Editorial for Special Issue “Mineral Chemistry of Granitoids: Constraints on Crystallization Conditions and Petrological Evolution”
Conflicts of Interest
List of Contributions
- El-Fatah, A.A.A.; Surour, A.A.; Azer, M.K.; Madani, A.A. Integration of Whole-Rock Geochemistry and Mineral Chemistry Data for the Petrogenesis of A-Type Ring Complex from Gebel El Bakriyah Area. Egypt. Miner. 2023, 13, 1273. https://doi.org/10.3390/min13101273.
- Zhao, Y.; Huang, F.a.n.; Wang, D.; Wei, N.; Zhao, C.; Liu, Z. U-Pb Geochronology, Geochemistry and Geological Significance of the Yongfeng Composite Granitic Pluton in Southern Jiangxi Province. Minerals 2023, 13, 1457. https://doi.org/10.3390/min13111457.
- Li, H.; Li, X.; Xin, J.; Yang, Y. Zircon U-Pb and Whole-Rock Geochemistry of the Aolunhua Mo-Associated Granitoid Intrusion, Inner Mongolia, NE China. Minerals 2024, 14, 226. https://doi.org/10.3390/min14030226.
- Cathelineau, M.; Boiron, M.-C.; Lecomte, A.; Martins, I.; Silva, I.D.; Mateus, A. Lithium-, Phosphorus-, and Fluorine-Rich Intrusions and the Phosphate Sequence at Segura (Portugal): A Comparison with Other Hyper-Differentiated Magmas. Minerals 2024, 14, 287. https://doi.org/10.3390/min14030287.
- Jiang, J.; Xiang, W.; Hu, P.; Li, Y.; Wu, F.; Zeng, G.; Guo, X.; Zhang, Z.; Bai, Y. Petrogenesis of the Newly Discovered Neoproterozoic Adakitic Rock in Bure Area, Western Ethiopia Shield: Implication for the Pan-African Tectonic Evolution. Minerals 2024, 14, 408. https://doi.org/10.3390/min14040408.
- Ghoneim, M.M.; Gawad, A.E.A.; El-Dokouny, H.A.; Dawoud, M.; Panova, E.G.; El-Lithy, M.A.; Mahmoud, A.S. Petrogenesis and Geodynamic Evolution of A-Type Granite Bearing Rare Metals Mineralization in Egypt: Insights from Geochemistry and Mineral Chemistry. Minerals 2024, 14, 583. https://doi.org/10.3390/min14060583.
- Liu, B.; Jin, S.; Tian, G.; Li, L.; Qin, Y.; Xie, Z.; Ma, M.; Yin, J. Mesoproterozoic (ca. 1.3 Ga) A-Type Granites on the Northern Margin of the North China Craton: Response to Break-Up of the Columbia Supercontinent. Minerals 2024, 14, 622. https://doi.org/10.3390/min14060622.
- Cathelineau, M.; Kahou, Z.S. Discrimination of Muscovitisation Processes Using a Modified Quartz–Feldspar Diagram: Application to Beauvoir Greisens. Minerals 2024, 14, 746. https://doi.org/10.3390/min14080746.
- Engvik, A.K.; Corfu, F.; Kleinhanns, I.C.; Taubbald, H.; Elvevold, S. Mineralogical and Geochemical Response to Fluid Infiltration into Cambrian Orthopyroxene-Bearing Granitoids and Gneisses, Dronning Maud Land, Antarctica. Minerals 2024, 14, 772. https://doi.org/10.3390/min14080772.
- Lima, J.V.; Guimarães, I.P.; Amorim, J.V.A.; Brainer, C.C.G.; Santos, L.; Silva Filho, A.F. A Review of the Mineral Chemistry and Crystallization Conditions of Ediacaran–Cambrian A-Type Granites in the Central Subprovince of the Borborema Province, Northeastern Brazil. Minerals 2024, 14, 1022. https://doi.org/10.3390/min14101022.
References
- Pitcher, W.S. The Nature and Origin of Granite; Chapman & Hall: London, UK, 1993; p. 321. [Google Scholar]
- Anderson, J.L.; Smith, D.R. The Effects of Temperature and FO2 on the Al-in-Hornblende Barometer. Am. Miner. 1995, 80, 549–559. [Google Scholar] [CrossRef]
- Anderson, J.L.; Barth, A.P.; Wooden, J.L.; Mazdab, F. Thermometers and Thermobarometers in Granitic Systems. Rev. Miner. Geochem. 2008, 69, 121–142. [Google Scholar] [CrossRef]
- Harrison, T.M.; Watson, E.B. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochim. Cosmochim. Acta 1984, 48, 1467–1477. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Zen, E. Aluminum in Hornblende: An Empirical Igneous Geobarometer. Am. Miner. 1986, 71, 1297–1313. [Google Scholar]
- Blundy, J.D.; Holland, T.J.B. Calcic Amphibole Equilibria and a New Amphibole-Plagioclase Geothermometer. Contrib. Miner.Petrol. 1990, 104, 208–224. [Google Scholar] [CrossRef]
- Schmidt, M.W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib. Miner. Petrol. 1992, 110, 304–310. [Google Scholar] [CrossRef]
- Putirka, K. Amphibole Thermometers and Barometers for Igneous Systems and Some Implications for Eruption Mechanisms of Felsic Magmas at Arc Volcanoes. Am. Miner. 2016, 101, 841–858. [Google Scholar] [CrossRef]
- Enami, M.; Suzuki, K.; Liou, J.G.; Bird, D.K. Al-Fe3+ and F-OH substitution in titanite and constraints on their P-T dependence. Eur. J. Miner. 1993, 5, 219–231. [Google Scholar] [CrossRef]
- Wones, D.R. Significance of the assemblage titanite + magnetite + quartz in granitic rocks. Am. Miner. 1989, 74, 744–749. [Google Scholar]
- Ishihara, S. Magnetite-series and ilmenite-series granitic rocks. Min. Geol. 1977, 27, 293–305. [Google Scholar]
- Schmidt, M.W.; Thompson, A.B. Epidote in calc-alkaline magmas: An experimental study of stability, phase relationships, and the role of epidote im Magmatic evolution. Am. Miner. 1996, 81, 424–474. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Poli, S. Magmatic epitote. Rev. Mineral. Geochem. 2004, 56, 399–430. [Google Scholar] [CrossRef]
- Xie, L.; Wang, R.; Chen, X.; Qiu, J.; Wang, D. Th-Rich Zircon from Peralkaline A-Type Granite: Mineralogical Features and Petrological Implications. Chin. Sci. Bull. 2005, 50, 809–817. [Google Scholar]
- Pérez-Soba, C.; Villaseca, C.; Gonzáles del Tánago, J.; Nasdala, L. The composition of zircon in the peraluminous Hercynian granites of the Spanish central system batholith. Can. Miner. 2007, 45, 509–527. [Google Scholar] [CrossRef]
- Breiter, K.; Lamarão, C.N.; Borges, R.M.K.; Dall’Agnol, R. Chemical Characteristics of Zircon from A-Type Granites and Comparison to Zircon of S-Type Granites. Lithos 2014, 192, 208–225. [Google Scholar] [CrossRef]
- Loucks, R.R.; Henríquez, G.J.; Fiorentini, M.L. Zircon and Whole-Rock Trace Element Indicators of Magmatic Hydration State and Oxidation State Discriminate Copper Ore-Forming from Barren Arc Magmas. Econ. Geol. 2024, 119, 511–523. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Pinho Guimarães, I.; de Lima, J.V. Editorial for Special Issue “Mineral Chemistry of Granitoids: Constraints on Crystallization Conditions and Petrological Evolution”. Minerals 2025, 15, 65. https://doi.org/10.3390/min15010065
de Pinho Guimarães I, de Lima JV. Editorial for Special Issue “Mineral Chemistry of Granitoids: Constraints on Crystallization Conditions and Petrological Evolution”. Minerals. 2025; 15(1):65. https://doi.org/10.3390/min15010065
Chicago/Turabian Stylede Pinho Guimarães, Ignez, and Jefferson Valdemiro de Lima. 2025. "Editorial for Special Issue “Mineral Chemistry of Granitoids: Constraints on Crystallization Conditions and Petrological Evolution”" Minerals 15, no. 1: 65. https://doi.org/10.3390/min15010065
APA Stylede Pinho Guimarães, I., & de Lima, J. V. (2025). Editorial for Special Issue “Mineral Chemistry of Granitoids: Constraints on Crystallization Conditions and Petrological Evolution”. Minerals, 15(1), 65. https://doi.org/10.3390/min15010065