Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin
Abstract
1. Introduction
2. Geological Setting
3. Sample Collection and Methods
3.1. Sample Collection and Preparation
3.2. Experimental Analytical Methods
3.2.1. ICP-OES and ICP-MS Analysis
3.2.2. Electron Microscopic Analysis
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Karayigit, A.I.; Atalay, M.; Oskay, R.G.; Córdoba, P.; Querol, X.; Bulut, Y. Variations in elemental and mineralogical compositions of Late Oligocene, Early and Middle Miocene coal seams in the Kale-Tavas Molasse sub-basin, SW Turkey. Int. J. Coal Geol. 2020, 218, 103366. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Li, Y. Minimum mining grade of the selected trace elements in Chinese coal. J. China Coal Soc. 2014, 39, 744–748. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Querol, X.; Font, O.; Izquierdo, M.; Wang, Z. New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2014, 125, 10–21. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Pan, Z.; Yin, X.; Chai, P.; Pan, S.; Yang, Q. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin, northern China, with emphasis on lithium enrichment. Int. J. Coal Geol. 2019, 214, 103254. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Spears, D.A.; Vergunov, A.V.; Ilenok, S.S.; Mezhibor, A.M.; Ivanov, V.P.; Zarubinac, N.A. Geochemistry, mineralogy, and genesis of rare metal (Nb-Ta-Zr-Hf-Y- REE-Ga) coals of the Seam XI in the South of Kuznetsk Basin. Ore Geol. Rev. 2019, 113, 103073. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geol. Rev. 2019, 115, 103184. [Google Scholar] [CrossRef]
- Korobkin, V.V.; Buslov, M.M. Tectonics and geodynamics of the western Central Asian Fold Belt (Kazakhstan Paleozoides). Russ. Geol. Geophys. 2011, 52, 1600–1618. [Google Scholar] [CrossRef]
- Li, P.; Sun, M.; Rosenbaum, G.; Yuan, C.; Safonova, I.; Cai, K.; Jiang, Y.; Zhang, Y. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt. J. Asian Earth Sci. 2018, 153, 42–56. [Google Scholar] [CrossRef]
- Buslov, M.M. Tectonics and geodynamics of the Central Asian Foldbelt: The role of Late Paleozoic large-amplitude strike-slip faults. Russ. Geol. Geophys. 2011, 52, 52–71. [Google Scholar] [CrossRef]
- Levashova, N.M.; Degtıarev, K.E.; Bajenov, M.L. Oroclinal edition of the Middle Late Paleozoic volcanic phenomena of Kazakhstan: Paleomagnetic evidence and geological consequences. Geotectonics 2012, 4, 42–61. [Google Scholar] [CrossRef]
- Dobretsov, N.L. Early Paleozoic tectonics and geodynamics of Central Asia: The role of Early Paleozoic mantle plumes. Geol. Geophys. 2011, 52, 1957–1973. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Cennye Elementy-Primesi v Uglyah. Ekaterinburg: Izdatelstvo: Ýralskoe Otdelenıe Rossııskoı Akademıı Naýk, 2006, 538c. Available online: https://www.geokniga.org/bookfiles/geokniga-cennye-elementy-primesi-v-uglyah-yudovich-yae-ketris-mp-2006.pdf (accessed on 20 November 2023). (In Russian).
- Grıgorev, N.A. Distribution of Chemical Elements in the Upper Part of the Continental Crust; Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2009; p. 383s, (In Russian with English abstract). [Google Scholar]
- Hower, J.C.; Williams, D.A.; Eble, C.F.; Sakulpitakphon, T.; Moecher, D.P. Brecciated and mineralized coals in Union County, Western Kentucky coal field. Int. J. Coal Geol. 2001, 47, 223–234. [Google Scholar] [CrossRef]
- Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O’Keefe, J.M.; Tatu, C.A.; Buia, G. Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petroşani basin (southern Carpathian Mountains), Romania. Int. J. Coal Geol. 2010, 82, 68–80. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.L.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Ilenok, S.S.; Arbuzov, S.I. Metalliferous coals of the Azeyskoye deposit of the Irkutsk coal basin. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2018, 329, 132–144. (In Russian) [Google Scholar]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Arbuzov, S.I. The nature of abnormal concentrations of scandium in coals. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2013, 323, 56–64. (In Russian) [Google Scholar]
- Arbuzov, S.I.; Chekryzhov, I.Y.; Verkhoturov, A.A.; Spears, D.A.; Melkiy, V.A.; Zarubina, N.V.; Blokhin, M.G. Geochemistry and rare-metal potential of coals of the Sakhalin coal basin, Sakhalin Island, Russia. Int. J. Coal Geol. 2023, 268, 104197. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Maslov, S.G.; Il’enok, S.S. Modes of occurrence of scandium in coals and peats (A review). Solid Fuel Chem. 2015, 49, 167–182. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B.; French, D.; Hower, J.C.; Graham, I.T.; Zhao, F. Modes of occurrence of elements in coal: A critical evaluation. Earth-Sci. Rev. 2021, 222, 103815. [Google Scholar] [CrossRef]
- Saikia, B.K.; Wang, P.; Saikia, A.; Song, H.; Liu, J.; Wei, J.; Gupta, U.N. Mineralogical and elemental analysis of some high-sulfur Indian Paleogene coals: A statistical approach. Energy Fuel 2015, 29, 1407–1420. [Google Scholar] [CrossRef]
- Medunic, G.; Kuharic, Z.; Krivohlavek, A.; Fiket, Z.; Rađenovic, A.; Godel, K.; Kampic, S.; Kniewald, G. Geochemistry of Croatian superhigh-organic-sulphur Rasa coal, imported low-S coal and bottom ash: Their Se and trace metal fingerprints in seawater, clover, foliage and mushroom specimens. Int. J. Oil Gas Coal Technol. 2018, 18, 3–24. [Google Scholar] [CrossRef]
- Nayak, B. Mineral matter and the nature of pyrite in some high-sulfur tertiary coals of Meghalaya, northeast India. J. Geol. Soc. India 2013, 81, 203–214. [Google Scholar] [CrossRef]
- Xie, P.; Hower, J.C.; Nechaev, V.P.; Ju, D.; Liu, X. Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater. Fuel 2021, 300, 120948. [Google Scholar] [CrossRef]
- Bekman, V.M.; Seidalin, O.A.; Zinova, R.A.; Vedishev, V.E.; Shedrov, V.K.; Chaban, G.S.; Orlov, I.V.; Golicin, M.V.; Vihodciv, A.P. Geology of the Karaganda Coal Basin; Publishing House of Nedra: Moscow, Russia, 1972; p. 416s. (In Russian) [Google Scholar]
- Hou, Y.; Liu, D.; Zhao, F.; Zhang, S.; Zhang, Q.; Emmanuel, N.N.; Zhong, L. Mineralogical and geochemical characteristics of coal from the Southeastern Qinshui Basin: Implications for the enrichment and economic value of Li and REY. Int. J. Coal Geol. 2022, 264, 104136. [Google Scholar] [CrossRef]
- Spiro, B.F.; Liu, J.; Dai, S.; Zeng, R.; Large, D.; French, D. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. Int. J. Coal Geol. 2019, 215, 103304. [Google Scholar] [CrossRef]
- Gurova, A.; Safonova, I.; Savinsky, I.; Antonyuk, R.; Orynbek, T. Magmatic Rocks of the Tekturmass Accretionary Complex, Central Kazakhstan: Geological Position and Geodynamic Settings of Formation. Geodyn. Tectonophys. 2022, 13, 0673, (In Russian with English abstract). [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; Volume 349. [Google Scholar]
- Allègre, C.J.; Minster, J. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Floyd, P.A.; Leveridge, B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. 1987, 144, 531–542. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Hower, J.C.; Ruppert, L.F.; Eble, C.F. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int. J. Coal Geol. 1999, 39, 141–153. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Mezhibor, A.M.; Spears, D.A.; Ilenok, S.S.; Shaldybin, M.V.; Belaya, E.V. Nature of Tonsteins in the Azeisk Deposit of the Irkutsk Coal Basin (Siberia, Russia). Int. J. Coal Geol. 2016, 152, 99–111. [Google Scholar] [CrossRef]
Element | Saranskaya | Aktasskaya | Kuzembayev | Coal Clarke * | Element | Saran | Aktasskaya | Kuzembayev | Coal Clarke * |
---|---|---|---|---|---|---|---|---|---|
Li | 10.964 | 20.64 | 15.64 | 14.00 | Hf | 1.053 | 1.07 | 1.36 | 1.20 |
Be | 0.294 | 0.36 | 0.34 | 2.00 | Ta | 0.053 | 0.07 | 0.08 | 0.30 |
Sc | 4.246 | 6.59 | 5.70 | 3.70 | W | 0.241 | 0.19 | 0.23 | 1.00 |
V | 30.159 | 53.05 | 33.22 | 28.00 | Tl | 0.009 | 0.09 | 0.01 | 0.58 |
Cr | 2.588 | 2.87 | 2.40 | 17.00 | Pb | 2.735 | 3.65 | 3.87 | 9.00 |
Co | 3.134 | 3.06 | 2.93 | 6.00 | Bi | 0.074 | 0.09 | 0.12 | 1.10 |
Ni | 2.669 | 2.81 | 2.09 | 17.00 | Th | 1.099 | 1.12 | 1.32 | 3.20 |
Cu | 14.983 | 21.23 | 16.62 | 16.00 | U | 0.349 | 0.41 | 0.49 | 1.90 |
Zn | 12.096 | 13.86 | 11.64 | 28.00 | Ge | 0.316 | 0.36 | 0.33 | 2.50 |
Ga | 2.698 | 4.89 | 3.61 | 6.20 | Te | 0.106 | 0.07 | 0.03 | 0.05 |
As | 0.251 | 4.30 | 0.19 | 9.00 | La | 5.634 | 4.64 | 5.96 | 11.00 |
Se | 1.063 | 3.32 | 1.33 | 1.60 | Ce | 12.352 | 10.65 | 13.29 | 23.00 |
Rb | 1.398 | 3.71 | 1.44 | 18.00 | Pr | 1.505 | 1.34 | 1.62 | 3.50 |
Sr | 62.413 | 80.88 | 54.85 | 100.00 | Nd | 6.997 | 6.22 | 7.21 | 11.00 |
Y | 9.581 | 7.69 | 7.96 | 8.20 | Sm | 1.666 | 1.52 | 1.64 | 2.40 |
Zr | 41.638 | 43.96 | 51.11 | 36.00 | Eu | 0.394 | 0.36 | 0.38 | 0.43 |
Nb | 0.765 | 0.99 | 0.90 | 4.00 | Gd | 1.808 | 1.58 | 1.69 | 2.70 |
Mo | 0.311 | 2.84 | 0.11 | 2.10 | Tb | 0.267 | 0.24 | 0.26 | 0.31 |
Ag | 0.144 | 0.13 | 0.32 | 0.10 | Dy | 1.586 | 1.28 | 1.48 | 2.10 |
Cd | 0.063 | 0.10 | 0.08 | 0.20 | Ho | 0.319 | 0.26 | 0.31 | 0.57 |
Sn | 0.503 | 0.60 | 0.54 | 1.40 | Er | 0.915 | 0.76 | 0.92 | 0.85 |
Sb | 0.032 | 0.29 | 0.05 | 1.00 | Tm | 0.135 | 0.11 | 0.14 | 0.31 |
Cs | 0.123 | 0.20 | 0.12 | 1.10 | Yb | 0.868 | 0.68 | 0.99 | 1.00 |
Ba | 22.021 | 70.67 | 24.99 | 150.00 | Lu | 0.139 | 0.11 | 0.14 | 0.20 |
Sample | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | MnO | Na2O | K2O |
---|---|---|---|---|---|---|---|---|---|
Average for TAC | 48.23 | 1.065 | 14.3 | 12.665 | 7.0925 | 11.175 | 0.1825 | 2.635 | 0.495 |
Average for CI | 39.68 | 0.50 | 31.02 | 4.31 | 0.68 | 0.52 | 0.06 | 0.67 | 1.01 |
Average for Coal * | 8.06 | 0.18 | 4.91 | 1.61 | 0.20 | 1.65 | 0.02 | 0.09 | 0.11 |
Rocks | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coals | 0.18 | 0.18 | 0.21 | 0.26 | 0.35 | 0.43 | 0.44 | 0.39 | 0.41 | 0.38 | 0.37 | 0.37 | 0.38 | 0.38 | 0.40 |
CI | 0.68 | 0.61 | 0.56 | 0.58 | 0.64 | 0.54 | 0.62 | 0.43 | 0.43 | 0.37 | 0.39 | 0.44 | 0.52 | 0.55 | 0.63 |
Magmatic Rocks | 0.26 | 0.30 | 0.37 | 0.44 | 0.55 | 0.79 | 0.70 | 0.90 | 0.95 | 1.02 | 0.94 | 0.83 | 0.73 | 0.68 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopobayeva, A.; Amangeldikyzy, A.; Blyalova, G.; Askarova, N. Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin. Minerals 2024, 14, 349. https://doi.org/10.3390/min14040349
Kopobayeva A, Amangeldikyzy A, Blyalova G, Askarova N. Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin. Minerals. 2024; 14(4):349. https://doi.org/10.3390/min14040349
Chicago/Turabian StyleKopobayeva, Aiman, Altynay Amangeldikyzy, Gulim Blyalova, and Nazym Askarova. 2024. "Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin" Minerals 14, no. 4: 349. https://doi.org/10.3390/min14040349
APA StyleKopobayeva, A., Amangeldikyzy, A., Blyalova, G., & Askarova, N. (2024). Mineralogical and Geochemical Features of Coals and Clay Layers of the Karaganda Coal Basin. Minerals, 14(4), 349. https://doi.org/10.3390/min14040349