amalgamated during the Paleozoic through the subduction and consumption of the Paleo-Asian Ocean [8,9,11,25,30,31,32] (Figure 1a). The southern segment of the GXR is separated from the Xing’an Block by the Hegenshan-Heihe Fault to the north, from the North China Craton by the Solonker-Xar Moron-Changchun suture zone to the south, and from the Songliao Basin by the Nenjiang Fault to the east [28]. The study area is located in the central part of the southern segment of the GXR and tectonically situated on the western margin of the Songliao Block (Figure 1a).
Figure 1.
(a) Tectonic subdivisions of northeastern (NE) China (modified from [33]); and (b) Geological map of the Huolin Gol area showing sample locations (modified from [34]).
The Songliao Block primarily consists of the Lesser Xing’an Range in the north, the Zhangguangcai Range in the east, the central and southern segments of the GXR in the west, and the Songliao Basin in the center. Among these, the central and southern segments of the GXR exhibit significant Phanerozoic magmatic activity, dominated by granitic rocks, the vast majority of which are products of Mesozoic magmatism [9,35,36,37]. A small portion formed during the Early Paleozoic (516–420 Ma) [38,39] and the Late Paleozoic (293–252 Ma) [40,41]. The spatial distribution of Mesozoic granites in the region is controlled by both east–west-trending and northeast-trending structures, with the main body exhibiting a northeastward distribution and local areas showing a nearly east–westward distribution [42]. During the Mesozoic, magmatic intrusion events of varying scales occurred in the Triassic (248–216 Ma), Jurassic (182–160 Ma), and Cretaceous (146–119 Ma) periods, with the Cretaceous being the most extensive [43]. Additionally, Late Paleozoic and Mesozoic volcano-sedimentary formations are well-developed in the region. Mesozoic strata are dominated by volcanic rocks, including the Jurassic Hongqi Formation, Wanbao Formation, Xinmin Formation, Manketouebo Formation, and Manitu Formation, as well as the Cretaceous Baiyingaolao Formation, Meiletu Formation, and Damoguaihe Formation [34].
The granitic rocks investigated in this study are located southwest of Huolin Gol in the southern segment of the GXR (Figure 1b). The rock types primarily include granodiorite and syenogranite, which exhibit typical granitic texture and massive structure (Figure 2a,b; Table 1). The syenogranite is mainly composed of alkali feldspar (60%~65%), plagioclase (10%~15%), quartz (20%~25%), and biotite (±5%), with minor amounts of amphibole locally observed. The alkali feldspar is predominantly perthite, showing well-developed perthitic texture. Polysynthetic twinning is commonly observed in plagioclase (Figure 3a–c). Amphibole forms short prismatic crystals with characteristic pleochroism ranging from light green to green and well-developed cleavage. Accessory minerals mainly include zircon, apatite, and titanite. The granodiorite consists mainly of plagioclase (50%~60%), alkali feldspar (5%~15%), quartz (20%~25%), and biotite (5%~10%). The plagioclase occurs as euhedral to subhedral tabular crystals, commonly exhibiting polysynthetic twinning. Alkali feldspar frequently displays perthitic texture (Figure 3d). Accessory minerals are primarily zircon, apatite, and magnetite.
Figure 2.
Representative field photographs for the granitic intrusions in the Huolin Gol area. (a) Syenogranite in the Halejinhada pluton (sample 21ZK199). (b) Grayish-white granodiorite from Naimanqi quarry (sample 21ZK205).
Table 1.
Sample location and fabric of the Early Cretaceous granitoids from the southern GXR.
Figure 3.
Representative microscope photographs for the granitic intrusions in the Huolin Gol area. (a) Syenogranite (sample 21ZK187; cross–polarized light). (b) Syenogranite (sample 21ZK193; cross–polarized light). (c) Syenogranite (sample 21ZK199; cross–polarized light). (d) Granodiorite, cross–polarized light (sample 21ZK205). Kfs—K–feldspar; Pl—plagioclase; Q—quartz; Bt—biotite.
3. Analytical Methods
Zircon separation was conducted using conventional heavy-liquid and magnetic techniques. The extracted zircon grains were meticulously examined under a binocular microscope to select those that were euhedral, transparent, and free of fractures or inclusions. To ensure representativeness, grains with diverse morphological characteristics were intentionally chosen. The selected zircon grains were then mounted in epoxy resin and polished to expose their internal structures. Following this, transmitted light, reflected light, and cathodoluminescence (CL) images were acquired for the zircons. All subsequent procedures, including sample preparation, CL imaging, zircon U–Pb dating, Lu–Hf isotope analysis, and whole-rock geochemical analysis, were performed at the Laboratory of Tianjin Center, China Geological Survey.
3.1. Zircon U–Pb Dating
Zircon U–Pb dating of the samples was conducted using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). The instrument configuration and parameter settings are detailed in Xie et al. [44]. During the experiment, a 193 nm excimer laser was used to ablate the zircon, with a laser ablation spot diameter of 35 μm. GJ-1 and 91500 were selected as external zircon age standards for U–Pb isotopic fractionation correction during the zircon dating process [45]. The NIST 610 glass standard was used as an external standard to calculate the Pb, U, and Th contents of the zircon. Data processing was carried out using the ICPMSDataCal program developed by Liu et al. [46] and the Isoplot program by Ludwig [47]. The common lead correction was applied using the 208Pb correction method [48].
3.2. Lu–Hf Isotope Analyses
Based on zircon U–Pb dating, in situ Lu–Hf isotopic analysis of zircon was carried out. The testing was performed using a Neptune multi-collector inductively coupled plasma mass spectrometer (MC–ICP–MS) equipped with a 193 nm excimer laser (Thermo Fisher Scientific, Waltham, MA, USA). The laser spot diameter was set at 43 μm, and helium gas was used as the carrier gas for the ablated material. The standard zircon GJ-1 was used to monitor the instrument performance and provide external correction for the samples. The measured 176Hf/177Hf ratio was 0.282001 ± 0.000026 (2σ; n = 10). Detailed analytical procedures and data processing methods are described in Geng et al. [49]. The chondritic values of 176Hf/177Hf = 0.282772 and 176Lu/177Hf = 0.0332 reported by BlichertToft and Albarède [50] were adopted to calculate εHf(t) values. The calculation of model ages was based on a depleted mantle source using the measured 176Lu/177Hf ratios of zircon [51].
3.3. Major and Trace Element Analyses
After petrographic study of field-collected samples, fresh rock samples were selected for contamination-free crushing to 200-mesh size, followed by whole-rock major and trace element analyses. During the geochemical analysis, major elements were determined using X-ray fluorescence (XRF) spectrometry, while trace elements were measured using an ELEMENT-type ICP–MS (Thermo Fisher Scientific, Waltham, MA, USA). The analytical accuracies for major and trace elements were better than 5% and 3%, respectively.
4. Analytical Results
4.1. Zircon U–Pb Ages
The zircon U–Pb analytical results for four samples from the study area are presented in Table A1. The analyzed zircon crystals are predominantly euhedral to subhedral, transparent to translucent, with lengths ranging from 50 to 120 μm and aspect ratios of 1:1 to 3:1. Cathodoluminescence (CL) images reveal well-defined internal structures with distinct oscillatory zoning (Figure 4). The Th/U ratios are all greater than 0.1 (Table A1), indicating a magmatic origin [52].
Figure 4.
Representative CL images of zircons from the granitic intrusions in the Huolin Gol area. Yellow circles indicate the location of LA-ICP-MS U-Pb analyses.
Sample 21ZK187, collected from a syenogranite southwest of Holin Gol. In this study, 24 zircon grains were analyzed. Except for nine analytical points that deviate from the concordia curve, likely due to radiogenic Pb loss, the remaining 15 analytical points fall on or near the concordia. Among these, 14 points yield a weighted mean 206Pb/238U age of 130 ± 1 Ma (MSWD = 2.10, n = 14), indicating an Early Cretaceous emplacement age for the syenogranite rather than Late Jurassic. The 206Pb/238U age of the other analytical spot is 143 ± 1 Ma, which corresponds to the age of captured zircons in the syenogranite (Figure 5a).
Figure 5.
Zircon LA–ICP–MS U–Pb concordia diagrams for the granitic intrusions from the Huolin Gol area.
For the syenogranite collected from the Malagaihada pluton (sample 21ZK193), 24 analytical points were obtained. Twenty of these points yield 206Pb/238U ages ranging from 134 to 131 Ma, with a weighted mean age of 133 ± 1 Ma (MSWD = 0.21, n = 20). One point gives an age of 160 ± 3 Ma (Figure 5b). The youngest group of weighted mean 206Pb/238U ages (133 ± 1 Ma) represents the Early Cretaceous emplacement age of the syenogranite. The other older age (~160 Ma) represents the crystallization age of inherited zircon entrained in the magma, and the age is similar to those of Late Jurassic granitoids from the GXR [9,11].
Sample 21ZK199, collected from the Halejinhada syenogranite, yielded 24 analytical points, most of which fall on or near the concordia. Among these, 21 points give 206Pb/238U ages between 135 and 132 Ma, with a weighted mean age of 134 ± 1 Ma (MSWD = 0.26, n = 21) (Figure 5c), indicating an Early Cretaceous emplacement age for the syenogranite.
For the granodiorite collected from the Naimanqi quarry (sample 21ZK205), analysis of 24 magmatic zircon grains shows that, except for eight analytical points that deviate from the concordia curve due to Pb loss, the remaining points yield 206Pb/238U ages between 131 and 127 Ma. The weighted mean age of these points is 130 ± 1 Ma (MSWD = 0.40, n = 16) (Figure 5d), indicating that the granodiorite formed during the Early Cretaceous.
4.2. Zircon Hf Isotopic Compositions
Zircon Hf isotopic results for sample 21ZK187 show that the magmatic zircons have 176Hf/177Hf ratios ranging from 0.282888 to 0.283084, with εHf(t) values between +6.8 and +13.7. The two-stage Hf model ages (TDM2) vary from 306 to 756 Ma (Figure 6; Table A2).
Figure 6.
(a) Age (Ma) versus εHf(t) for zircons separated from the granitic intrusions in the eastern CAOB; (b) Age (Ma) versus εHf(t) for zircons separated from the granitic intrusions in the GXR. CAOB = the Central Asian Orogenic Belt and YFTB = the Yanshan Fold and Thrust Belt [53]. Data for the Early Cretaceous granitic rocks are from Zhang et al. [42], Cheng et al. [54], Xiong et al. [55], Yang et al. [56], Wang et al. [57], Shi [58], Zhang et al. [59], Liu et al. [60], Han et al. [61], and Zhang [62].
Zircon Hf isotopic results for sample 21ZK193 indicate that the magmatic zircons have 176Hf/177Hf ratios ranging from 0.282874 to 0.283034, with εHf(t) values between +6.5 and +12.0. The TDM2 range from 416 to 772 Ma (Figure 6; Table A2).
4.3. Major and Trace Elements
The granites in the study area share similar characteristics in their major element geochemical composition. On the (Na2O + K2O) versus SiO2 diagram, all samples fall within the subalkaline series (Figure 7a). On the K2O versus SiO2 diagram, they exhibit features of high-K calc-alkaline series rocks (Figure 7b). Their A/CNK values range from 1.04 to 1.14, indicating weakly peraluminous characteristics (Figure 7c). The granitic rocks have SiO2 = 75.02–78.53 wt.%, Na2O = 3.55–3.89 wt.%, K2O = 3.98–5.11 wt.%, TiO2 = 0.02–0.15 wt.%, TFe2O3 = 0.44–1.45 wt.%, MgO = 0.00–0.43 wt.%, Al2O3 = 11.87–13.55 wt.%, and Na2O/K2O = 0.72–0.97 (Table A3).
Figure 7.
(a) Total alkali versus SiO2 (TAS) [63], (b) K2O versus SiO2 [64], and (c) A/NK versus A/CNK [65], the dashed line represents an A/CNK value of 1.1. Data for the Early Cretaceous granitic rocks are from Xiong et al. [55], Yang et al. [56], Shi [58], Zhang et al. [59], Wu et al. [66], and Gao et al. [67].
On the chondrite-normalized rare earth element (REE) distribution diagram, these intrusive rocks are characterized by enrichment in light rare earth elements (LREEs), depletion in heavy rare earth elements (HREEs), with LREE/HREE = 3.89–12.41, (La/Yb)N = 2.39–18.86, and significant negative Eu anomalies (Eu/Eu* = 0.02–0.17) (Figure 8a). On the primitive mantle-normalized trace element spider diagram, they show significant enrichment in Rb, Th, U, K, Pb, and LREEs, and depletion in Ba, Nb, Ta, Sr, P, Ti, and HREEs (Figure 8b).
Figure 8.
(a) Chondrite–normalized REE patterns and (b) Primitive Mantle (PM) normalized trace element diagrams for the granitic intrusions. The values of chondrite and PM are from Sun and McDonough [68]. Early Cretaceous granitic rock data sources are the same as those in Figure 6.
5. Discussion
5.1. The Timing of Emplacement of the Granites
As mentioned above, since the Mesozoic era, the GXR region has experienced frequent magmatic activity under the superimposed reworking of the Mongol-Okhotsk Ocean and the Paleo-Pacific tectonic domains. This is characterized by the extensive development of Jurassic and Cretaceous granitic rocks [9,16,17,25,27,43]. The granitic rocks analyzed in this study were collected from the Holin Gol area in the central southern segment of the GXR. These granitic rocks were traditionally considered to have formed in the Late Jurassic [34], but this was not confirmed by any reliable isotopic age data. Zircons from these samples are euhedral to subhedral, with clear internal structures and commonly developed oscillatory zoning, along with high Th/U ratios (>0.1; Table A1), indicating a magmatic origin [52]. Zircon U–Pb dating of the granites in the study area yields ages ranging from 134 Ma to 130 Ma, suggesting they formed in the Early Cretaceous.
Based on the Early Cretaceous zircon U–Pb ages obtained in this study, combined with previously published isotopic age data from NE China, it is evident that Cretaceous granitic magmatism is widespread in the region, generally exhibiting a NNE-trending distribution, and showing a younger trend from northwest to southeast. (Figure 9; Table A4). Among these, Early Cretaceous magmatic activity is mainly distributed in the GXR and its surrounding areas, with ages ranging from 144 to 106 Ma, while minor occurrences are found in the eastern Jilin–Heilongjiang region, with ages between 129 and 104 Ma. Additionally, Late Cretaceous magmatic activity is only developed in the eastern Heilongjiang region, with ages ranging from 98 to 89 Ma. It is noteworthy that hydrothermal mineralization closely related to Early Cretaceous magmatic activity is widely developed in NE China, with porphyry-type Mo mineralization being particularly prominent [7,14,15,69]. Studies indicate that the formation ages of Early Cretaceous Mo deposits and related intrusions exhibit a younging trend from northwest to southeast [69].
Figure 9.
Distribution of the Cretaceous granitic rocks in NE China. The direction of the arrow roughly indicates the subduction direction of the Paleo-Pacific Plate during the Cretaceous. The figure showing sampling locations (blue dot) and age of Cretaceous granitic rocks collected in NE China. (modified from Wu et al. [9]; Table A4). The abbreviations shown on the figure are GXR—Great Xing’an Range; SB—Songliao Basin; EHJP—Eastern Heilongjiang and Jilin provinces.
5.2. Petrogenesis
The Early Cretaceous granitic rocks studied in this study are mainly composed of syenogranite and granodiorite. In terms of mineral composition characteristics, some granitic rocks contain a small amount of amphibole, while aluminum-rich minerals such as muscovite and cordierite are absent, indicating that these rocks do not exhibit the characteristics of S-type granites and are likely of I-type genesis [9,41,54,66,70]. This conclusion is further supported by the negative correlation between Al2O3 and P2O5 with SiO2 content (Figure 10a,b)., Among them, there are four outlier sample points with abnormally high P2O5 contents, which may be related to the assimilation and contamination of water-rich magma with surrounding rocks (e.g., sedimentary rocks) during the late stage of magmatic evolution [71,72]. In addition, relatively low Y and Ce concentrations and a 10,000 × Ga/Al ratio excludes the possibility of S-type granite (Figure 10c,d). Based on the above findings, it is indicated that the Early Cretaceous igneous rocks developed in the study area are I-type granites.
Figure 10.
(a) Al2O3, and (b) P2O5 versus SiO2 variation diagrams showing that the granitic intrusions follow the trend of I-type proposed by Chappell and White [73]; (c) Y, and (d) Ce versus 10,000 Ga/Al discrimination diagrams of Whalen et al. [70]. A: A-type granites; I, S & M: I-, S-, and M-type granites.
Geochemically, the granites in the Huolin Gol area generally exhibit characteristics of high SiO2 content, K-rich, and poor in Mg, Fe, Ca, as well as transition metals. This suggests that the primitive magma of these intrusive rocks originated from the partial melting of continental crustal materials [36,74]. As shown in Figure 8b, the Early Cretaceous granites exhibit negative anomalies in Nb, Ta, Sr, Eu, and Ti along with positive anomalies in Rb, Th, and U. These characteristics indicate that continental crustal materials played a significant role in the magmatic genesis of the rocks [75,76]. This is further supported by low Ce/Pb and Nb/U but high Th/La and Th/Ce ratios [77]. Meanwhile, the Nb/Ta ratios of these granites range from 11.8 to 5.1 (average = 7.4), which is more consistent with the values of the lower crust (average = 8.3) [78] and distinctly lower than the upper crust (average = 13.4) [79]. In addition, they generally display the characteristics of weakly peraluminous, high-K calc-alkaline series I-type granites, indicating that their magmatic source was likely basic or intermediate-basic igneous rocks [80].
Zircon Hf isotopes from this phase of granitic rocks in the study area show εHf(t) values ranging from +6.4 to +15.0, and two-stage Hf model ages (TDM2) varying from 226 to 773 Ma. Overall, these features indicate a source affinity similar to that of Phanerozoic granitic rocks in the CAOB, reflecting that the magmatic source likely consisted of juvenile crustal material accreted from depleted mantle during the Neoproterozoic to Triassic periods [53,81,82]. However, some samples exhibit relatively high positive εHf(t) isotopic compositions, along with relatively high Mg# values (e.g., Mg# = 46 for sample 21ZK210), suggesting the possible involvement of depleted mantle components with high positive εHf(t) values during the formation and evolution of the primitive magma. Meanwhile, contemporaneous granitic rocks in the GXR region display similar zircon Hf isotopic characteristics, with most samples uniformly distributed between the depleted mantle and chondrite evolution lines, far from the ancient crust Hf evolution line (Figure 6). Only a small portion of the granitic intrusive rocks in the central-southern segment of the GXR have εHf(t) values ranging from −4.43 to 8.15 and TDM2 values between 634 and 1439 Ma [62]. This indicates that a small amount of ancient crustal material was involved in the formation and evolution of the magma, which is further supported by the presence of ancient crustal material in this area [83]. Furthermore, some samples plot close to the depleted mantle evolution line, indicating that the large-scale granitic magmatism in the GXR during the Early Cretaceous was closely related to crust–mantle interaction, with contributions from mantle components during its formation. The aforementioned studies indicate that the GXR region contains a large amount of juvenile crustal components, and significant crustal accretion events occurred during the Phanerozoic.
As mentioned above, the granitic rocks in the study area are products of partial melting of continental crustal materials. The positive correlation between La/Yb and La also indicates that partial melting was more important than fractional crystallization in controlling the compositional variation of the granitic rocks [84]. However, varying degrees of fractional crystallization may also have occurred during the early evolution of the primitive magma. For instance, fractional crystallization of garnet and amphibole may have led to the enrichment of LREE and depletion of HREE. Concurrently, decreasing depth and pressure resulted in the fractional crystallization of plagioclase during the late magmatic stage, exhibiting a pronounced negative Eu anomaly (Eu/Eu* = 0.02–0.17). On the primitive mantle-normalized trace element spider diagram (Figure 8b), the depletions in Nb, Ta, and Ti may reflect the presence of rutile residues during partial melting of a fluid-metasomatized mantle wedge in the initial subduction zone or fractional crystallization of rutile during magmatic evolution.
In summary, this study suggests that the source rocks of the Early Cretaceous granites in the study area were likely newly accreted juvenile continental crustal materials. These rocks underwent varying degrees of fractional crystallization and were contaminated by mantle-derived magmas during their magmatic evolution.
5.3. Tectonic Setting
Determining the tectonic setting of the Cretaceous igneous rocks in the GXR holds the key to deciphering the region’s tectonic evolution. [9,11,18,85]. There has been significant debate regarding the geodynamic background of this magmatism—specifically, whether it is related to the evolution of the Paleo-Pacific Plate or the Mongol-Okhotsk Ocean Plate [9,85,86,87,88,89]. The Early Cretaceous granites in the study area generally exhibit characteristics of weakly peraluminous, high-K calc-alkaline I-type granites. They are enriched in LREE and LILE but depleted in HFSE, suggesting that their primitive magma originated in an island arc or active continental margin setting [90]. This is also supported by the concurrent observation that the variation range of Ba/Th significantly narrows with increasing SiO2 content. Moreover, in Figure 11a,b the granitic rocks plot in continental arcs and active continental margin fields, respectively. On tectonic discrimination diagrams for granites (Figure 11c,d), the samples fall within the ranges of volcanic arc and post-collisional fields, possibly reflecting an extensional environment related to subduction. Furthermore, the coeval magmatism in the GXR region primarily consists of alkali feldspar granite, syenogranite, monzogranite, granodiorite, granite porphyry, quartz syenite, and quartz diorite. These are dominated by high-K calc-alkaline metaluminous to weakly peraluminous I-type granites, with minor reports of A-type granites in the Hamagou Forest Farm (Table A4, Figure 7 and Figure 10). Combined with the spatial distribution characteristics of Early Cretaceous granitic magmatism and the Mo mineralization in the NE China, and the regional tectonic evolution history, this study suggests that the formation of Early Cretaceous granites in the study area is likely related to the tectonic evolution of the Paleo-Pacific Plate, rather than the subduction of the Mongol-Okhotsk Ocean.
Figure 11.
(a) Th/Nb versus La/Yb, (b) Th/Yb versus Ta/Yb (from [91,92]), (c) Nb versus Y, and (d) Rb versus (Y + Nb) diagrams of the granitic intrusions in the GXR (from [93]). The dashed line represents the upper compositional boundary for ORG from anomalous ridge segments. ORG—ocean ridge granites; WPG—within-plate granites; VAG—volcanic arc granites; Syn-COLG—syn-collisional granites; Post-COLG—post-collisional granites.
Studies indicate that the Mongol-Okhotsk Suture Zone records the closure of an ancient oceanic plate from west to east, extending approximately 3000 km from the present-day Sea of Okhotsk southwestward to central Mongolia [85]. The evolution of the Mongol-Okhotsk tectonic domain may have exerted some influence on the Erguna Block, leading to a series of Triassic-Jurassic magmatic events [18,43,85]. Dong et al. [18] conducted research on the spatiotemporal distribution, geochronology, and geochemistry of Mesozoic acidic magmatic rocks in the central GXR. They proposed that these rocks formed in a Jurassic compressional tectonic setting related to subduction, suggesting that the Mongol-Okhotsk Ocean, which closed during the Middle Jurassic, only affected the Erguna Block and did not influence the Xing’an Block or areas further south. The Early Cretaceous magmatic activity in the study area is primarily distributed along the northern margin of the Songliao Block in the southern segment of the GXR. Combined with its NNE-trending spatial distribution, this suggests that the magmatism was likely a product of Paleo-Pacific Plate subduction. Furthermore, through petrological and geochemical studies on Mesozoic igneous rocks in NE China, Ji et al. [43] found that the Izanagi Plate had undergone flat-slab subduction beneath the Hailar Basin and the GXR. The Early-Middle Jurassic (180–160 Ma) magmatic activity exhibited a northwestward younging trend, reflecting that the influence of Pacific tectonic evolution had reached the Hailar Basin and northern GXR since the late Middle Jurassic [43]. Therefore, this study concludes that the Early Cretaceous granites in the study area formed in an active continental margin environment, with their geodynamic mechanism related to the subduction of the Paleo-Pacific Plate beneath the East Asian continent [Figure 12].
Figure 12.
Schematic model of the geodynamic scenario for NE China during the Early Cretaceous (modified from Ji et al. [43]). The abbreviations are shown in Figure 9.
6. Conclusions
- (1)
- The granitic rocks in the Huolin Gol area of the southern GXR were formed during the Early Cretaceous (134–130 Ma), rather than the previously believed Late Jurassic.
- (2)
- The Early Cretaceous granitic rocks in the Huolin Gol area are all weakly peraluminous, high-K calc-alkaline I-type granites. Their parental magma originated from the partial melting of newly accreted juvenile crustal materials.
- (3)
- These Early Cretaceous granitic rocks in the Huolin Gol were formed in an active continental margin setting, and their geodynamic mechanism is related to the subduction of the Paleo-Pacific Plate beneath the East Asian continent.
Author Contributions
Conceptualization, K.Z. and J.B.; methodology, H.Z.; software, Z.T. and X.Q.; validation, J.G.; formal analysis, K.Z.; investigation, K.Z. and J.B.; resources, H.C. and F.Z.; data curation, Z.T.; writing—original draft preparation, K.Z.; writing—review and editing, J.B.; visualization, K.Z.; supervision, J.B.; project administration, J.B.; funding acquisition, H.C. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by National Science and Technology Major Project of China (Grants 2025ZD1005306 and 2025ZD1005300), National Natural Science Foundation of China (Grants 42472166, 42372238, 42330304, and 42002065) and China Geological Survey (Grants DD20240201404 and DD202402014).
Data Availability Statement
The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author(s).
Acknowledgments
We are very grateful to Jia-Run Tu, Guo-Zhan Li, and Shuang Wei from the Laboratory of Tianjin Center, China Geological Survey, China, for their assistance in the experimental testing.
Conflicts of Interest
The authors declare no conflicts of interest.
Appendix A
Table A1.
LA-ICP-MS U-Pb zircon dating data of the Early Cretaceous granitoids from the southern GXR.
Table A1.
LA-ICP-MS U-Pb zircon dating data of the Early Cretaceous granitoids from the southern GXR.
| No. | Pb | Th | U | Th/U | Isotopic Ratios | Isotopic Ages (Ma) | Disc (%) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Content (ppm) | 207Pb/206Pb | ±1σ | 207Pb/235U | ±1σ | 206Pb/238U | ±1σ | 207Pb/206Pb | ±1σ | 207Pb/235U | ±1σ | 206Pb/238U | ±1σ | |||||
| 21ZK187-1 | 67 | 933 | 2459 | 0.38 | 0.07223 | 0.00185 | 0.21702 | 0.00540 | 0.02170 | 0.00024 | 992 | 52 | 199 | 5 | 138 | 2 | 30.7 |
| 21ZK187-2 | 40 | 959 | 1158 | 0.83 | 0.13346 | 0.00600 | 0.41755 | 0.01909 | 0.02256 | 0.00022 | 2144 | 78 | 354 | 14 | 144 | 1 | 59.3 |
| 21ZK187-3 | 18 | 400 | 708 | 0.57 | 0.05007 | 0.00113 | 0.14710 | 0.00338 | 0.02125 | 0.00020 | 198 | 52 | 139 | 3 | 136 | 1 | 2.16 |
| 21ZK187-4 | 35 | 486 | 967 | 0.50 | 0.13489 | 0.00619 | 0.48450 | 0.02729 | 0.02517 | 0.00044 | 2163 | 80 | 401 | 19 | 160 | 3 | 60.1 |
| 21ZK187-5 | 30 | 560 | 925 | 0.61 | 0.14462 | 0.00689 | 0.44265 | 0.02244 | 0.02207 | 0.00039 | 2283 | 83 | 372 | 16 | 141 | 2 | 62.1 |
| 21ZK187-6 | 17 | 217 | 463 | 0.47 | 0.13376 | 0.00476 | 0.45424 | 0.01678 | 0.02454 | 0.00032 | 2148 | 62 | 380 | 12 | 156 | 2 | 58.9 |
| 21ZK187-7 | 35 | 377 | 1041 | 0.36 | 0.13497 | 0.00675 | 0.45073 | 0.02681 | 0.02321 | 0.00025 | 2165 | 88 | 378 | 19 | 148 | 2 | 60.8 |
| 21ZK187-8 | 31 | 495 | 1319 | 0.38 | 0.04956 | 0.00106 | 0.14403 | 0.00355 | 0.02090 | 0.00022 | 176 | 55 | 137 | 3 | 133 | 1 | 2.92 |
| 21ZK187-9 | 23 | 461 | 959 | 0.48 | 0.04788 | 0.00081 | 0.14098 | 0.00259 | 0.02124 | 0.00022 | 100 | 39 | 134 | 2 | 136 | 1 | −1.49 |
| 21ZK187-10 | 32 | 543 | 1311 | 0.41 | 0.04978 | 0.00340 | 0.14623 | 0.01168 | 0.02113 | 0.00046 | 183 | 164 | 139 | 10 | 135 | 3 | 2.88 |
| 21ZK187-11 | 39 | 840 | 1442 | 0.58 | 0.07009 | 0.00318 | 0.21478 | 0.00847 | 0.02228 | 0.00035 | 931 | 93 | 198 | 7 | 142 | 2 | 28.3 |
| 21ZK187-12 | 29 | 541 | 1206 | 0.45 | 0.05992 | 0.00139 | 0.16959 | 0.00465 | 0.02032 | 0.00021 | 611 | 50 | 159 | 4 | 130 | 1 | 18.2 |
| 21ZK187-13 | 18 | 356 | 713 | 0.50 | 0.04825 | 0.00097 | 0.14238 | 0.00301 | 0.02132 | 0.00022 | 122 | 51 | 135 | 3 | 136 | 1 | −0.74 |
| 21ZK187-14 | 108 | 2523 | 2738 | 0.92 | 0.16690 | 0.00552 | 0.54238 | 0.01960 | 0.02316 | 0.00019 | 2528 | 56 | 440 | 13 | 148 | 1 | 66.4 |
| 21ZK187-15 | 76 | 1307 | 1971 | 0.66 | 0.16894 | 0.00493 | 0.55953 | 0.01792 | 0.02383 | 0.00026 | 2547 | 49 | 451 | 12 | 152 | 2 | 66.3 |
| 21ZK187-16 | 50 | 792 | 1306 | 0.61 | 0.13323 | 0.00599 | 0.46525 | 0.02346 | 0.02478 | 0.00026 | 2143 | 78 | 388 | 16 | 158 | 2 | 59.3 |
| 21ZK187-17 | 58 | 1156 | 2475 | 0.47 | 0.06285 | 0.00134 | 0.16716 | 0.00454 | 0.01912 | 0.00029 | 702 | 45 | 157 | 4 | 122 | 2 | 22.3 |
| 21ZK187-18 | 61 | 1166 | 2475 | 0.47 | 0.06208 | 0.00116 | 0.17183 | 0.00316 | 0.01994 | 0.00023 | 676 | 41 | 161 | 3 | 127 | 1 | 21.1 |
| 21ZK187-19 | 38 | 700 | 1347 | 0.52 | 0.06978 | 0.00231 | 0.22102 | 0.00819 | 0.02263 | 0.00021 | 922 | 67 | 203 | 7 | 144 | 1 | 29.1 |
| 21ZK187-20 | 29 | 607 | 1144 | 0.53 | 0.04801 | 0.00161 | 0.14195 | 0.00488 | 0.02125 | 0.00022 | 98 | 78 | 135 | 4 | 136 | 1 | −0.74 |
| 21ZK187-21 | 32 | 618 | 1297 | 0.48 | 0.06006 | 0.00194 | 0.16753 | 0.00636 | 0.01990 | 0.00022 | 606 | 37 | 157 | 6 | 127 | 1 | 19.1 |
| 21ZK187-22 | 6 | 91 | 240 | 0.38 | 0.05980 | 0.00383 | 0.16971 | 0.01210 | 0.02025 | 0.00040 | 594 | 139 | 159 | 11 | 129 | 3 | 18.9 |
| 21ZK187-23 | 24 | 333 | 959 | 0.35 | 0.04734 | 0.00265 | 0.13908 | 0.00642 | 0.02120 | 0.00037 | 65 | 130 | 132 | 6 | 135 | 2 | −2.27 |
| 21ZK187-24 | 131 | 5059 | 2572 | 1.97 | 0.29852 | 0.00481 | 0.94599 | 0.01643 | 0.02274 | 0.00021 | 3463 | 24 | 676 | 9 | 145 | 1 | 78.6 |
| 21ZK193-1 | 14 | 314 | 530 | 0.59 | 0.05040 | 0.00135 | 0.14570 | 0.00404 | 0.02082 | 0.00021 | 213 | 63 | 138 | 4 | 133 | 1 | 3.62 |
| 21ZK193-2 | 35 | 688 | 1421 | 0.48 | 0.05206 | 0.00105 | 0.14959 | 0.00298 | 0.02071 | 0.00023 | 287 | 44 | 142 | 3 | 132 | 1 | 7.04 |
| 21ZK193-3 | 23 | 534 | 881 | 0.61 | 0.05126 | 0.00108 | 0.14827 | 0.00317 | 0.02086 | 0.00021 | 254 | 45 | 140 | 3 | 133 | 1 | 5.00 |
| 21ZK193-4 | 35 | 429 | 1463 | 0.29 | 0.04895 | 0.00079 | 0.14216 | 0.00238 | 0.02094 | 0.00022 | 146 | 39 | 135 | 2 | 134 | 1 | 0.74 |
| 21ZK193-5 | 31 | 527 | 1243 | 0.42 | 0.04877 | 0.00075 | 0.14217 | 0.00238 | 0.02097 | 0.00019 | 200 | 35 | 135 | 2 | 134 | 1 | 0.74 |
| 21ZK193-6 | 22 | 430 | 908 | 0.47 | 0.04916 | 0.00091 | 0.14234 | 0.00272 | 0.02088 | 0.00021 | 154 | 38 | 135 | 2 | 133 | 1 | 1.48 |
| 21ZK193-7 | 47 | 915 | 1493 | 0.61 | 0.04856 | 0.00148 | 0.16968 | 0.00388 | 0.02521 | 0.00040 | 128 | 72 | 159 | 3 | 160 | 3 | −0.63 |
| 21ZK193-8 | 5 | 67 | 194 | 0.34 | 0.05097 | 0.00198 | 0.14540 | 0.00549 | 0.02076 | 0.00030 | 239 | 91 | 138 | 5 | 132 | 2 | 4.35 |
| 21ZK193-9 | 39 | 670 | 1272 | 0.53 | 0.07300 | 0.00119 | 0.24048 | 0.00426 | 0.02372 | 0.00021 | 1014 | 38 | 219 | 3 | 151 | 1 | 31.1 |
| 21ZK193-10 | 6 | 102 | 231 | 0.44 | 0.05174 | 0.00213 | 0.14804 | 0.00655 | 0.02058 | 0.00034 | 272 | 94 | 140 | 6 | 131 | 2 | 6.43 |
| 21ZK193-11 | 31 | 468 | 1267 | 0.37 | 0.05044 | 0.00092 | 0.14565 | 0.00262 | 0.02091 | 0.00022 | 217 | 43 | 138 | 2 | 133 | 1 | 3.62 |
| 21ZK193-12 | 21 | 336 | 874 | 0.38 | 0.04898 | 0.00087 | 0.14211 | 0.00256 | 0.02097 | 0.00021 | 146 | 41 | 135 | 2 | 134 | 1 | 0.74 |
| 21ZK193-13 | 113 | 2680 | 2797 | 0.96 | 0.23133 | 0.00337 | 0.69076 | 0.01043 | 0.02153 | 0.00029 | 3061 | 23 | 533 | 6 | 137 | 2 | 74.3 |
| 21ZK193-14 | 29 | 578 | 1140 | 0.51 | 0.04915 | 0.00092 | 0.14224 | 0.00263 | 0.02093 | 0.00020 | 154 | 44 | 135 | 2 | 134 | 1 | 0.74 |
| 21ZK193-15 | 7 | 89 | 281 | 0.32 | 0.05218 | 0.00168 | 0.14881 | 0.00458 | 0.02086 | 0.00033 | 295 | 74 | 141 | 4 | 133 | 2 | 5.67 |
| 21ZK193-16 | 22 | 483 | 890 | 0.54 | 0.04880 | 0.00088 | 0.14076 | 0.00279 | 0.02082 | 0.00024 | 200 | 47 | 134 | 2 | 133 | 2 | 0.75 |
| 21ZK193-17 | 20 | 371 | 789 | 0.47 | 0.05104 | 0.00107 | 0.14681 | 0.00305 | 0.02082 | 0.00022 | 243 | 53 | 139 | 3 | 133 | 1 | 4.32 |
| 21ZK193-18 | 7 | 122 | 279 | 0.44 | 0.05235 | 0.00202 | 0.14832 | 0.00509 | 0.02077 | 0.00031 | 302 | 89 | 140 | 5 | 133 | 2 | 5.00 |
| 21ZK193-19 | 8 | 116 | 327 | 0.36 | 0.04987 | 0.00345 | 0.14341 | 0.00930 | 0.02076 | 0.00064 | 187 | 161 | 136 | 8 | 132 | 4 | 2.94 |
| 21ZK193-20 | 120 | 2598 | 2731 | 0.95 | 0.20200 | 0.00447 | 0.68957 | 0.01753 | 0.02448 | 0.00022 | 2842 | 37 | 533 | 11 | 156 | 1 | 70.7 |
| 21ZK193-21 | 7 | 102 | 293 | 0.35 | 0.05193 | 0.00153 | 0.14729 | 0.00419 | 0.02068 | 0.00023 | 283 | 69 | 140 | 4 | 132 | 1 | 5.71 |
| 21ZK193-22 | 26 | 525 | 984 | 0.53 | 0.05173 | 0.00394 | 0.14919 | 0.00882 | 0.02091 | 0.00042 | 272 | 176 | 141 | 8 | 133 | 3 | 5.67 |
| 21ZK193-23 | 8 | 120 | 339 | 0.35 | 0.05130 | 0.00135 | 0.14701 | 0.00370 | 0.02093 | 0.00025 | 254 | 66 | 139 | 3 | 134 | 2 | 3.60 |
| 21ZK193-24 | 10 | 139 | 414 | 0.34 | 0.05048 | 0.00120 | 0.14379 | 0.00343 | 0.02065 | 0.00022 | 217 | 86 | 136 | 3 | 132 | 1 | 2.94 |
| 21ZK199-1 | 15 | 170 | 644 | 0.26 | 0.04894 | 0.00124 | 0.14293 | 0.00386 | 0.02107 | 0.00024 | 146 | 64 | 136 | 3 | 134 | 2 | 1.47 |
| 21ZK199-2 | 23 | 612 | 897 | 0.68 | 0.04825 | 0.00088 | 0.14025 | 0.00277 | 0.02097 | 0.00020 | 122 | 38 | 133 | 2 | 134 | 1 | −0.75 |
| 21ZK199-3 | 44 | 761 | 1868 | 0.41 | 0.05088 | 0.00075 | 0.14806 | 0.00239 | 0.02099 | 0.00019 | 235 | 61 | 140 | 2 | 134 | 1 | 4.29 |
| 21ZK199-4 | 25 | 419 | 1045 | 0.40 | 0.04952 | 0.00092 | 0.14323 | 0.00267 | 0.02092 | 0.00021 | 172 | 44 | 136 | 2 | 133 | 1 | 2.21 |
| 21ZK199-5 | 26 | 1120 | 1110 | 1.01 | 0.06635 | 0.00166 | 0.16589 | 0.00458 | 0.01798 | 0.00020 | 817 | 56 | 156 | 4 | 115 | 1 | 26.3 |
| 21ZK199-6 | 26 | 340 | 1076 | 0.32 | 0.04982 | 0.00086 | 0.14517 | 0.00277 | 0.02102 | 0.00022 | 187 | 44 | 138 | 2 | 134 | 1 | 2.90 |
| 21ZK199-7 | 11 | 194 | 453 | 0.43 | 0.04788 | 0.00105 | 0.13822 | 0.00291 | 0.02099 | 0.00026 | 100 | 52 | 131 | 3 | 134 | 2 | −2.29 |
| 21ZK199-8 | 10 | 169 | 406 | 0.42 | 0.05039 | 0.00141 | 0.14635 | 0.00406 | 0.02110 | 0.00028 | 213 | 65 | 139 | 4 | 135 | 2 | 2.88 |
| 21ZK199-9 | 30 | 351 | 1314 | 0.27 | 0.04858 | 0.00080 | 0.14150 | 0.00238 | 0.02104 | 0.00021 | 128 | 39 | 134 | 2 | 134 | 1 | 0.00 |
| 21ZK199-10 | 37 | 716 | 1433 | 0.50 | 0.06151 | 0.00127 | 0.18621 | 0.00363 | 0.02189 | 0.00019 | 657 | 44 | 173 | 3 | 140 | 1 | 19.1 |
| 21ZK199-11 | 21 | 283 | 879 | 0.32 | 0.05092 | 0.00140 | 0.14686 | 0.00396 | 0.02080 | 0.00024 | 235 | 63 | 139 | 4 | 133 | 2 | 4.32 |
| 21ZK199-12 | 12 | 169 | 513 | 0.33 | 0.04838 | 0.00132 | 0.14177 | 0.00375 | 0.02125 | 0.00025 | 117 | 68 | 135 | 3 | 136 | 2 | −0.74 |
| 21ZK199-13 | 22 | 473 | 942 | 0.50 | 0.04970 | 0.00106 | 0.14465 | 0.00317 | 0.02104 | 0.00027 | 189 | 50 | 137 | 3 | 134 | 2 | 2.19 |
| 21ZK199-14 | 23 | 317 | 950 | 0.33 | 0.04877 | 0.00095 | 0.14202 | 0.00287 | 0.02102 | 0.00024 | 200 | 44 | 135 | 3 | 134 | 1 | 0.74 |
| 21ZK199-15 | 23 | 355 | 1012 | 0.35 | 0.04976 | 0.00111 | 0.14294 | 0.00332 | 0.02074 | 0.00024 | 183 | 52 | 136 | 3 | 132 | 2 | 2.94 |
| 21ZK199-16 | 48 | 930 | 2007 | 0.46 | 0.05279 | 0.00126 | 0.15287 | 0.00374 | 0.02085 | 0.00028 | 320 | 54 | 144 | 3 | 133 | 2 | 7.64 |
| 21ZK199-17 | 90 | 3993 | 2347 | 1.70 | 0.18991 | 0.00430 | 0.56354 | 0.01160 | 0.02141 | 0.00026 | 2743 | 43 | 454 | 8 | 137 | 2 | 69.8 |
| 21ZK199-18 | 10 | 194 | 393 | 0.49 | 0.04933 | 0.00124 | 0.14354 | 0.00387 | 0.02095 | 0.00023 | 165 | 59 | 136 | 3 | 134 | 1 | 1.47 |
| 21ZK199-19 | 36 | 398 | 1577 | 0.25 | 0.04822 | 0.00074 | 0.14010 | 0.00215 | 0.02098 | 0.00021 | 109 | 37 | 133 | 2 | 134 | 1 | −0.75 |
| 21ZK199-20 | 35 | 509 | 1459 | 0.35 | 0.04769 | 0.00074 | 0.13934 | 0.00239 | 0.02105 | 0.00021 | 83 | 32 | 132 | 2 | 134 | 1 | −1.52 |
| 21ZK199-21 | 30 | 591 | 1203 | 0.49 | 0.04916 | 0.00082 | 0.14435 | 0.00273 | 0.02113 | 0.00021 | 167 | 39 | 137 | 2 | 135 | 1 | 1.46 |
| 21ZK199-22 | 24 | 354 | 1018 | 0.35 | 0.04954 | 0.00081 | 0.14372 | 0.00258 | 0.02092 | 0.00024 | 172 | 5 | 136 | 2 | 133 | 1 | 2.21 |
| 21ZK199-23 | 22 | 406 | 896 | 0.45 | 0.04856 | 0.00088 | 0.14250 | 0.00265 | 0.02120 | 0.00022 | 128 | 43 | 135 | 2 | 135 | 1 | 0.00 |
| 21ZK199-24 | 15 | 193 | 611 | 0.32 | 0.04800 | 0.00101 | 0.14050 | 0.00310 | 0.02110 | 0.00023 | 98 | 47 | 133 | 3 | 135 | 1 | −1.50 |
| 21ZK205-1 | 58 | 906 | 1974 | 0.46 | 0.11652 | 0.00500 | 0.33584 | 0.01315 | 0.02108 | 0.00019 | 1903 | 82 | 294 | 10 | 134 | 1 | 54.4 |
| 21ZK205-2 | 13 | 290 | 511 | 0.57 | 0.04916 | 0.00117 | 0.13787 | 0.00316 | 0.02030 | 0.00019 | 154 | 56 | 131 | 3 | 130 | 1 | 0.76 |
| 21ZK205-3 | 29 | 371 | 1238 | 0.30 | 0.04883 | 0.00092 | 0.13733 | 0.00267 | 0.02028 | 0.00021 | 139 | 44 | 131 | 2 | 129 | 1 | 1.53 |
| 21ZK205-4 | 73 | 1128 | 2844 | 0.40 | 0.09853 | 0.00275 | 0.27230 | 0.00761 | 0.01992 | 0.00015 | 1598 | 52 | 245 | 6 | 127 | 1 | 48.2 |
| 21ZK205-5 | 11 | 150 | 494 | 0.30 | 0.04729 | 0.00124 | 0.13472 | 0.00372 | 0.02056 | 0.00023 | 65 | −138 | 128 | 3 | 131 | 1 | −2.34 |
| 21ZK205-6 | 60 | 941 | 2594 | 0.36 | 0.05514 | 0.00093 | 0.15435 | 0.00320 | 0.02016 | 0.00028 | 417 | 32 | 146 | 3 | 129 | 2 | 11.6 |
| 21ZK205-7 | 39 | 1602 | 2113 | 0.76 | 0.07529 | 0.00241 | 0.14775 | 0.00492 | 0.01417 | 0.00030 | 1076 | 64 | 140 | 4 | 91 | 2 | 35.0 |
| 21ZK205-8 | 56 | 952 | 2447 | 0.39 | 0.04710 | 0.00096 | 0.13173 | 0.00279 | 0.02018 | 0.00026 | 54 | −149 | 126 | 3 | 129 | 2 | −2.38 |
| 21ZK205-9 | 20 | 299 | 848 | 0.35 | 0.05174 | 0.00113 | 0.14518 | 0.00300 | 0.02028 | 0.00019 | 272 | 45 | 138 | 3 | 129 | 1 | 6.52 |
| 21ZK205-10 | 14 | 180 | 588 | 0.31 | 0.04562 | 0.00137 | 0.12900 | 0.00348 | 0.02054 | 0.00030 | error | 123 | 3 | 131 | 2 | −6.50 | |
| 21ZK205-11 | 36 | 414 | 1533 | 0.27 | 0.04919 | 0.00098 | 0.14021 | 0.00282 | 0.02056 | 0.00022 | 167 | 51 | 133 | 3 | 131 | 1 | 1.50 |
| 21ZK205-12 | 7 | 125 | 308 | 0.41 | 0.05053 | 0.00133 | 0.14046 | 0.00378 | 0.02010 | 0.00022 | 220 | 56 | 133 | 3 | 128 | 1 | 3.76 |
| 21ZK205-13 | 38 | 648 | 1654 | 0.39 | 0.07290 | 0.00347 | 0.18062 | 0.00711 | 0.01817 | 0.00023 | 1013 | 92 | 169 | 6 | 116 | 1 | 31.4 |
| 21ZK205-14 | 18 | 250 | 815 | 0.31 | 0.04878 | 0.00106 | 0.13566 | 0.00280 | 0.02019 | 0.00020 | 200 | 50 | 129 | 3 | 129 | 1 | 0.00 |
| 21ZK205-15 | 6 | 69 | 266 | 0.26 | 0.04905 | 0.00140 | 0.13703 | 0.00377 | 0.02030 | 0.00022 | 150 | 67 | 130 | 3 | 130 | 1 | 0.00 |
| 21ZK205-16 | 80 | 1124 | 3427 | 0.33 | 0.04753 | 0.00073 | 0.13330 | 0.00227 | 0.02022 | 0.00020 | 76 | 42 | 127 | 2 | 129 | 1 | −1.57 |
| 21ZK205-17 | 18 | 218 | 806 | 0.27 | 0.04803 | 0.00091 | 0.13513 | 0.00287 | 0.02032 | 0.00025 | 102 | 46 | 129 | 3 | 130 | 2 | −0.78 |
| 21ZK205-18 | 126 | 2649 | 5163 | 0.51 | 0.10688 | 0.00254 | 0.26305 | 0.00595 | 0.01785 | 0.00017 | 1747 | 44 | 237 | 5 | 114 | 1 | 51.9 |
| 21ZK205-19 | 27 | 261 | 1208 | 0.22 | 0.04754 | 0.00093 | 0.13395 | 0.00269 | 0.02033 | 0.00019 | 76 | 46 | 128 | 2 | 130 | 1 | −1.56 |
| 21ZK205-20 | 56 | 842 | 2365 | 0.36 | 0.04847 | 0.00070 | 0.13664 | 0.00211 | 0.02035 | 0.00022 | 120 | 40 | 130 | 2 | 130 | 1 | 0.00 |
| 21ZK205-21 | 101 | 4226 | 11888 | 0.36 | 0.09831 | 0.00229 | 0.09039 | 0.00110 | 0.00697 | 0.00014 | 1592 | 44 | 88 | 1 | 45 | 1 | 48.9 |
| 21ZK205-22 | 29 | 398 | 1262 | 0.32 | 0.05044 | 0.00219 | 0.13965 | 0.00634 | 0.01995 | 0.00035 | 217 | 100 | 133 | 6 | 127 | 2 | 4.51 |
| 21ZK205-23 | 22 | 450 | 881 | 0.51 | 0.04780 | 0.00132 | 0.13436 | 0.00322 | 0.02040 | 0.00026 | 100 | 60 | 128 | 3 | 130 | 2 | −1.56 |
| 21ZK205-24 | 107 | 1627 | 4490 | 0.36 | 0.05753 | 0.00121 | 0.16003 | 0.00372 | 0.02000 | 0.00022 | 522 | 51 | 151 | 3 | 128 | 1 | 15.2 |
Note: Degree of discordance = 100 × (1 − (206Pb/238U age/207Pb/235U age)).
Table A2.
Result of zircon Lu-Hf isotopic analysis of the Early Cretaceous granitoids from the southern GXR.
Table A2.
Result of zircon Lu-Hf isotopic analysis of the Early Cretaceous granitoids from the southern GXR.
| No. | t (Ma) | 176Yb/177Hf | 176Lu/177Hf | 176Hf/177Hf | 2σ | εHf(0) | εHf(t) | 2σ | TDM1(Hf) | TDM2(Hf) | fLu/Hf |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 21ZK187-3 | 130 | 0.062584 | 0.001631 | 0.282981 | 0.000026 | 7.4 | 10.1 | 0.9 | 390 | 537 | −0.95 |
| 21ZK187-4 | 130 | 0.081099 | 0.002101 | 0.282998 | 0.000025 | 8.0 | 10.7 | 0.9 | 371 | 502 | −0.94 |
| 21ZK187-7 | 130 | 0.055384 | 0.001428 | 0.282888 | 0.000021 | 4.1 | 6.8 | 0.7 | 522 | 746 | −0.96 |
| 21ZK187-8 | 130 | 0.049760 | 0.001302 | 0.282981 | 0.000023 | 7.4 | 10.1 | 0.8 | 387 | 536 | −0.96 |
| 21ZK187-10 | 130 | 0.044989 | 0.001143 | 0.282939 | 0.000019 | 5.9 | 8.7 | 0.7 | 445 | 629 | −0.97 |
| 21ZK187-12 | 130 | 0.041331 | 0.001276 | 0.282986 | 0.000025 | 7.6 | 10.3 | 0.9 | 380 | 525 | −0.96 |
| 21ZK187-14 | 130 | 0.086457 | 0.002177 | 0.283084 | 0.000025 | 11.0 | 13.7 | 0.9 | 244 | 306 | −0.93 |
| 21ZK187-15 | 130 | 0.080378 | 0.001906 | 0.282999 | 0.000021 | 8.0 | 10.7 | 0.8 | 367 | 498 | −0.94 |
| 21ZK187-16 | 130 | 0.068920 | 0.001736 | 0.283041 | 0.000027 | 9.5 | 12.2 | 1.0 | 305 | 402 | −0.95 |
| 21ZK187-17 | 130 | 0.091145 | 0.002190 | 0.283053 | 0.000025 | 9.9 | 12.6 | 0.9 | 291 | 377 | −0.93 |
| 21ZK187-19 | 130 | 0.047829 | 0.001237 | 0.282970 | 0.000025 | 7.0 | 9.8 | 0.9 | 402 | 560 | −0.96 |
| 21ZK187-20 | 143 | 0.083410 | 0.002236 | 0.282961 | 0.000028 | 6.7 | 9.6 | 1.0 | 426 | 578 | −0.93 |
| 21ZK187-23 | 130 | 0.037715 | 0.000982 | 0.282957 | 0.000023 | 6.5 | 9.3 | 0.8 | 417 | 588 | −0.97 |
| 21ZK187-24 | 130 | 0.091251 | 0.002437 | 0.282962 | 0.000031 | 6.7 | 9.4 | 1.1 | 427 | 585 | −0.93 |
| 21ZK193-1 | 133 | 0.030649 | 0.000861 | 0.282941 | 0.000028 | 6.0 | 8.8 | 1.0 | 439 | 622 | −0.97 |
| 21ZK193-2 | 133 | 0.109664 | 0.002735 | 0.283003 | 0.000024 | 8.2 | 10.8 | 0.8 | 370 | 492 | −0.92 |
| 21ZK193-3 | 133 | 0.053782 | 0.001532 | 0.282952 | 0.000021 | 6.4 | 9.1 | 0.7 | 431 | 601 | −0.95 |
| 21ZK193-4 | 133 | 0.040321 | 0.001047 | 0.282957 | 0.000019 | 6.5 | 9.4 | 0.7 | 419 | 587 | −0.97 |
| 21ZK193-5 | 133 | 0.069969 | 0.001762 | 0.283034 | 0.000024 | 9.3 | 12.0 | 0.9 | 315 | 416 | −0.95 |
| 21ZK193-6 | 133 | 0.100308 | 0.002409 | 0.283005 | 0.000026 | 8.2 | 11.0 | 0.9 | 363 | 486 | −0.93 |
| 21ZK193-7 | 160 | 0.111306 | 0.002769 | 0.282854 | 0.000024 | 2.9 | 6.1 | 0.9 | 592 | 815 | −0.92 |
| 21ZK193-8 | 133 | 0.027255 | 0.000719 | 0.282874 | 0.000029 | 3.6 | 6.5 | 1.0 | 531 | 772 | −0.98 |
| 21ZK193-10 | 133 | 0.033380 | 0.000935 | 0.283008 | 0.000024 | 8.3 | 11.2 | 0.9 | 345 | 471 | −0.97 |
| 21ZK193-11 | 133 | 0.061545 | 0.001660 | 0.282976 | 0.000017 | 7.2 | 10.0 | 0.6 | 398 | 547 | −0.95 |
| 21ZK193-12 | 133 | 0.053527 | 0.001451 | 0.282951 | 0.000022 | 6.3 | 9.1 | 0.8 | 431 | 602 | −0.96 |
| 21ZK193-14 | 133 | 0.078798 | 0.002028 | 0.282929 | 0.000030 | 5.6 | 8.3 | 1.1 | 470 | 655 | −0.94 |
| 21ZK193-15 | 133 | 0.037629 | 0.001095 | 0.282972 | 0.000026 | 7.1 | 9.9 | 0.9 | 398 | 554 | −0.97 |
| 21ZK193-16 | 133 | 0.064619 | 0.001722 | 0.282958 | 0.000024 | 6.6 | 9.4 | 0.8 | 425 | 588 | −0.95 |
| 21ZK193-17 | 133 | 0.055329 | 0.001451 | 0.283016 | 0.000028 | 8.6 | 11.4 | 1.0 | 338 | 456 | −0.96 |
| 21ZK193-18 | 133 | 0.038425 | 0.001044 | 0.283019 | 0.000025 | 8.7 | 11.6 | 0.9 | 330 | 446 | −0.97 |
| 21ZK193-19 | 133 | 0.026238 | 0.000721 | 0.282963 | 0.000025 | 6.8 | 9.6 | 0.9 | 406 | 571 | −0.98 |
| 21ZK193-21 | 133 | 0.041928 | 0.001137 | 0.282953 | 0.000024 | 6.4 | 9.2 | 0.9 | 426 | 597 | −0.97 |
| 21ZK193-22 | 133 | 0.066694 | 0.001652 | 0.282931 | 0.000025 | 5.6 | 8.4 | 0.9 | 463 | 648 | −0.95 |
| 21ZK193-23 | 133 | 0.025087 | 0.000713 | 0.282933 | 0.000023 | 5.7 | 8.6 | 0.8 | 448 | 638 | −0.98 |
| 21ZK193-24 | 133 | 0.028695 | 0.000818 | 0.282994 | 0.000023 | 7.9 | 10.7 | 0.8 | 363 | 501 | −0.98 |
| 21ZK199-1 | 134 | 0.042058 | 0.001176 | 0.282927 | 0.000028 | 5.5 | 8.3 | 1.0 | 463 | 656 | −0.96 |
| 21ZK199-2 | 134 | 0.047035 | 0.001273 | 0.283100 | 0.000028 | 11.6 | 14.4 | 1.0 | 216 | 263 | −0.96 |
| 21ZK199-3 | 134 | 0.042764 | 0.001212 | 0.283116 | 0.000022 | 12.2 | 15.0 | 0.8 | 192 | 226 | −0.96 |
| 21ZK199-4 | 134 | 0.048259 | 0.001317 | 0.283100 | 0.000023 | 11.6 | 14.4 | 0.8 | 216 | 264 | −0.96 |
| 21ZK199-6 | 134 | 0.036134 | 0.001028 | 0.283079 | 0.000020 | 10.9 | 13.7 | 0.7 | 244 | 309 | −0.97 |
| 21ZK199-7 | 134 | 0.050427 | 0.001357 | 0.283031 | 0.000021 | 9.2 | 12.0 | 0.8 | 315 | 419 | −0.96 |
| 21ZK199-8 | 134 | 0.052656 | 0.001377 | 0.283026 | 0.000022 | 9.0 | 11.8 | 0.8 | 324 | 433 | −0.96 |
| 21ZK199-9 | 134 | 0.057953 | 0.001480 | 0.282975 | 0.000022 | 7.2 | 10.0 | 0.8 | 397 | 547 | −0.96 |
| 21ZK199-11 | 134 | 0.032646 | 0.000852 | 0.282994 | 0.000021 | 7.9 | 10.7 | 0.8 | 363 | 501 | −0.97 |
| 21ZK199-12 | 134 | 0.056953 | 0.001341 | 0.283023 | 0.000023 | 8.9 | 11.7 | 0.8 | 328 | 440 | −0.96 |
| 21ZK199-13 | 134 | 0.065616 | 0.001594 | 0.282998 | 0.000020 | 8.0 | 10.8 | 0.7 | 366 | 497 | −0.95 |
| 21ZK199-14 | 134 | 0.046265 | 0.001184 | 0.282978 | 0.000021 | 7.3 | 10.1 | 0.8 | 390 | 540 | −0.96 |
| 21ZK199-15 | 134 | 0.054721 | 0.001344 | 0.283001 | 0.000017 | 8.1 | 10.9 | 0.6 | 358 | 487 | −0.96 |
| 21ZK199-16 | 134 | 0.043638 | 0.001133 | 0.282984 | 0.000017 | 7.5 | 10.3 | 0.6 | 381 | 526 | −0.97 |
| 21ZK199-18 | 134 | 0.051429 | 0.001268 | 0.282967 | 0.000019 | 6.9 | 9.7 | 0.7 | 406 | 564 | −0.96 |
| 21ZK199-19 | 134 | 0.043167 | 0.001147 | 0.283010 | 0.000020 | 8.4 | 11.2 | 0.7 | 344 | 468 | −0.97 |
| 21ZK199-20 | 134 | 0.043381 | 0.001138 | 0.282965 | 0.000017 | 6.8 | 9.7 | 0.6 | 408 | 568 | −0.97 |
| 21ZK199-21 | 134 | 0.040226 | 0.001017 | 0.282988 | 0.000020 | 7.7 | 10.5 | 0.7 | 373 | 515 | −0.97 |
| 21ZK199-22 | 134 | 0.055700 | 0.001452 | 0.282946 | 0.000024 | 6.2 | 9.0 | 0.8 | 439 | 613 | −0.96 |
| 21ZK199-23 | 134 | 0.064209 | 0.001672 | 0.282995 | 0.000024 | 7.9 | 10.7 | 0.9 | 370 | 504 | −0.95 |
| 21ZK199-24 | 134 | 0.054579 | 0.001451 | 0.282935 | 0.000020 | 5.8 | 8.6 | 0.7 | 454 | 637 | −0.96 |
| 21ZK205-2 | 130 | 0.068852 | 0.001807 | 0.282877 | 0.000021 | 3.7 | 6.4 | 0.8 | 543 | 773 | −0.95 |
| 21ZK205-3 | 130 | 0.042202 | 0.001114 | 0.282961 | 0.000021 | 6.7 | 9.4 | 0.7 | 414 | 580 | −0.97 |
| 21ZK205-5 | 130 | 0.042516 | 0.001134 | 0.282881 | 0.000020 | 3.8 | 6.6 | 0.7 | 528 | 761 | −0.97 |
| 21ZK205-8 | 130 | 0.070861 | 0.001615 | 0.282984 | 0.000020 | 7.5 | 10.2 | 0.7 | 386 | 530 | −0.95 |
| 21ZK205-9 | 130 | 0.047729 | 0.001296 | 0.282974 | 0.000021 | 7.1 | 9.9 | 0.8 | 397 | 552 | −0.96 |
| 21ZK205-10 | 130 | 0.052354 | 0.001684 | 0.282983 | 0.000021 | 7.5 | 10.2 | 0.8 | 388 | 533 | −0.95 |
| 21ZK205-11 | 130 | 0.058905 | 0.001750 | 0.282983 | 0.000021 | 7.4 | 10.2 | 0.7 | 389 | 535 | −0.95 |
| 21ZK205-12 | 130 | 0.047235 | 0.001305 | 0.282925 | 0.000024 | 5.4 | 8.2 | 0.9 | 467 | 661 | −0.96 |
| 21ZK205-14 | 130 | 0.033851 | 0.000980 | 0.282968 | 0.000024 | 6.9 | 9.7 | 0.9 | 403 | 564 | −0.97 |
| 21ZK205-15 | 130 | 0.021332 | 0.000662 | 0.282978 | 0.000020 | 7.3 | 10.1 | 0.7 | 385 | 539 | −0.98 |
| 21ZK205-16 | 130 | 0.052973 | 0.001655 | 0.283009 | 0.000020 | 8.4 | 11.1 | 0.7 | 350 | 474 | −0.95 |
| 21ZK205-17 | 130 | 0.043606 | 0.001216 | 0.282988 | 0.000023 | 7.6 | 10.4 | 0.8 | 376 | 519 | −0.96 |
| 21ZK205-19 | 130 | 0.043556 | 0.001276 | 0.283007 | 0.000022 | 8.3 | 11.0 | 0.8 | 350 | 478 | −0.96 |
| 21ZK205-20 | 130 | 0.047142 | 0.001304 | 0.282969 | 0.000018 | 7.0 | 9.7 | 0.6 | 404 | 563 | −0.96 |
| 21ZK205-22 | 130 | 0.042324 | 0.001209 | 0.282999 | 0.000020 | 8.0 | 10.8 | 0.7 | 361 | 495 | −0.96 |
| 21ZK205-23 | 130 | 0.060057 | 0.001723 | 0.282906 | 0.000026 | 4.8 | 7.5 | 0.9 | 500 | 707 | −0.95 |
Table A3.
Major (wt.%) and trace (ppm) elements of the Early Cretaceous granitoids from the southern GXR.
Table A3.
Major (wt.%) and trace (ppm) elements of the Early Cretaceous granitoids from the southern GXR.
| No. | 21ZK187 | 21ZK188 | 21ZK189 | 21ZK190 | 21ZK191 | 21ZK192 | 21ZK193 | 21ZK194 |
|---|---|---|---|---|---|---|---|---|
| Major element (wt.%) | ||||||||
| SiO2 | 77.53 | 78.17 | 77.29 | 77.91 | 77.82 | 77.71 | 75.39 | 76.65 |
| Al2O3 | 12.47 | 12.27 | 12.34 | 12.54 | 12.44 | 12.37 | 13.39 | 12.59 |
| TFe2O3 | 0.72 | 0.52 | 0.93 | 0.36 | 0.63 | 0.78 | 1.37 | 1.15 |
| MgO | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.01 | 0.03 | 0.02 |
| MnO | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| TiO2 | 0.08 | 0.11 | 0.08 | 0.08 | 0.06 | 0.04 | 0.15 | 0.09 |
| CaO | 0.18 | 0.10 | 0.18 | 0.10 | 0.13 | 0.23 | 0.15 | 0.27 |
| K2O | 4.73 | 4.36 | 4.87 | 4.52 | 4.50 | 4.49 | 4.96 | 4.93 |
| Na2O | 3.55 | 3.89 | 3.56 | 3.72 | 3.76 | 3.65 | 3.72 | 3.57 |
| P2O5 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 |
| LOI | 0.54 | 0.48 | 0.55 | 0.64 | 0.55 | 0.62 | 0.72 | 0.54 |
| Total | 99.84 | 99.94 | 99.84 | 99.9 | 99.92 | 99.92 | 99.91 | 99.84 |
| K2O + Na2O | 8.28 | 8.25 | 8.43 | 8.24 | 8.26 | 8.14 | 8.68 | 8.50 |
| Na2O/K2O | 0.75 | 0.89 | 0.73 | 0.82 | 0.84 | 0.81 | 0.75 | 0.72 |
| A/NK | 1.14 | 1.10 | 1.11 | 1.14 | 1.13 | 1.14 | 1.17 | 1.12 |
| A/CNK | 1.10 | 1.09 | 1.08 | 1.12 | 1.10 | 1.10 | 1.14 | 1.08 |
| Mg# | 1.97 | 5.32 | 0.36 | 5.10 | 1.10 | 2.90 | 4.06 | 2.78 |
| Trace element (ppm) | ||||||||
| Sc | 0.63 | 0.37 | 0.47 | 0.38 | 0.39 | 0.46 | 0.53 | 0.40 |
| V | 11.4 | 9.07 | 7.37 | 8.88 | 11.2 | 9.30 | 5.26 | 7.40 |
| Cr | 2.34 | 2.73 | 1.85 | 2.14 | 2.25 | 1.77 | 1.80 | 1.87 |
| Co | 1.34 | 1.33 | 1.6 | 1.18 | 1.25 | 1.18 | 1.20 | 1.18 |
| Ni | 4.25 | 3.91 | 4.12 | 3.40 | 3.16 | 2.68 | 1.25 | 1.86 |
| Ga | 14.1 | 14.0 | 14.4 | 13.8 | 14.0 | 14.3 | 13.7 | 14.5 |
| Rb | 353 | 314 | 339 | 365 | 342 | 331 | 230 | 282 |
| Sr | 5.07 | 4.26 | 4.13 | 3.91 | 2.76 | 3.44 | 26.1 | 13.0 |
| Y | 28.3 | 13.3 | 22.9 | 10.4 | 15.7 | 18.6 | 11.3 | 10.2 |
| Nb | 12.2 | 11.7 | 13.7 | 15.0 | 13.4 | 12.2 | 10.5 | 9.96 |
| Cs | 15.8 | 8.20 | 11.7 | 13.2 | 11.8 | 11.0 | 6.90 | 17.4 |
| Ba | 47.5 | 35.2 | 51.3 | 23.8 | 18.3 | 31.8 | 104 | 57.2 |
| La | 14.2 | 5.18 | 10.1 | 6.54 | 7.73 | 12.2 | 19.0 | 9.78 |
| Ce | 36.4 | 15.9 | 24.6 | 22.9 | 23.1 | 29.3 | 39.4 | 22.2 |
| Pr | 5.77 | 1.79 | 3.99 | 2.34 | 2.72 | 4.28 | 4.45 | 2.83 |
| Nd | 24.3 | 7.07 | 17.3 | 9.28 | 10.8 | 17.2 | 16.5 | 11.1 |
| Sm | 7.01 | 1.77 | 5.02 | 2.31 | 2.89 | 4.36 | 2.99 | 2.73 |
| Eu | 0.05 | 0.03 | 0.05 | 0.02 | 0.02 | 0.03 | 0.10 | 0.05 |
| Gd | 5.68 | 1.70 | 3.97 | 2.40 | 2.40 | 3.40 | 2.73 | 2.41 |
| Tb | 1.09 | 0.36 | 0.78 | 0.42 | 0.50 | 0.63 | 0.44 | 0.44 |
| Dy | 6.40 | 2.27 | 4.73 | 2.38 | 2.97 | 3.43 | 2.44 | 2.40 |
| Ho | 1.18 | 0.47 | 0.88 | 0.44 | 0.56 | 0.65 | 0.44 | 0.44 |
| Er | 3.24 | 1.42 | 2.54 | 1.24 | 1.64 | 1.89 | 1.32 | 1.25 |
| Tm | 0.48 | 0.22 | 0.38 | 0.18 | 0.25 | 0.28 | 0.18 | 0.18 |
| Yb | 2.87 | 1.46 | 2.21 | 1.05 | 1.41 | 1.74 | 1.07 | 1.06 |
| Lu | 0.40 | 0.21 | 0.34 | 0.14 | 0.20 | 0.27 | 0.16 | 0.15 |
| Ta | 1.86 | 1.88 | 1.16 | 2.11 | 1.92 | 2.34 | 1.56 | 1.56 |
| Pb | 27.5 | 25.7 | 30.1 | 22.4 | 29.7 | 27.6 | 20.0 | 27.3 |
| Th | 33.1 | 18.7 | 26.8 | 19.2 | 16.2 | 26.0 | 10.1 | 24.3 |
| U | 10.4 | 12.9 | 13.3 | 27.4 | 14.5 | 14.3 | 1.71 | 2.75 |
| Zr | 116 | 114 | 131 | 128 | 118 | 109 | 192 | 88.1 |
| Hf | 6.34 | 6.21 | 7.25 | 6.71 | 6.20 | 6.56 | 7.29 | 4.75 |
| Eu/Eu* | 0.02 | 0.05 | 0.03 | 0.03 | 0.02 | 0.02 | 0.11 | 0.06 |
| LREE | 87.7 | 31.7 | 61.1 | 43.4 | 47.3 | 67.4 | 82.4 | 48.7 |
| HREE | 21.3 | 8.11 | 15.8 | 8.25 | 9.93 | 12.3 | 8.78 | 8.33 |
| LREE/HREE | 4.11 | 3.91 | 3.86 | 5.26 | 4.76 | 5.48 | 9.39 | 5.85 |
| ∑REE | 109 | 39.8 | 76.9 | 51.6 | 57.2 | 79.7 | 91.2 | 57.0 |
| (La/Yb)N | 3.34 | 2.39 | 3.08 | 4.20 | 3.70 | 4.73 | 11.97 | 6.22 |
| No. | 21ZK195 | 21ZK196 | 21ZK197 | 21ZK199 | 21ZK200 | 21ZK201 | 21ZK202 | 21ZK203 |
| Major element (wt.%) | ||||||||
| SiO2 | 77.63 | 76.15 | 75.02 | 77.87 | 77.67 | 77.62 | 77.72 | 77.8 |
| Al2O3 | 12.22 | 12.95 | 13.55 | 12.22 | 12.22 | 12.12 | 12.26 | 12.07 |
| TFe2O3 | 0.84 | 1.17 | 1.31 | 0.56 | 0.60 | 0.68 | 0.55 | 0.63 |
| MgO | 0.02 | 0.05 | 0.05 | 0.02 | 0.25 | 0.04 | 0.02 | 0.25 |
| MnO | 0.01 | 0.02 | 0.01 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
| TiO2 | 0.06 | 0.07 | 0.14 | 0.07 | 0.07 | 0.07 | 0.07 | 0.11 |
| CaO | 0.40 | 0.26 | 0.18 | 0.43 | 0.42 | 0.4 | 0.38 | 0.41 |
| K2O | 4.40 | 4.90 | 5.11 | 4.06 | 4.05 | 4.18 | 4.23 | 4.15 |
| Na2O | 3.58 | 3.59 | 3.71 | 3.81 | 3.81 | 3.72 | 3.77 | 3.59 |
| P2O5 | 0.01 | 0.02 | 0.02 | 0.08 | 0.01 | 0.10 | 0.09 | 0.06 |
| LOI | 0.64 | 0.64 | 0.82 | 0.38 | 0.34 | 0.54 | 0.37 | 0.34 |
| Total | 99.81 | 99.82 | 99.92 | 99.53 | 99.48 | 99.51 | 99.51 | 99.45 |
| K2O + Na2O | 7.98 | 8.49 | 8.82 | 7.87 | 7.86 | 7.90 | 8.00 | 7.74 |
| Na2O/K2O | 0.81 | 0.73 | 0.73 | 0.94 | 0.94 | 0.89 | 0.89 | 0.87 |
| A/NK | 1.15 | 1.16 | 1.16 | 1.15 | 1.15 | 1.14 | 1.14 | 1.16 |
| A/CNK | 1.07 | 1.11 | 1.13 | 1.07 | 1.07 | 1.07 | 1.07 | 1.08 |
| Mg# | 4.06 | 6.16 | 6.90 | 2.99 | 30.62 | 5.60 | 3.32 | 29.66 |
| Trace element (ppm) | ||||||||
| Sc | 0.44 | 0.44 | 0.54 | 0.42 | 0.24 | 0.25 | 0.26 | 0.39 |
| V | 4.24 | 4.24 | 4.48 | 1.26 | 1.46 | 1.70 | 1.14 | 1.59 |
| Cr | 1.80 | 2.09 | 1.87 | 1.52 | 1.72 | 1.74 | 1.71 | 1.50 |
| Co | 1.07 | 1.24 | 1.09 | 0.89 | 1.06 | 1.04 | 1.02 | 0.98 |
| Ni | 1.61 | 4.91 | 1.76 | 0.86 | 1.29 | 1.13 | 0.98 | 0.87 |
| Ga | 12.3 | 14.0 | 13.4 | 13.1 | 11.4 | 11.4 | 11.5 | 10.9 |
| Rb | 226 | 230 | 227 | 148 | 175 | 173 | 187 | 160 |
| Sr | 16.0 | 20.6 | 22.9 | 5.50 | 12.9 | 15.2 | 14.6 | 16.0 |
| Y | 13.0 | 9.85 | 8.18 | 7.61 | 6.61 | 6.37 | 12.8 | 7.83 |
| Nb | 7.81 | 10.9 | 9.96 | 7.29 | 7.24 | 7.52 | 8.16 | 5.26 |
| Cs | 7.80 | 9.57 | 7.30 | 14.4 | 14.5 | 15.7 | 14.9 | 16.4 |
| Ba | 55.4 | 88.8 | 103 | 20.6 | 61.2 | 66.8 | 69.7 | 68.9 |
| La | 7.14 | 18.8 | 22.1 | 5.83 | 4.76 | 6.98 | 11.6 | 12.2 |
| Ce | 15.4 | 33.7 | 38.1 | 6.62 | 13.4 | 16.4 | 23.1 | 29.5 |
| Pr | 2.12 | 4.57 | 4.9 | 1.58 | 1.44 | 1.86 | 3.04 | 3.31 |
| Nd | 8.80 | 18.4 | 18.1 | 5.89 | 5.30 | 6.78 | 11.2 | 12.0 |
| Sm | 2.28 | 3.66 | 3.04 | 1.30 | 1.22 | 1.39 | 2.41 | 2.30 |
| Eu | 0.06 | 0.14 | 0.11 | 0.04 | 0.06 | 0.06 | 0.08 | 0.09 |
| Gd | 1.94 | 3.00 | 2.49 | 1.08 | 1.01 | 1.18 | 2.17 | 1.93 |
| Tb | 0.38 | 0.47 | 0.35 | 0.20 | 0.20 | 0.20 | 0.39 | 0.29 |
| Dy | 2.47 | 2.39 | 1.77 | 1.24 | 1.24 | 1.20 | 2.28 | 1.60 |
| Ho | 0.50 | 0.41 | 0.33 | 0.25 | 0.24 | 0.24 | 0.45 | 0.31 |
| Er | 1.48 | 1.26 | 0.97 | 0.82 | 0.75 | 0.75 | 1.27 | 0.91 |
| Tm | 0.21 | 0.18 | 0.14 | 0.14 | 0.13 | 0.12 | 0.20 | 0.15 |
| Yb | 1.32 | 1.07 | 0.79 | 0.86 | 0.75 | 0.80 | 1.31 | 0.84 |
| Lu | 0.20 | 0.16 | 0.12 | 0.14 | 0.13 | 0.12 | 0.18 | 0.13 |
| Ta | 0.75 | 1.66 | 1.20 | 1.07 | 0.97 | 1.01 | 1.12 | 0.63 |
| Pb | 20.6 | 21.8 | 18.6 | 12.3 | 23.7 | 24.3 | 24.6 | 21.8 |
| Th | 17.2 | 17.8 | 10.6 | 4.61 | 9.26 | 9.84 | 10.5 | 11.5 |
| U | 3.63 | 1.41 | 1.03 | 2.50 | 6.09 | 4.08 | 5.41 | 7.48 |
| Zr | 86.6 | 138 | 194 | 94.3 | 100 | 104 | 89.6 | 84.8 |
| Hf | 4.02 | 5.57 | 7.10 | 3.88 | 3.97 | 4.10 | 3.91 | 3.01 |
| Eu/Eu* | 0.08 | 0.13 | 0.12 | 0.11 | 0.17 | 0.15 | 0.11 | 0.13 |
| LREE | 35.8 | 79.3 | 86.4 | 21.3 | 26.2 | 33.5 | 51.4 | 59.4 |
| HREE | 8.50 | 8.94 | 6.96 | 4.73 | 4.45 | 4.61 | 8.25 | 6.16 |
| LREE/HREE | 4.21 | 8.87 | 12.41 | 4.50 | 5.88 | 7.26 | 6.23 | 9.64 |
| ∑REE | 44.3 | 88.2 | 93.3 | 26.0 | 30.6 | 38.1 | 59.7 | 65.6 |
| (La/Yb)N | 3.65 | 11.8 | 18.9 | 4.57 | 4.28 | 5.88 | 5.97 | 9.79 |
| No. | 21ZK204 | 21ZK205 | 21ZK206 | 21ZK207 | 21ZK208 | 21ZK209 | 21ZK210 | |
| Major element (wt.%) | ||||||||
| SiO2 | 77.37 | 77.9 | 78.34 | 77.95 | 78.53 | 78.23 | 78.03 | |
| Al2O3 | 12.28 | 12.28 | 11.94 | 12.23 | 11.84 | 12.22 | 12.04 | |
| TFe2O3 | 1.13 | 0.93 | 0.99 | 0.90 | 0.95 | 0.91 | 1.01 | |
| MgO | 0.29 | 0.01 | 0.02 | 0.00 | 0.02 | 0.01 | 0.43 | |
| MnO | 0.05 | 0.05 | 0.06 | 0.05 | 0.05 | 0.05 | 0.06 | |
| TiO2 | 0.08 | 0.05 | 0.04 | 0.05 | 0.07 | 0.02 | 0.05 | |
| CaO | 0.47 | 0.41 | 0.45 | 0.41 | 0.42 | 0.39 | 0.42 | |
| K2O | 4.16 | 4.28 | 4.08 | 4.28 | 4.30 | 4.12 | 3.98 | |
| Na2O | 3.78 | 3.78 | 3.74 | 3.79 | 3.60 | 3.89 | 3.86 | |
| P2O5 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
| LOI | 0.37 | 0.31 | 0.34 | 0.33 | 0.22 | 0.16 | 0.11 | |
| Total | 99.58 | 99.64 | 99.60 | 99.61 | 99.72 | 99.79 | 99.81 | |
| K2O + Na2O | 7.94 | 8.06 | 7.82 | 8.07 | 7.90 | 8.01 | 7.84 | |
| Na2O/K2O | 0.91 | 0.88 | 0.92 | 0.89 | 0.84 | 0.94 | 0.97 | |
| A/NK | 1.15 | 1.13 | 1.13 | 1.13 | 1.12 | 1.13 | 1.13 | |
| A/CNK | 1.06 | 1.06 | 1.05 | 1.05 | 1.04 | 1.06 | 1.05 | |
| Mg# | 33.70 | 1.89 | 3.11 | 0.65 | 3.82 | 2.13 | 45.75 | |
| Trace element (ppm) | ||||||||
| Sc | 0.44 | 0.44 | 0.54 | 0.42 | 0.24 | 0.25 | 0.26 | |
| V | 4.24 | 4.24 | 4.48 | 1.26 | 1.46 | 1.70 | 1.14 | |
| Cr | 1.80 | 2.09 | 1.87 | 1.52 | 1.72 | 1.74 | 1.71 | |
| Co | 1.07 | 1.24 | 1.09 | 0.89 | 1.06 | 1.04 | 1.02 | |
| Ni | 1.61 | 4.91 | 1.76 | 0.86 | 1.29 | 1.13 | 0.98 | |
| Ga | 12.3 | 14.0 | 13.4 | 13.1 | 11.4 | 11.4 | 11.5 | |
| Rb | 226 | 230 | 227 | 148 | 175 | 173 | 187 | |
| Sr | 16.0 | 20.6 | 22.9 | 5.50 | 12.9 | 15.2 | 14.6 | |
| Y | 13.0 | 9.85 | 8.18 | 7.61 | 6.61 | 6.37 | 12.8 | |
| Nb | 7.81 | 10.9 | 9.96 | 7.29 | 7.24 | 7.52 | 8.16 | |
| Cs | 7.80 | 9.57 | 7.30 | 14.4 | 14.5 | 15.7 | 14.9 | |
| Ba | 55.4 | 88.8 | 103 | 20.6 | 61.2 | 66.8 | 69.7 | |
| La | 7.14 | 18.8 | 22.1 | 5.83 | 4.76 | 6.98 | 11.6 | |
| Ce | 15.4 | 33.7 | 38.1 | 6.62 | 13.4 | 16.4 | 23.1 | |
| Pr | 2.12 | 4.57 | 4.90 | 1.58 | 1.44 | 1.86 | 3.04 | |
| Nd | 8.80 | 18.4 | 18.1 | 5.89 | 5.30 | 6.78 | 11.2 | |
| Sm | 2.28 | 3.66 | 3.04 | 1.30 | 1.22 | 1.39 | 2.41 | |
| Eu | 0.06 | 0.14 | 0.11 | 0.04 | 0.06 | 0.06 | 0.08 | |
| Gd | 1.94 | 3.00 | 2.49 | 1.08 | 1.01 | 1.18 | 2.17 | |
| Tb | 0.38 | 0.47 | 0.35 | 0.20 | 0.20 | 0.20 | 0.39 | |
| Dy | 2.47 | 2.39 | 1.77 | 1.24 | 1.24 | 1.20 | 2.28 | |
| Ho | 0.50 | 0.41 | 0.33 | 0.25 | 0.24 | 0.24 | 0.45 | |
| Er | 1.48 | 1.26 | 0.97 | 0.82 | 0.75 | 0.75 | 1.27 | |
| Tm | 0.21 | 0.18 | 0.14 | 0.14 | 0.13 | 0.12 | 0.20 | |
| Yb | 1.32 | 1.07 | 0.79 | 0.86 | 0.75 | 0.80 | 1.31 | |
| Lu | 0.20 | 0.16 | 0.12 | 0.14 | 0.13 | 0.12 | 0.18 | |
| Ta | 0.75 | 1.66 | 1.2 | 1.07 | 0.97 | 1.01 | 1.12 | |
| Pb | 20.6 | 21.8 | 18.6 | 12.3 | 23.7 | 24.3 | 24.6 | |
| Th | 17.2 | 17.8 | 10.6 | 4.61 | 9.26 | 9.84 | 10.5 | |
| U | 3.63 | 1.41 | 1.03 | 2.50 | 6.09 | 4.08 | 5.41 | |
| Zr | 105 | 85.9 | 91.6 | 92.2 | 110 | 84.6 | 80.3 | |
| Hf | 4.44 | 4.58 | 4.44 | 4.67 | 5.48 | 4.1 | 3.89 | |
| Eu/Eu* | 0.13 | 0.05 | 0.04 | 0.05 | 0.03 | 0.04 | 0.03 | |
| LREE | 19.3 | 45.2 | 58.8 | 35.6 | 56.8 | 29.2 | 36.5 | |
| HREE | 4.56 | 8.05 | 7.69 | 8.04 | 14.4 | 6.71 | 7.00 | |
| LREE/HREE | 4.22 | 5.62 | 7.64 | 4.43 | 3.93 | 4.36 | 5.21 | |
| ∑REE | 23.8 | 53.3 | 66.5 | 43.7 | 71.2 | 35.9 | 43.5 | |
| (La/Yb)N | 3.39 | 4.65 | 6.85 | 3.54 | 2.80 | 3.86 | 4.56 | |
Note: Mg# = Mg2+/(Mg2+ + TFe2+); Eu/Eu* = (Eu)N/[(Gd)N + (Sm)N]/2; (La/Yb)N = (La/0.237)/(Yb/0.170).
Table A4.
The Cretaceous magmatism in NE China.
Table A4.
The Cretaceous magmatism in NE China.
| No. | Sample | Pluton | Longitude | Latitude | Age (Ma) | Lithology | Method | Reference |
|---|---|---|---|---|---|---|---|---|
| 1 | Z10-32 | Jiqinhe | 121°54′48″ | 47°57′50″ | 129 ± 1 | Monzogranite | LA-ICP-MS | Shi et al. [17] |
| 2 | Z10-39 | Zhonghe | 122°29′12″ | 47°41′18″ | 129 ± 1 | Granite porphyry | LA-ICP-MS | Shi et al. [17] |
| 3 | Z10-37 | Zhonghe | 122°36′50″ | 47°46′25″ | 131 ± 1 | Monzogranite | LA-ICP-MS | Shi et al. [17] |
| 4 | Z11-60 | Luotuobozi | 122°04′20″ | 47°07′13″ | 132 ± 2 | Granite porphyry | LA-ICP-MS | Shi et al. [17] |
| 5 | Z10-26 | Moguqi | 122°18′00″ | 47°30′00″ | 133 ± 1 | Monzogranite | LA-ICP-MS | Shi et al. [17] |
| 6 | JXNC-I-1 | Xiaoxinancha | 130°52′59″ | 43°12′59″ | 104.6 ± 2.5 | Monzogranite | SHRIMP | Sun et al. [94] |
| 7 | JXNC-1 | Xiaoxinancha | 130°51′59″ | 43°11′40″ | 106.7 ± 1.6 | Granodiorite | SHRIMP | Sun et al. [94] |
| 8 | JXNC-2 | Xiaoxinancha | 130°49′44″ | 43°07′53″ | 111.7 ± 2.8 | Granodiorite | SHRIMP | Sun et al. [94] |
| 9 | FW04-272 | Hulin | 132°55′16″ | 45°48′00″ | 112 ± 1 | Granodiorite | LA-ICP-MS | Wilde et al. [95] |
| 10 | YE-1 | Yiershi | 119°47′00″ | 47°16′30″ | 137 ± 2 | Syenogranite | SHRIMP | Wu et al. [66] |
| 11 | 0066-5 | Yitulihe | 121°36′00″ | 50°40′00″ | 118 ± 1 | Granodiorite | LA-ICP-MS | Wu et al. [9] |
| 12 | 0116-1 | Niuerhe | 122°14′40″ | 51°26′18″ | 125 ± 2 | Alkali feldspar granite | LA-ICP-MS | Wu et al. [9] |
| 13 | GW03285 | Mandui | 122°05′33″ | 52°03′27″ | 132 ± 2 | Diabase | LA-ICP-MS | Wu et al. [9] |
| 14 | GW04364 | Shenshan | 122°08′29″ | 46°54′43″ | 119 ± 1 | Alkali feldspar granite | LA-ICP-MS | Wu et al. [9] |
| 15 | GW04360 | Caishichangxi | 122°33′00″ | 46°48′21″ | 120 ± 1 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 16 | GW04314 | Fengshou | 122°12′34″ | 47°22′25″ | 120 ± 2 | Syenogranite | LA-ICP-MS | Wu et al. [9] |
| 17 | GW04162 | Shaobutai | 121°05′32″ | 46°21′14″ | 129 ± 2 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 18 | GW04158 | Wulanmaodu | 121°14′23″ | 46°24′42″ | 131 ± 1 | Syenogranite | LA-ICP-MS | Wu et al. [9] |
| 19 | 05FW083 | Baiyinbangou | 117°49′12″ | 43°15′08″ | 131 ± 2 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 20 | 05FW116 | Huanggangliang | 117°29′47″ | 43°26′13″ | 132 ± 1 | Syenogranite | LA-ICP-MS | Wu et al. [9] |
| 21 | 05FW120 | Dayingzi | 117°36′34″ | 43°21′43″ | 132 ± 1 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 22 | 05FW141 | Chaoyanggou | 118°16′28″ | 44°09′55″ | 132 ± 1 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 23 | 05FW066 | Jingpeng | 117°31′54″ | 43°14′02″ | 134 ± 1 | Quartz syenite | LA-ICP-MS | Wu et al. [9] |
| 24 | GW04369 | Suolun | 121°13′11″ | 46°40′58″ | 134 ± 2 | Alkali feldspar granite | LA-ICP-MS | Wu et al. [9] |
| 25 | GW04190 | Jilasitai | 120°53′55″ | 46°36′30″ | 135 ± 2 | Alkali feldspar granite | LA-ICP-MS | Wu et al. [9] |
| 26 | 05FW171 | Beidashan | 117°32′24″ | 43°57′15″ | 136 ± 2 | Syenogranite | LA-ICP-MS | Wu et al. [9] |
| 27 | 05FW163 | Beidashan | 117°43′05″ | 44°04′54″ | 139 ± 1 | Granodiorite | LA-ICP-MS | Wu et al. [9] |
| 28 | 05FW065 | Jingpeng | 117°32′30″ | 43°13′33″ | 140 ± 2 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 29 | 05FW080 | Jingpeng | 117°44′55″ | 43°15′50″ | 140 ± 2 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 30 | 05FW064 | Jingpeng | 117°32′30″ | 43°13′33″ | 141 ± 1 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 31 | 05FW124 | Huanggangliang | 117°37′27″ | 43°31′09″ | 141 ± 1 | Syenogranite | LA-ICP-MS | Wu et al. [9] |
| 32 | 05FW147 | Chaoyanggou | 118°10′03″ | 44°07′36″ | 142 ± 3 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 33 | GW04459 | Cuifeng | 124°16′36″ | 50°35′26″ | 122 ± 1 | Granodiorite | LA-ICP-MS | Wu et al. [9] |
| 34 | GW04448 | Yilinger | 124°07′33″ | 50°47′58″ | 125 ± 1 | Syenogranite | LA-ICP-MS | Wu et al. [9] |
| 35 | GW04490 | Henan | 124°06′22″ | 50°23′53″ | 125 ± 2 | Syenogranite | LA-ICP-MS | Wu et al. [9] |
| 36 | FW04-407 | Yili | 123°46′04″ | 49°14′31″ | 131 ± 1 | Monzogranite | CHIME | Wu et al. [9] |
| 37 | GW04209 | Aershan | 120°03′21″ | 47°08′00″ | 129 ± 1 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 38 | FW04-403 | Longtou | 123°45′44″ | 49°33′41″ | 129 ± 2 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 39 | GW04278 | Qiqinhe | 122°02′24″ | 47°53′11″ | 129 ± 2 | Quartz syenite | LA-ICP-MS | Wu et al. [9] |
| 40 | FW04-413 | Nuomin | 123°45′33″ | 49°10′38″ | 130 ± 1 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 41 | GW04271 | Bashanhe | 121°20′27″ | 47°52′36″ | 131 ± 1 | Syenogranite | LA-ICP-MS | Wu et al. [9] |
| 42 | GW04309 | Xinlitun | 122°16′16″ | 47°45′50″ | 133 ± 1 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 43 | FW04-405 | Dalaibin | 123°21′29″ | 49°33′03″ | 139 ± 1 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 44 | FW04-412 | Yili | 124°04′18″ | 49°35′35″ | 142 ± 1 | Granodiorite | LA-ICP-MS | Wu et al. [9] |
| 45 | GW04014 | Lamashan | 122°19′12″ | 48°19′50″ | 142 ± 3 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 46 | GW04276 | Sanqi Farm | 121°50′21″ | 48°05′19″ | 143 ± 3 | Quartz syenite | LA-ICP-MS | Wu et al. [9] |
| 47 | YZ02-38 | Liudong | 129°02′11″ | 42°18′32″ | 114 ± 2 | Monzogranite | LA-ICP-MS | Wu et al. [9] |
| 48 | DY0502-1 | Xujiajie | 126°06′01″ | 42°42′34″ | 108 ± 1 | Syenogranite | LA-ICP-MS | Wu et al. [9] |
| 49 | MG-42 | Luoshan | 125°49′39″ | 42°43′24″ | 125 ± 4 | Alkali feldspar granite | SHRIMP | Wu et al. [9] |
| 50 | MG-109 | Lazishan | 124°45′41″ | 42°20′33″ | 123 ± 2 | Quartz monzodiorite | SHRIMP | Wu et al. [9] |
| 51 | MG-110 | Lazishan | 124°45′41″ | 42°20′33″ | 127 ± 3 | Alkali feldspar granite | SHRIMP | Wu et al. [9] |
| 52 | YZ02-21-1 | Bailiping | 128°47′55″ | 42°13′34″ | 116 ± 1 | Quartz diorite | LA-ICP-MS | Zhang et al. [96] |
| 53 | YZ02-18-3 | Bailiping | 128°50′15″ | 42°20′20″ | 119 ± 2 | Granodiorite | LA-ICP-MS | Zhang et al. [96] |
| 54 | DHS-1 | 124°27′13″ | 50°32′11″ | 133 ± 3 | Porphyritic granite | LA-ICP-MS | Zhang et al. [59] | |
| 55 | DHS-2 | 124°26′53″ | 50°32′21″ | 132 ± 3 | Porphyritic granite | LA-ICP-MS | Zhang et al. [59] | |
| 56 | DHS-4 | 124°28′34″ | 50°31′58″ | 131 ± 3 | Porphyritic granite | LA-ICP-MS | Zhang et al. [59] | |
| 58 | FW04-244 | Taipingchun | 133°49′27″ | 46°46′32″ | 111 ± 1 | Syenogranite | LA-ICP-MS | Cheng et al. [54] |
| 59 | FW04-246 | Taipingchun | 133°52′49″ | 46°43′31″ | 114 ± 1 | Alkali feldspar granite | LA-ICP-MS | Cheng et al. [54] |
| 60 | FW04-254 | Mayihe | 133°53′47″ | 47°04′36″ | 114 ± 1 | Granodiorite | LA-ICP-MS | Cheng et al. [54] |
| 61 | FW04-257 | Mayihe | 133°53′47″ | 47°04′36″ | 116 ± 1 | Granodiorite | LA-ICP-MS | Cheng et al. [54] |
| 62 | FW04-239 | Mayihe | 133°50′49″ | 46°48′52″ | 124 ± 1 | Granodiorite | LA-ICP-MS | Cheng et al. [54] |
| 63 | FW04-251 | Mayihe | 133°44′25″ | 46°54′43″ | 124 ± 1 | Granodiorite | LA-ICP-MS | Cheng et al. [54] |
| 64 | 1663 | 124°55′36″ | 52°52′41″ | 131 ± 1 | Porphyroid monzogranite | LA-ICP-MS | Duan [97] | |
| 65 | PM3LTC24 | 124°30′35″ | 50°24′25″ | 125.5 ± 1.3 | Granitic mylonite | LA-ICP-MS | Duan [97] | |
| 66 | PM21LT27 | 124°41′48″ | 50°20′24″ | 125.76 ± 0.47 | Monzodiorite porphyrite | LA-ICP-MS | Duan [97] | |
| 67 | Z10-03 | Luotuobozi | 122°10′54″ | 47°10′28″ | 126 ± 1 | Granodiorite | LA-ICP-MS | Gao et al. [67] |
| 68 | Z10-02 | Luotuobozi | 122°12′43″ | 47°10′35″ | 127 ± 1 | Syenogranite | LA-ICP-MS | Gao et al. [67] |
| 69 | Z10-05 | Luotuobozi | 122°30′00″ | 47°05′40″ | 130 ± 1 | Biotite monzogranite | LA-ICP-MS | Gao et al. [67] |
| 70 | Z10-04 | Luotuobozi | 122°10′54″ | 47°10′28″ | 131 ± 1 | Quartz diorite | LA-ICP-MS | Gao et al. [67] |
| 71 | G0215-4 | Suolunzhen | 121°15′23″ | 46°36′07″ | 125 ± 2 | Alkali feldspar granite | LA-ICP-MS | Ge et al. [25] |
| 72 | G0206-1 | Yonghetun | 122°29′13″ | 46°29′24″ | 127 ± 2 | Monzodiorite porphyrite | LA-ICP-MS | Ge et al. [25] |
| 73 | G0206-2 | Yonghetun | 122°29′13″ | 46°29′24″ | 128 ± 3 | Granite porphyry | LA-ICP-MS | Ge et al. [25] |
| 74 | G0208-3 | Qingshan | 122°07′29″ | 46°29′41″ | 134 ± 2 | Granodiorite | LA-ICP-MS | Ge et al. [25] |
| 75 | G0208-1 | Qingshan | 122°07′29″ | 46°29′41″ | 136 ± 3 | Granodiorite | LA-ICP-MS | Ge et al. [25] |
| 76 | JLG-01 | Jielugonghe | 121°00′07″ | 51°53′46″ | 139 ± 1 | Quartz porphyry | LA-ICP-MS | She et al. [16] |
| 77 | WLS-16 | Wunugetu | 117°06′04″ | 49°26′21″ | 144 ± 3 | Granite | LA-ICP-MS | She et al. [16] |
| 78 | JGD-33 | Xintianzhen | 124°14′05″ | 51°17′35″ | 127.7 ± 0.3 | Biotite granite | LA-ICP-MS | She et al. [16] |
| 79 | JGD-34 | Xintianzhen | 124°11′54″ | 51°15′42″ | 128 ± 1 | Syenogranite | LA-ICP-MS | She et al. [16] |
| 80 | JGD-35 | Jiagedaqi | 124°05′20″ | 50°25′55″ | 128 ± 1 | Biotite monzogranite | LA-ICP-MS | She et al. [16] |
| 81 | JGD-14 | Xiaoyangqi | 124°43′53″ | 50°54′07″ | 128 ± 3 | Amphibolite | LA-ICP-MS | She et al. [16] |
| 82 | TED-32 | Cuoer-Wunuer | 121°20′53″ | 48°27′28″ | 144.82 ± 0.45 | Plagiogranite | LA-ICP-MS | She et al. [16] |
| 83 | BKT-05 | Boketu-Zhalantun | 122°07′08″ | 48°34′52″ | 130.7 ± 0.4 | Granite | LA-ICP-MS | She et al. [16] |
| 84 | TS-55 | Tongshna | 125°47′35″ | 50°14′53″ | 131.2 ± 0.4 | Biotite granite | LA-ICP-MS | She et al. [16] |
| 85 | JGD-05 | Woduhe | 125°42′03″ | 50°33′53″ | 137 ± 1 | Biotite granite | LA-ICP-MS | She et al. [16] |
| 86 | BKT-06 | Boketu-Zhalantun | 122°17′54″ | 48°20′30″ | 141.3 ± 0.5 | Granite porphyry | LA-ICP-MS | She et al. [16] |
| 87 | TED-30 | Cuoer-Wunuer | 121°12′46″ | 48°29′25″ | 129 ± 1 | Biotite granite | LA-ICP-MS | She et al. [16] |
| 88 | BKT-11 | Boketu-Zhalantun | 122°44′33″ | 47°54′54″ | 129.37 ± 0.73 | Syenite porphyrite | LA-ICP-MS | She et al. [16] |
| 89 | Z11-62 | Hamagou Farm | 120°50′27.99″ | 47°04′29.23″ | 126.04 ± 0.48 | Granite porphyry | LA-ICP-MS | Shi et al. [27] |
| 90 | Z10-17 | Hamagou Farm | 121°12′19.94″ | 47°22′28.15″ | 135.85 ± 0.78 | Biotite monzogranite | LA-ICP-MS | Shi et al. [27] |
| 91 | Z11-63 | Hamagou Farm | 122°03′42.24″ | 47°03′58.46″ | 135.87 ± 0.49 | Granite porphyry | LA-ICP-MS | Shi et al. [27] |
| 92 | Z10-16 | Hamagou Farm | 121°04′48.63″ | 47°09′57.48″ | 136.97 ± 0.99 | Biotite syenogranite | LA-ICP-MS | Shi et al. [27] |
| 93 | ZKD0015 | Lingquan | 118°45′48″ | 49°50′29″ | 137 ± 2 | Granite porphyry | LA-ICP-MS | Wang et al. [57] |
| 94 | M099-4 | Aerhashate | 116°07′04″ | 48°31′25″ | 137 ± 4 | Granite porphyry | LA-ICP-MS | Wang et al. [57] |
| 95 | M011-1 | Baogedewula | 117°03′39″ | 48°14′18″ | 142 ± 1 | Syenogranite | LA-ICP-MS | Wang et al. [57] |
| 96 | MZ13-1 | Lingquan | 117°35′54.2″ | 49°24′22.4″ | 134 ± 1 | Quartz monzonite porphyrite | LA-ICP-MS | Wang et al. [98] |
| 97 | MZ14-2 | Baogedewu | 117°05′05.7″ | 48°15′56.3″ | 134 ± 2 | Syenogranite | LA-ICP-MS | Wang et al. [98] |
| 98 | DW09-b6 | Goute | 118°32′44.5″ | 46°12′16.9″ | 134.1 ± 1 | Biotite granite | LA-ICP-MS | Xiong et al. [55] |
| 99 | GZ10-28 | Balibuhade | 120°25′09″ | 44°49′40″ | 125 ± 1 | Granite porphyry | LA-ICP-MS | Yang et al. [56] |
| 100 | GZ10-52 | Wulandaba | 119°40′20″ | 44°34′23″ | 137 ± 1 | Biotite monzogranite | LA-ICP-MS | Yang et al. [56] |
| 101 | GZ10-49 | Xiaojingzi | 119°46′30″ | 44°31′03″ | 138 ± 1 | Biotite monzogranite | LA-ICP-MS | Yang et al. [56] |
| 102 | GZ10-57 | Huajiagala | 119°31′36″ | 44°09′23″ | 139 ± 1 | Biotite monzogranite | LA-ICP-MS | Yang et al. [56] |
| 103 | 0076-9 | Xinlin | 124°09′23″ | 51°37′40″ | 131 ± 3 | Granodiorite | LA-ICP-MS | Zhang et al. [59] |
| 104 | 0075-7 | Xinlin | 124°19′26″ | 51°36′23″ | 132 ± 3 | Granodiorite | LA-ICP-MS | Zhang et al. [59] |
| 105 | I-I-① | Yihewula | 125°28′18″ | 52°22′18″ | 130.1 ± 1.4 | Biotite granite | SHRIMP | Zheng et al. [99] |
| 106 | 21ZK187 | Malagai | 119°22′44″ | 45°31′02″ | 130 ± 1 | Biotite syenogranite | LA-ICP-MS | This study |
| 107 | 21ZK193 | Malagai | 119°21′09″ | 45°29′53″ | 133 ± 1 | Biotite syenogranite | LA-ICP-MS | This study |
| 108 | 21ZK199 | Halejinhada | 119°25′23″ | 45°28′46″ | 134 ± 1 | Biotite syenogranite | LA-ICP-MS | This study |
| 109 | 21ZK205 | Naimanqi | 119°26′19″ | 45°29′26″ | 130 ± 1 | Biotite granodiorite | LA-ICP-MS | This study |
References
- Sengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans. Roy. Soc. Edinb. Earth Sci. 2000, 91, 181–193. [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Berzina, A.N.; Sotnikov, V.I.; Economou-Eliopoulos, M.; Eliopoulos, D.G. Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia. Ore Geol. Rev. 2005, 26, 91–113. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res. 2013, 25, 48–102. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics 2003, 22, 1069–1089. [Google Scholar] [CrossRef]
- Shu, Q.; Chang, Z.; Lai, Y.; Zhou, Y.; Sun, Y.; Yan, C. Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re-Os dates of porphyry Mo deposits in the northern Xilamulun district. Econ. Geol. 2016, 111, 1783–1798. [Google Scholar] [CrossRef]
- Li, J.Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Wang, T.; Guo, L.; Zheng, Y.D.; Donskaya, T.; Gladkochub, D.; Zeng, L.S.; Li, J.B.; Wang, Y.B.; Mazukabzov, A. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U–Pb ages from metamorphic core complexes. Lithos 2012, 154, 315–345. [Google Scholar] [CrossRef]
- Xu, W.L.; Pei, F.P.; Wang, F.; Meng, E.; Ji, W.Q.; Yang, D.B.; Wang, W. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Zhao, L.G.; Wang, W.L.; Gao, X.S.; Wang, S.Q.; Xu, Y.W.; Hu, X.J. Inspiration from the Age of Baoerhantu Group and Metamorphic Zircon Age of Middle Early Middle Triassic in the Northern Damao Banner, Inner Mongolia. N. China Geol. 2024, 47, 1–15+37. [Google Scholar]
- Shu, Q.; Lai, Y.; Sun, Y.; Wang, C.; Meng, S. Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, northeast China: Evidence from isotopes (S, Pb) and fluid inclusions. Econ. Geol. 2013, 108, 835–860. [Google Scholar] [CrossRef]
- Liu, L.J.; Shu, Q.H.; Xing, K.; Liu, J.Y.; Zhang, L.T.; Wang, Q.F.; Deng, J. Crustal architecture controls on porphyry Cu and Mo fertility: Constraints from zircon Hf isotopic mapping in the Great Xing’an Range, NE China. Earth Sci. Rev. 2025, 272, 105319. [Google Scholar] [CrossRef]
- Bai, L.A.; Sun, J.G.; Gu, A.L.; Zhao, K.Q.; Sun, Q.L. A review of the genesis, geochronology, and geological significance of hydrothermal copper and associated metals deposits in the Great Xing’an Range, NE China. Ore Geol. Rev. 2014, 61, 192–203. [Google Scholar] [CrossRef]
- She, H.Q.; Li, J.W.; Xiang, A.P.; Guan, J.D.; Yang, Y.C.; Zhang, D.Q.; Tan, G.; Zhang, B. U–Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrol. Sin. 2012, 28, 571–594. [Google Scholar]
- Shi, L.; Zheng, C.Q.; Yao, W.G.; Li, J.; Cui, F.H.; Gao, F.; Gao, Y.; Xu, J.L.; Han, X.M. Geochronological framework and tectonic setting of the granitic magmatism in the Chaihe-Moguqi region, central Great Xing’an Range, China. J. Asian Earth Sci. 2015, 113, 443–453. [Google Scholar] [CrossRef]
- Dong, Y.; Ge, W.C.; Zhao, G.C.; Yang, H.; Liu, X.W.; Zhang, Y.L. Petrogenesis and tectonic setting of the late Paleozoic Xing’an complex in the northern Great Xing’an Range, NE China: Constrains from geochronology, geochemistry and zircon Hf isotopes. J. Asian Earth Sci. 2016, 115, 228–246. [Google Scholar] [CrossRef]
- Kravchinsky, V.A.; Cogné, J.P.; Harbert, W.P.; Kuzmin, M.I. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophys. J. Int. 2002, 148, 34–57. [Google Scholar] [CrossRef]
- Ying, J.F.; Zhou, X.H.; Zhang, L.C.; Wang, F. Geochronological framework of Mesozoic volcanic rocks in the Great Xing’an Range, NE China, and their geodynamic implications. J. Asian Earth Sci. 2010, 39, 786–793. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, J.H.; Lo, C.H.; Wilde, S.A.; Sun, D.Y.; Jahn, B.M. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Isl. Arc. 2007, 16, 156–172. [Google Scholar] [CrossRef]
- Ji, Z.; Meng, Q.A.; Wan, C.B.; Zhu, D.F.; Ge, W.C.; Zhang, Y.L.; Yang, H.; Dong, Y. Geodynamic evolution of flat-slab subduction of Paleo-Pacific Plate: Constraints from Jurassic adakitic lavas in the Hailar Basin, NE China. Tectonics 2019, 38, 4301–4319. [Google Scholar] [CrossRef]
- Ge, W.C.; Lin, Q.; Sun, D.Y.; Wu, F.Y.; Yuan, Z.K.; Li, W.Y.; Chen, M.Z.; Yin, C.X. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling: Evidence of the mantle-crust interaction. Acta Petrol. Sin. 1999, 15, 396–406. [Google Scholar]
- Lin, Q.; Ge, W.C.; Sun, D.Y.; Wu, F.Y.; Won, C.K.; Min, K.D.; Jin, M.S.; Wonlee, M.; Kwon, C.S.; Yun, S.H. Tectonic significance of Mesozoic volcanic rocks in Northeastern China. Sci. Geol. Sin. 1998, 33, 129–139. [Google Scholar]
- Ge, W.C.; Wu, F.Y.; Zhou, C.Y.; Zhang, J.H. Zircon U–Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central DaHinggan Mountain. Acta Petrol. Sin. 2005, 21, 749–762. [Google Scholar]
- Zhang, Y.L.; Ge, W.C.; Liu, X.M.; Zhang, J.H. Isotopic characteristics and their significance of the Xinlinzhen pluton, Great Hinggan mountains. J. Jilin Univ. (Earth Sci. Ed.) 2008, 38, 177–186. [Google Scholar]
- Shi, L.; Zheng, C.Q.; Yao, W.G.; Li, J.; Xu, J.L.; Gao, Y.; Cui, F.H. Geochronology, petro-geochemistry and tectonic setting of Hamagou forest farm A-type granites in Wuchagou region, central Great Xinggan Range. Acta Geol. Sin. 2013, 87, 1264–1276. [Google Scholar]
- Ouyang, H.G.; Mao, J.W.; Santosh, M.; Wu, Y.; Hou, L.; Wang, X.F. The Early Cretaceous Weilasituo Zn–Cu–Ag vein deposit in the southern Great Xing’an Range, northeast China: Fluid inclusions, H, O, S, Pb isotope geochemistry and genetic implications. Ore Geol. Rev. 2014, 56, 503–515. [Google Scholar] [CrossRef]
- Guo, F.; Li, H.X.; Fan, W.M.; Li, J.Y.; Zhao, L.; Huang, M.W.; Xu, W.L. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China: Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos 2015, 224–225, 46–60. [Google Scholar] [CrossRef]
- Teng, X.J.; Fu, C.; Li, J.J.; Li, Z.D.; Tang, W.L. Characteristics and Geological Implications of the Ophiolite Belts in the Sino-Mongolian Border Region. N. China Geol. 2024, 47, 1–13. [Google Scholar]
- Xu, B.; Zhao, P.; Wang, Y.Y.; Liu, W.; Luo, Z.W.; Bao, Q.Z.; Zhou, Y.H. The pre-Devonian tectonic framework of Xing’an-Mongolia orogenic belt (XMOB) in north China. J. Asian Earth Sci. 2015, 97, 183–196. [Google Scholar] [CrossRef]
- Yu, Q.; Ge, W.C.; Zhang, J.; Zhao, G.C.; Zhang, Y.L.; Yang, H. Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic rocks from the Dashizhai Formation in Inner Mongolia, NE China. Gondwana Res. 2016, 43, 164–177. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Li, H.M.; Wang, X.L. The nature of basement beneath the Songliao Basin in NE China: Geochemical and isotopic constraints. Phys. Chem. Earth (A) 2001, 26, 793–803. [Google Scholar] [CrossRef]
- Inner Mongolia Bureau of Geology Mineral Resources. Regional Geology of Inner Mongolia Automo; Geological Publishing House: Beijing, China, 1991. [Google Scholar]
- Wang, F.; Xu, W.L.; Meng, E.; Cao, H.H.; Gao, F.H. Early Paleozoic amalgamation of the Songnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: Geochronological and geochemical evidence from granitoids and rhyolites. J. Asian Earth Sci. 2012, 49, 234–248. [Google Scholar] [CrossRef]
- Yu, J.J.; Wang, F.; Xu, W.L.; Gao, F.H.; Pei, F.P. Early Jurassic mafic magmatism in the Lesser Xing’an-Zhangguangcai Range, NE China, and its tectonic implications: Constraints from zircon U–Pb chronology and geochemistry. Lithos 2012, 142–143, 256–266. [Google Scholar] [CrossRef]
- Guo, P.; Xu, W.L.; Yu, J.J.; Wang, F.; Tang, J.; Li, Y. Geochronology and geochemistry of Late Triassic bimodal igneous rocks at the eastern margin of the Songnen-Zhangguangcai Range Massif, Northeast China: Petrogenesis and tectonic implications. Int. Geol. Rev. 2016, 58, 196–215. [Google Scholar] [CrossRef]
- Liu, J.F.; Chi, X.G.; Dong, C.Y.; Zhao, Z.; Li, G.R.; Zhao, Y.D. Discovery of Early Paleozoic granices in the eastern Xiao Hinggan Mountains, northeastern China and their tectonic significance. Geol. Bull. China 2008, 27, 534–544. [Google Scholar]
- Wang, Z.W.; Xu, W.L.; Pei, F.P.; Wang, F.; Guo, P. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing’an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. Lithos 2016, 261, 144–163. [Google Scholar] [CrossRef]
- Wei, H.Y. Geochronology and Petrogenesis of Granitoids in Yichun-Hegang Area, Heilongjiang Province. Ph.D. Thesis, Jilin University, Changchun, China, 2012. [Google Scholar]
- Yu, J.J.; Wang, F.; Xu, W.L.; Gao, F.H.; Tang, J. Late Permian tectonic evolution at the southeastern margin of the Songnen-Zhangguangcai Range Massif, NE China: Constraints from geochronology and geochemistry of granitoids. Gondwana Res. 2013, 24, 635–647. [Google Scholar] [CrossRef]
- Zhang, W.Y. Magmatic Activity and Metallogeny of Dong Ujimqin Banner, Inner Mongolia. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2008. [Google Scholar]
- Ji, Z.; Meng, Q.A.; Wan, C.B.; Ge, W.C.; Yang, H.; Zhang, Y.L.; Dong, Y.; Jin, X. Early Cretaceous adakitic lavas and A-type rhyolites in the Songliao Basin, NE China: Implications for the mechanism of lithospheric extension. Gondwana Res. 2019, 71, 28–48. [Google Scholar] [CrossRef]
- Xie, L.W.; Zhang, Y.B.; Zhang, H.H.; Sun, J.F.; Wu, F.Y. In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopes in zircon and baddeleyite. Chin. Sci. Bull. 2008, 53, 1565–1573. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA–ICP–MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Ludwig, K.R. Mathematical-statistical treatment of data and errors for 230Th/U geochronology. Uranium-Ser. Geochem. 2003, 52, 631–656. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Geng, J.Z.; Zhang, J.; Li, H.K.; Li, H.M.; Zhang, Y.Q.; Hao, S. Zircon Hf isotope analysis by means of LA–MC–ICP–MS. Geol. Bull. China 2011, 30, 1508–1513. [Google Scholar]
- Blichert-Toft, J.; Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Shao, J.A.; Wilde, S.W.; Xie, L.W.; Liu, X.M. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet. Sci. Lett. 2006, 246, 245–336. [Google Scholar] [CrossRef]
- Cheng, R.Y.; Wu, F.Y.; Ge, W.C.; Sun, D.Y.; Liu, X.M.; Yang, J.H. Emplacement age of the Raohe Complex in eastern Heilongjiang Province and the tectonic evolution of the eastern part of northeastern China. Acta Petrol. Sin. 2006, 22, 353–376. [Google Scholar]
- Xiong, G.Q.; Zhao, H.T.; Liu, M.; Zhang, D.; Qin, X.F.; Wang, Z.; Tong, L.H.; Hu, Z.C. Zircon U–Pb Geochemistry, Geochronology and Hf Isotope of the Goute Granite Plution, East Wuzhu Muqinqi, Inner Mongolia, and their Geological Significance. Bull. Mineral. Petrtol. Geochem. 2014, 33, 439–451. [Google Scholar]
- Yang, Q.D.; Guo, L.; Wang, T.; Zeng, T.; Zhang, L.; Tong, Y.; Shi, X.J.; Zhang, J.J. Geochronology, origin, sources and tectonic settings of Late Mesozoic two-stage granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China. Acta Petrol. Sin. 2014, 30, 1961–1981. [Google Scholar]
- Wang, T.H.; Zhang, S.Y.; Sun, D.Y.; Gou, J.; Ren, Y.S.; Wu, P.F.; Liu, X.M. Zircon U–Pb ages and Hf isotopic characteristics of Mesozoic granitoids from southern Manzhouli, Inner Mongolia. Glob. Geol. 2014, 33, 26–38. [Google Scholar]
- Shi, L. Late Mesozoic Magmatism and Tectonic Setting in Chaihe-Moguqi Region, Central Great Xing’an Range. Ph.D. Thesis, Jilin University, Changchun, China, 2015. [Google Scholar]
- Zhang, Y.T.; Sun, F.Y.; Wang, S.; Xin, W. Geochronology and geochemistry of Late Jurassic to Early Cretaceous granitoids in the northern Great Xing’an range, NE China: Petrogenesis and implications for late Mesozoic tectonic evolution. Lithos 2018, 312–313, 171–185. [Google Scholar] [CrossRef]
- Liu, L.J.; Zhou, T.F.; Fu, B.; Zhang, D.Y.; Yuan, F.; Liu, G.X.; White, N.C.; Hollings, P. Petrogenesis of Early Cretaceous granitic rocks from the Haobugao area, southern Great Xing’an Range, northeast China: Geochronology, geochemistry and Sr-Nd-Hf-O isotope constraints. Lithos 2021, 406–407, 106501. [Google Scholar] [CrossRef]
- Han, R.; Qin, K.Z.; Shu, S.Q.; Groves, D.I.; Zhao, C.; Hui, K.X.; Meng, Z.J. An Early Cretaceous Ag-Pb-Zn mineralization at Halasheng in the South Erguna Block, NE China: Constraints from U-Pb and Rb-Sr geochronology, geochemistry and Sr-Nd-Hf isotopes. Ore Geol. Rev. 2020, 122, 103526. [Google Scholar] [CrossRef]
- Zhang, C. Late Mesozoic Magmatism and Tectonic Setting of Bairin Left Banner-Jarud Banner Area in the Southern Great Xing’an Range. Ph.D. Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- Irvine, T.H.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, A.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos 2003, 66, 241–273. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, C.Q.; Yao, W.G.; Wang, H.; Li, J.; Shi, L.; Cui, F.H.; Gao, F.; Zhang, X.X. Geochemistry and zircon U–Pb geochronology of the Luotuobozi Pluton in the Haduohe area in the northern Daxing’anling. Acta Geol. Sin. 2013, 87, 1293–1310. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Shu, Q.; Chiaradia, M. Mesozoic Mo mineralization in Northeastern China did not require regional-scale pre-enrichment. Econ. Geol. 2021, 116, 1227–1237. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granite: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Burton-Johnson, A.; Macpherson, C.G.; Ottley, C.J.; Nowell, G.M.; Boyce, A.J. Generation of the Mt Kinabalu Granite by Crustal Contamination of Intraplate Magma Modelled by Equilibrated Major Element Assimilation with Fractional Crystallization (EME-AFC). J. Petrol. 2019, 60, 1461–1487. [Google Scholar] [CrossRef]
- Alves, A.; de Assis Janasi, V.; Simonetti, A.; Heaman, L. Microgranitic Enclaves as Products of Self-mixing Events: A Study of Open-system Processes in the Mauá Granite, São Paulo, Brazil, Based on in situ Isotopic and Trace Elements in Plagioclase. J. Petrol. 2009, 50, 2221–2247. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Geol. Soc. Am. Spec. Pap. 1992, 272, 1–26. [Google Scholar]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Ballouard, C.; Massuyeau, M.; Elburg, M.A.; Tappe, S.; Viljoen, F.; Brandenburg, J.T. The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations. Earth Sci. Rev. 2020, 203, 103115. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental-crust—A lower crustal perspective. Rev Geophys. 1995, 33, 267–309. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 3.01-Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar] [CrossRef]
- Eby, G.N.; Woolley, A.R.; Din, V.; Platt, G. Geochemistry and petro genesis of nepheline syenite: Kasungu–Chipala, Ilomba, and Ulindi nepheline syenite intrusions, north Nyasa Alkaline Province, Malawi. J. Petrol. 1998, 39, 1405–1424. [Google Scholar] [CrossRef]
- Roberts, M.P.; Clemens, J.D. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 1993, 21, 825–828. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Y.; Janh, B.M.; Wilde, S.A.; Sun, D.Y. Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics 2000, 328, 89–113. [Google Scholar] [CrossRef]
- Ge, W.C.; Chen, J.S.; Yang, H.; Zhao, G.C.; Zhang, Y.L.; Tian, D.X. Tectonic implications of new zircon U–Pb ages for the Xinghuadukou Complex, Erguna Massif, northern Great Xing’an Range, NE China. J. Asian Earth Sci. 2015, 106, 169–185. [Google Scholar] [CrossRef]
- Martin, H. Petrogenesis of Archaean Trondhjemites, Tonalites, and Granodiorites from Eastern Finland: Major and Trace Element Geochemistry. J. Petrol. 1987, 28, 921–953. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.L.; Wang, F.; Zhao, S.; Li, Y. Geochronology, geochemistry, and deformation history of Late Jurassic–Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol–Okhotsk orogenic belt. Tectonophysics 2015, 658, 91–110. [Google Scholar] [CrossRef]
- Wang, T.; Guo, L.; Zhang, L.; Yang, Q.D.; Zhang, J.J.; Tong, Y.; Ye, K. Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. J. Asian Earth Sci. 2015, 97, 365–392. [Google Scholar] [CrossRef]
- Zhang, J.H.; Gao, S.; Ge, W.C.; Wu, F.Y.; Yang, J.H.; Wilde, S.A.; Li, M. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: Implications for subduction–induced delamination. Chem. Geol. 2010, 276, 144–165. [Google Scholar] [CrossRef]
- Li, M.L.; Yu, H.N.; Tian, Y.; Yue, H.X.; He, Y.P.; Yu, Y.B.; Sun, Z.J. Genesis and Tectonic Implications of Early Cretaceous Granites in the Haobugao Area, Southern Great Xing’an Range: Insights from Zircon U–Pb Geochronology, Hf Isotopic Composition, and Petrochemistry. Minerals 2024, 14, 1139. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zhao, Y.Y.; Shui, X.F.; Tao, Z.L. Petrogenesis of the Early Jurassic–Early Cretaceous Adakite-like Rocks in the Erguna Block, NE China: Implications for the Tectonic Evolution of the Mongol–Okhotsk Ocean. Minerals 2024, 14, 725. [Google Scholar] [CrossRef]
- Pearce, J.A. Trace element characteristics of lavas from destructive plate boundaries. In Orogenic Andesites and Related Rocks; Thorpe, R.S., Ed.; John Wiley and Sons: Chichester, UK, 1982; pp. 528–548. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Hollocher, K.; Robinson, P.; Walsh, E.; Roberts, D. Geochemistry of amphibolite-facies volcanics and gabbros of the Støren Nappe in extensions west and southwest of Trondheim, Western Gneiss Region, Norway: A key to correlations and paleotectonic settings. Am. J. Sci. 2012, 312, 357–416. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths; Shiva Publications: Nantwich, UK, 1983; pp. 230–249. [Google Scholar]
- Sun, J.G.; Chen, L.; Zhao, J.K.; Men, J.L.; Pang, W.; Chen, D.; Liang, S.N. SHRIMP U–Pb dating of zircon from Late Yanshanian granitic complex in Xiaoxinancha gold-rich copper orefield of Yanbian and its geological implications. Miner. Depos. 2008, 27, 319–328. [Google Scholar]
- Wilde, S.A.; Wu, F.Y.; Zhao, G.C. The Khanka Block, NE China, and its significance to the evolution of the Central Asian Orogenic Belt and continental accretion. In The Evolving Continents: Understanding Processes of Continental Growth: Geological Society; Kusky, T.M., Zhai, M.G., Xiao, W.J., Eds.; Special Publication: London, UK, 2010; Volume 338, pp. 117–137. [Google Scholar]
- Zhang, Y.B.; Wu, F.Y.; Wilde, S.A.; Zhai, M.G.; Lu, X.P.; Sun, D.Y. Zircon U–Pb ages and tectonic implications of ‘Early Paleozoic’ granitoids at Yanbian, Jilin Province, NE China. Isl. Arc. 2004, 13, 484–505. [Google Scholar] [CrossRef]
- Duan, S.Y. Temporal and Spatial Distribution Patterns of Early Cretaceous A-Type Granites in Northeast Asia and Their Significance. Master’s Thesis, China University of Geosciences, Beijing, China, 2021. [Google Scholar]
- Wang, W.; Xu, W.L.; Wang, F.; Meng, E. Zircon U–Pb Chronology and Assemblages of Mesozoic Granitoids in the Manzhouli-Erguna Area, NE China: Constraints on the Regional Tectonic Evolution. Geol. J. China Univ. 2012, 18, 88–105. [Google Scholar]
- Zheng, C.Q.; Zhou, J.B.; Ji, W.; Ji, J.Q.; Zhang, X.Z.; Ma, Z.H.; Ding, X. Geochronlogy in the north segment of the Derbugan fault zone, Great Xing’an Range, NE China. Acta Petrol. Sin. 2009, 25, 1989–2000. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).