Geological and Geochemical Characteristics and Genesis of the Laoyingqing Zinc Deposit in Northeastern Yunnan
Abstract
:1. Introduction
2. Metallogenic Geological Background
3. Sampling and Testing Methods
3.1. Sample Collection
3.2. Analysis and Testing Methods
4. Test Results
4.1. Fluid Inclusions
4.1.1. Petrographic Characteristics of Fluid Inclusions
4.1.2. Temperature and Salinity Measurement Results of Fluid Inclusions
4.1.3. Laser Raman Spectroscopy of Fluid Inclusions
4.2. Trace Elements
- Relatively enriched in Co, Ga, Ge, Hg, Ni, Sb, Cu, and Sn, with content ranges of 49.6~93.2, 48.6~171, 38.7~85.2, 39.5~60.4, 4.83~15.2, 29.4~120, 376~2500, and 3.15~10.3, and an average of 78.51, 108.71, 61.2, 49.71, 8.16, 60.8, 904.29, and 7.10 (n = 7; unit: μg/g);
- The contents of Tl and Sr are extremely low and have a small range of variation. The maximum value of Tl in the samples is 0.07 μg/g, and the minimum value is less than the detection limit (0.01 μg/g, n = 7). The variation range of Sr is 0.91~2.16 μg/g, and the mean is 1.33 μg/g (n = 7).
4.3. Rare-Earth Elements
4.4. H–O Isotopes
5. Discussion
5.1. Properties of Ore-Forming Fluids
5.1.1. Fluid Density
5.1.2. Ore-Forming Pressure
5.1.3. Mineralization Depth
5.1.4. Comparison of Mineralization Temperatures
5.2. Trace Elements
Types of Pb-Zn Deposits | Cd/(10−6) | Mn/(10−6) | Cu/(10−6) | Ga/(10−6) | Ge/(10−6) | In/(10−6) | Sn/(10−6) | Ag/(10−6) | Cd/Mn |
---|---|---|---|---|---|---|---|---|---|
MVT | 1296~5023 [39] | 40.87~81.86 [39] | / | 8.29~54.2 [39] | >10 [40] | 0.45–1.55 [39] | 0.79~9.51 [39] | / | 26.52~122.90 [39] |
5333~12,260 [27] | 5.65~104.3 [27] | 19.78–118.1 [27] | 3.54~47.9 [27] | 4.59–102 [27] | / | 0.44~4.21 [27] | 0.19–11.2 [27] | 83.57~1573.98 [27] | |
Huize type | 894~4647 [36] | 7.1–300 [36] | 7.0~1188 [36] | 0.05–21.1 [36] | 1.4~107.5 [40] | 0.003~5.6 [36] | 0.07–27.4 [36] | 6.00~76.80 [36] | 13.45–155.56 [36] |
1053.97–3518.87 [20] | 0.46~20.82 [20] | 7.46~319.13 [20] | 0.12–65.16 [20] | 3.06~231.15 [20] | / | 0.06–22.32 [20] | 1.39–18.80 [20] | 60.82~4170.22 [20] | |
Magmatic hydrothermal type (medium to high temperature) | 2000~2400 [41] | 1940–4030 [41] | / | 310~530 [41] | / | 35~268 [41] | / | 159–179 [41] | 0.60~1.03 [41] |
Strata-bound type | 1342–3942 [42] | 48~888 [42] | / | 25~531 [42] | / | 2.60–19.40 [42] | / | / | 1.51~34.96 [42] |
969–21300 [43] | 48~888 [43] | / | 3.4~534 [43] | / | 0–19.4 [43] | 28.70–101 [43] | 17.10~164.5 [43] | 1.51~34.96 [43] | |
Volcanic rock type | 1950~3300 [44] | 300~1800 [44] | / | 7.70~83 [44] | / | 3–136.8 [44] | / | / | 1.83–11.33 [44] |
Magmatic hydrothermal type | 1086~3971 [42] | 2591~7528 [42] | / | 2.34~39.90 [42] | <5 [40] | 69~777 [42] | / | / | 0.14~0.73 [42] |
1826–2883 [45] | 1036–1895 [45] | 517–6506 [45] | 2.62–11.6 [45] | 0.065~0.341 [45] | 4.87–257 [45] | / | / | 1.09–2.37 [45] | |
Sedex type | 1162–3837 [39] | 6.90–149 [39] | / | 14.70~73.40 [39] | / | 0.05–1.17 [39] | 1.35–108 [39] | / | 20.97~254.93 [39] |
3465~9600 [46] | 1715–4152 [46] | 119~4852 [46] | 2.3–117 [46] | 0.18–15.1 [46] | 58–566 [46] | 2.23–185 [46] | 4.8~522 [46] | / |
5.3. Rare-Earth Elements
5.4. Source of Ore-Forming Fluids
5.5. Genesis and Metallogenic Model of Deposit
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, C.X.; Wei, S.S.; Guo, J.Y.; Li, C.Y. The source of metals in the Qilinchang Zn-Pb deposit, northeastern Yunnan, China: Pb-Sr isotope constrains. Econ. Geol. 2001, 96, 583–598. [Google Scholar] [CrossRef]
- Wang, J.Z.; Li, C.Y.; Li, Z.Q.; Li, B.H.; Liu, W.Z. The Comparison of Mississippi Valley-Type Pb-Zn Deposits in Southwest of China and in Mid-Continent of United States. Bull. Mineral. Petrol. Geochem. 2002, 21, 127–132. [Google Scholar]
- Zang, C.Q.; Mao, J.W.; Wu, S.P.; Li, H.M.; Liu, F.; Guo, J.K.; Gao, D.R. Distribution, characteristics, and genesis of Mississippi Valley-Type lead-zinc deposits in Sichuan-Yunnan-Guizhou area. Miner. Depos. 2005, 24, 336–348. [Google Scholar]
- Han, R.S.; Hu, Y.Z.; Wang, X.K.; Hou, B.H.; Huang, Z.L.; Chen, J.; Wang, F.; Wu, P.; Li, B.; Wang, H.J.; et al. Deposit model of germanium rich silver lead-zinc polymetallic ore cluster in northeastern Yunnan. J. Geol. 2012, 86, 280–294. [Google Scholar]
- Yang, X.X. Geological Characteristics and Prospecting Prospects of the Laoyingqing Zinc Deposit in Huize County, Yunnan. Yunnan Geol. 2015, 34, 86–89. [Google Scholar]
- Bian, S.T.; Zhu, H.G.; Yang, Y.Z. New horizons of zinc deposits in the Huangcaoling Formation of the Kunyang Group in Laoyingqing, Huize, Yunnan. Yunnan Geol. 2012, 30, 195–199. [Google Scholar]
- Gong, H.S.; Han, R.S.; Wu, P.; Chen, G.; Li, L.J. Constraints of S Pb Sr isotope compositions and Rb Sr isotopic age on the origin of the Laoyingqing noncarbonate-hosted Pb Zn deposit in the Kunyang Group, SW China. Geofluids 2021, 1–21. [Google Scholar] [CrossRef]
- Zhang, C.Q. Metallogenic model of Mississippi type (MVT) Pb-Zn deposits in the border area of Sichuan-Yunnan-Guizhou, China. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2008. [Google Scholar]
- Liu, H.C.; Lin, W.D. Research on the Regularity of Lead Zinc Silver Deposits in Northeast Yunnan, 1st ed.; Yunnan University Press: Kunming, China, 1999; pp. 1–468. [Google Scholar]
- Zhou, Y.; Duan, Q.F.; Cao, L.; Peng, S.G.; Gan, J.M. Preliminary study on the geochemical characteristics of rare earth elements in the Pb-Zn deposits in the Huayuan area of Hunan. Geol. Miner. Resour. South China 2017, 33, 282–292. [Google Scholar]
- Zhang, B.K.; Wen, H.L.; Wang, L.; Ma, S.F.; Gong, A.H. Determination of multiple elements in geological samples by closed pressure acid dissolution hydrochloric acid extraction inductively coupled plasma mass spectrometry. Rock Miner. Testing. 2011, 30, 737–744. [Google Scholar]
- Gong, B.; Zheng, Y.F.; Chen, R.X. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples. Rapid Commun. Mass Spectrom. 2007, 21, 1386–1392. [Google Scholar] [CrossRef]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silica for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Lu, H.Z.; Fan, H.R.; Ni, P.; Ou, G.X.; Shen, K.; Zhang, W.H. Fluid Inclusions, 1st ed.; Science Press: Beijing, China, 2004; pp. 200–210. [Google Scholar]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Liu, B.; Duan, G.X. Density and Isovolumetric Formulas of NaCl-H2O Solution Inclusions and Their Applications. J. Miner. 1987, 7, 345–352. [Google Scholar]
- Shao, J.L. Gold Prospecting and Mineralogy, 1st ed; China University of Geosciences Press: Wuhan, China, 1988; pp. 38–45. [Google Scholar]
- Jiang, D.X.; Mao, Q.G.; Liu, J.J.; Yu, M.J.; Wei, X.F. The characteristics and evolution of the Ore-forming fluids in the Xiaojianshan gold deposit, eastern Tianshan Mountains. Acta Geol. Sin. 2021, 95, 449–462. [Google Scholar]
- Zhai, Y.S.; Yao, S.Z.; Cai, K.Q. Mineral Deposits, 3rd ed.; Geological Publishing Press: Beijing, China, 2011; pp. 124–125. [Google Scholar]
- Han, R.S.; Zhang, Y.; Wang, F.; Wu, P.; Qiu, W.L.; Li, W.Y. Metallogenic Mechanism and Location Prediction of Germanium Rich Lead-zinc Deposits in the Northeastern Yunnan ore Concentration Area, 1st ed.; Science Press: Beijing, China, 2019; pp. 1–510. [Google Scholar]
- Gong, H.S.; Han, R.S.; Wu, P.; Ma, L.; Chen, G. Metallogenic model of the Jinniuchang Pb-Zn deposit in northeastern Yunnan: Evidence from fluid inclusions and H-O-S-Pb isotopes. Chin. J. Non Ferr. Met. 2022, 32, 3206–3226. [Google Scholar]
- Wu, Y. 2013. The Era and Mechanism of Large-Scale Mineralization of MVT Pb-Zn Deposits in the Sichuan-Yunnan-Guizhou region. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2013. [Google Scholar]
- Zhou, J.X.; Gao, J.G.; Chen, D.; Liu, X.K. Ore genes of the Tianbaoshan carbon hosted Pb-Zn deposit, Southwest China: Geological and iso topic (C-H-O-S-Pb) evidence Int. Geol. Rev. 2013, 55, 1300–1310. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Lv, Z.C.; Zhu, X.K.; Gao, J.G.; Mirnejad, H. Geology, isotope geology and ore genes of the Shanshulin carbon hosted Pb–Zn deposit, Southwest China. Ore Geol. Rev. 2014, 63, 209–225. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Bao, G.P. Geological and sulfur–lead–strontium isotopic studies of the Shaojiwan Pb–Zn deposit, southwest China: Implications for the origin of hydrothermal fluids. J. Geochem. Explor. 2013, 128, 51–61. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Zhou, M.F.; Li, X.B.; Jin, Z.G. Constraints of C-O-S-Pb isotope compositions and Rb Sr isotopic age on the origin of the Tianjin carbonhosted Pb-Zn deposit, SW China. Ore Geol. Rev. 2013, 53, 77–92. [Google Scholar] [CrossRef]
- Zhou, Y. Study on the Mineralization of MVT Type Lead-Zinc Deposits in the Huayuan Area of Western Hunan. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2017. [Google Scholar]
- Ye, L.; Wei, C.; Hu, Y.S.; Huang, Z.L.; Li, Z.L.; Yang, Y.L.; Wang, H.Y. Geochemistry and Resource Reserve Prospects of Germanium. Depos. Geol. 2019, 38, 711–728. [Google Scholar]
- Julien, B.; Region, M.R.; Anne Sylvier, A.M.; Jean, G.; Laurent, B. Germanium distribution in sphalerite from North-East America MVT Deposits: A Multiscale study. Acta Geogr. Sin. 2014, 88 (Suppl. S2), 437–439. [Google Scholar] [CrossRef]
- Zhu, C. Scattered Element Cd and Ge Isotope Geochemistry and its Application in Lead-Zinc Deposits in Sichuan Yunnan Guizhou Area. Ph.D. Thesis, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, 2014. [Google Scholar]
- Zhang, Y.X.; Zhu, C.W.; Fu, S.H.; Zhou, G.F.; Qin, Y.R.; Fan, H.F.; Wen, H.J. Study on the enrichment pattern of germanium in lead-zinc deposits in the Sichuan Yunnan Guizhou region. J. Minerals. 2012, 32, 60–64. [Google Scholar]
- Meng, Y.M. Research on Germanium Isotope in Ore Deposit Science: Taking Wulantuga Deposit in Inner Mongolia and Lead-zinc Deposits such as Huize in Yunnan as Examples. Ph.D. Thesis, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, 2014. [Google Scholar]
- Zhao, J.S.; Qiu, X.L.; Zhao, B.; Tu, X.L.; Yu, Y.; Lu, T.S. Rare earth element geochemical study of mineralized skarn rocks in Wuye, Daye. Geochemistry 2007, 36, 400–412. [Google Scholar]
- Guo, F.; Wang, Z.L.; Xu, D.R.; Yu, D.S.; Dong, G.J.; Ning, J.T.; Kang, B.; Peng, E.K. Trace element characteristics and ore-forming indicator significance of sphalerite in Lishan lead-zinc copper polymetallic deposit, Hunan. Geol. Front. 2020, 27, 66–81. [Google Scholar]
- Li, Y.G.; Zhu, C.W. Distribution characteristics and significance of major and trace elements in the ring-shaped sphalerite of the Huize lead-zinc deposit. J. Miner. 2020, 40, 765–771. [Google Scholar]
- Ye, L.; Cook, N.J.; Ciobanu, L.C.; Liu, Y.P.; Zhang, Q.; Liu, T.G.; Gao, W.; Yang, Y.L.; Danyushevskiy, L. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Han, R.S.; Chen, J.; Huang, Z.L.; Ma, D.Y.; Xue, C.D.; Li, Y.; Zou, J.H.; Li, B.; Hu, Y.Z.; Ma, G.S.; et al. Tectonic Metallogenic Dynamics and Location Prediction of Hidden Deposits—Taking the Huize Lead-Zinc (Silver, Germanium) Deposit in Yunnan as an Example, 1st ed.; Science Publishing House: Beijing, China, 2006; pp. 1–200. [Google Scholar]
- Kui, H.T.; Shao, Y.J.; Ye, Z.; Zhou, H.D. Geochemical characteristics of trace elements in sphalerite from the Huayuan lead-zinc ore field in western Hunan. J. Chengdu Univ. Technol. (Nat. Sci. Ed.) 2021, 48, 142–153. [Google Scholar]
- Li, H.M.; Wang, D.H.; Zhang, C.Q.; Chen, Y.C.; Li, L.X. Mineral trace element and rare earth element characteristics of several important lead-zinc deposits in Shaanxi. Depos. Geol. 2009, 28, 434–448. [Google Scholar]
- Han, Z.X. Typological characteristics of sphalerite in the Devonian lead-zinc mineralization belt of the Qinling Mountains. J. Xi’an Univ. Eng. 1994, 16, 12–17. [Google Scholar]
- Xie, W.A. Typological characteristics and geological significance of sphalerite in layered and magmatic lead-zinc deposits in Hunan. Geochemistry 1982, 9, 55–58. [Google Scholar]
- Zeng, Y.C.; Huang, S.J.; Jia, G.X.; Chen, Y.R. Characteristic elements and geological significance of certain metal minerals in magmatic hydrothermal and stratabound lead-zinc deposits. Geol. Explor. 1985, 21, 28–33. [Google Scholar]
- Li, H. Characteristics and geological significance of impurity elements in sphalerite. Geol. Explor. 1986, 22, 42–46. [Google Scholar]
- Zhang, Q. Differentiation of genetic types of lead-zinc deposits using trace element diagrams of galena and sphalerite. Geology Geochemistr. 1987, 6, 64–66. [Google Scholar]
- Cheng, Z.F. Preliminary Study on Lead-Zinc Isotopes and Trace Elements of Sphalerite in Magmatic Hydrothermal Deposits. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2015. [Google Scholar]
- Ye, L.; Gao, W.; Yang, Y.L.; Liu, T.G.; Peng, S.S. Trace element composition of sphalerite from the Laochang lead-zinc polymetallic deposit in Lancang, Yunnan. Acta Petrol. Sin. 2012, 28, 1362–1372. [Google Scholar]
- Luders, V.; Mller, P.; Dulskl, P. REE segmentation in carbonates and fluoride. Monogr. Ser. Miner. Depos. 1993, 30, 133–150. [Google Scholar]
- Liu, S.W.; Shi, S.; Li, R.X.; Gao, Y.B.; Liu, L.F.; Duan, L.Z.; Chen, B.Q.; Zhang, S.N. Rare earth element geochemical study of the Mayuan lead-zinc deposit on the northern margin of the Yangtze Plate. Depos. Geol. 2013, 32, 979–988. [Google Scholar]
- Liang, F.; Bi, X.W.; Feng, C.X.; Tang, Y.Y.; Wei, D.X.; Dai, Z.Z. Chemical characteristics of carbonate minerals in the Fule lead-zinc deposit in Yunnan and their indications for mineralization. Acta Petrol. Sin. 2016, 32, 3418–3430. [Google Scholar]
- Zhou, J.X.; Huang, Z.L.; Zhou, G.F.; Zeng, Q.S. C, O isotopes and REE geochemistry of hydrothermal calcite from the Tianqiao lead-zinc deposit in northwestern Guizhou. Geotecton. Miner. 2012, 36, 93–101. [Google Scholar]
- Zhang, M.F. Discussion on the Fluid Mineralization Mechanism of the Huize Lead-Zinc Deposit in Yunnan. Master’s Thesis, China University of Geosciences (Wuhan), Wuhan, China, 2016. [Google Scholar]
- Wang, H. Study on the Mineralization of MVT Lead Zinc Deposits in the Lianghui Area of Sichuan Province—Taking the Daliangzi and Tianbaoshan Lead Zinc Deposits as Examples. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2019. [Google Scholar]
- Fu, S.H. Lead-Zinc Mineralization and Enrichment Patterns of Dispersed Elements Cadmium, Gallium, and Germanium in the Southwestern Margin of the Yangtze Block. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2004. [Google Scholar]
- Huang, Z.L.; Chen, J.; Han, R.S.; Li, W.B.; Liu, C.Q.; Zhang, Z.L.; Ma, D.Y.; Gao, D.R.; Yang, H.L. Geochemistry and Genesis of the Huize Super Large Lead-Zinc Deposit in Yunnan, with a Discussion on the Relationship between Emeishan Basalt and Lead-Zinc Mineralization; Geological Publishing House: Beijing, China, 2004; pp. 1–145. [Google Scholar]
- Tu, S.Y. Metallographic Characteristics and Significance of the Tianbaoshan Lead-Zinc Deposit in Huili, Sichuan. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2014. [Google Scholar]
- Boynton, W.V. Cosochemistry of the ray earth elements: Meteorite studies. In Rare Earth Element Geochemistry: Development in Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Yang, F.Q.; Mao, J.W.; Xu, L.G.; Zhang, Y.; Liu, F.; Huang, C.L.; Zhou, G.; Liu, G.R.; Dai, J.Z. Rare earth element geochemistry of the Mengku iron deposit in Xinjiang and its indications for iron mineralization. Acta Sin. Sin. 2007, 23, 2443–2456. [Google Scholar]
- Bau, M.; Dulski, P. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet. Sci. Lett. 1996, 143, 245–255. [Google Scholar] [CrossRef]
- Li, W.B.; Huang, Z.L.; Zhang, G. Source of ore-forming materials in the Huize lead-zinc ore field, Yunnan: Pb-S-C-H-O-Sr isotope constraints. Acta Petrol. Sinica. 2006, 22, 2567–2580. [Google Scholar]
- Guo, X. Mineralization and Metallogenic Laws of Lead Zinc Deposits in Northeast Yunnan. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2011. [Google Scholar]
- Wang, X.C. Genetic analysis of the Tianbaoshan lead-zinc deposit. J. Chengdu Univ. Geol. 1992, 19, 10–20. [Google Scholar]
- Que, M.Y.; Luo, A.P.; Zhang, L.S.; Qiu, D.M.; Zhu, T.X.; Zheng, Z.S.; Shi, W.Y.; Yang, X.K. Stratified Lead-Zinc Deposits in the Upper Sinian to Lower Cambrian Strata in Northeastern Yunnan, 1st ed.; Chengdu University of Science and Technology Press: Chengdu, China, 1993; pp. 1–169. [Google Scholar]
- Yang, Y.X.; Ke, C.X.; Lin, F.C.; Li, Z.X.; Guan, S.P. Genesis and Metallogenic Laws of Lead Zinc Deposits in the Eastern Margin of the Kangdian Axis, 1st ed.; Sichuan Science and Technology Press: Chengdu, China, 1994; pp. 1–175. [Google Scholar]
- Han, R.S.; Zou, H.J.; Hu, B.; Hu, Y.Z.; Xue, C.D. Characteristics of fluid inclusions and sources of ore-forming fluids in the Maoping lead-zinc (silver, germanium) deposit, Yunnan. J. Rock Sci. 2007, 23, 2109–2118. [Google Scholar]
- Kesler, S.E.; Vennemann, T.W.; Frederickson, C.; Breithaupt, A.; Vazquez, R.; Furman, F.C. Hydrogen and oxygen isotope evidence for origin of MVT-forming bricks, southern Appalachians. Geochim. Cosmochem. Acta 1997, 61, 1513–1523. [Google Scholar] [CrossRef]
- Zhuang, L.L. Types and Genesis of Ore-Controlling Breccia in the Angouran Super Large Pb-Zn Deposit in Iran. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2019. [Google Scholar]
- Li, Z.D. Research on Two Important Types of Lead-Zinc Deposits in the Sedimentary Environment of the South Tianshan Basin in Xinjiang. Master’s Thesis, China University of Geosciences, Beijing, China, 2011. [Google Scholar]
- Charef, A.; Sheppard, S.M.F. Pb-Zn mineralization associated with diabetes: Fluid inclusion and stable isotope (H, C, O) evidence for the origin and evolution of the fluids at Fedjel Adoum, Tunisia. Chem. Geol. 1987, 61, 113–134. [Google Scholar] [CrossRef]
Sample Number | LYQ-1 | LYQ-2 | LYQ-3 | LYQ-5 | LYQ-6 | LYQ-7 | LYQ-8 |
---|---|---|---|---|---|---|---|
Mineral | Sphalerite | Sphalerite | Sphalerite | Sphalerite | Sphalerite | Sphalerite | Sphalerite |
Cu | 801 | 671 | 564 | 716 | 376 | 702 | 2500 |
Pb | 914 | 24 | 12 | 300 | 11.2 | 15.8 | 72.8 |
Ni | 9.98 | 15.2 | 7.05 | 6.34 | 7.18 | 6.52 | 4.83 |
Co | 91 | 79.1 | 81.3 | 49.6 | 93.2 | 83.6 | 71.8 |
Cd | 2140 | 1530 | 1680 | 1570 | 1700 | 1760 | 1510 |
Li | 0.26 | 0.05 | 0.015 | <0.01 | 0.024 | <0.01 | <0.01 |
Rb | 1.3 | 1.55 | 1.26 | 1.14 | 0.69 | 0.58 | 0.9 |
W | 0.082 | 0.17 | 0.12 | 0.082 | 0.26 | 0.24 | 0.033 |
Mo | 0.23 | 0.12 | 0.019 | 2.51 | 0.022 | 0.036 | 0.073 |
As | 5.1 | 2 | 4.93 | 3.03 | 3.74 | 5.43 | 1.83 |
Sb | 76.1 | 35 | 78 | 120 | 29.4 | 101 | 36.5 |
Hg | 60.4 | 39.5 | 51.9 | 60.4 | 43.3 | 49.5 | 43 |
Sr | 2.16 | 1.25 | 1.14 | 1.82 | 1.02 | 0.91 | 1.04 |
Sc | 0.44 | 0.54 | 0.58 | 0.69 | 0.44 | 0.36 | 0.32 |
Nb | 0.17 | <0.05 | 0.05 | 0.053 | <0.05 | <0.05 | 0.26 |
Zr | 1.11 | 0.69 | 0.83 | 0.63 | 0.79 | 0.4 | 0.54 |
Hf | 0.036 | 0.022 | 0.018 | 0.016 | 0.019 | 0.012 | 0.017 |
Ga | 78.6 | 110 | 152 | 48.6 | 106 | 171 | 94.8 |
Sn | 4.82 | 6.85 | 9.58 | 3.15 | 6.38 | 10.3 | 8.64 |
Ge | 38.7 | 64.6 | 68.7 | 53 | 61.2 | 85.2 | 57 |
Tl | 0.07 | 0.028 | 0.02 | 0.026 | 0.02 | 0.013 | <0.01 |
Ag | 3.71 | 3.08 | 2.3 | 5.05 | 2.3 | 3.16 | 2.64 |
U | 0.022 | 0.1 | 0.011 | 0.016 | <0.01 | <0.01 | <0.01 |
Th | 0.12 | 0.12 | 0.12 | 0.13 | 0.058 | 0.044 | 0.092 |
Ti | 732 | 7.88 | 40.8 | 9.7 | 8.59 | 7.17 | 141 |
Mn | 18.1 | 20.3 | 16.4 | 38.2 | 19 | 13.4 | 22 |
Cr | 5.14 | 5.23 | 5.76 | 5.99 | 3.44 | 3.43 | 2.77 |
Ba | 3.03 | 3.64 | 3.57 | 3.71 | 8.68 | 5.95 | 1.95 |
Sample Number | LY-13-1 | LY-13-2 | LY-2-1 | LY-1-1 | LY-4 | LYQ-1 | LYQ-2 | LYQ-3 | LYQ-5 | LYQ-6 | LYQ-7 |
---|---|---|---|---|---|---|---|---|---|---|---|
Mineral | Tectonic Breccia | Dolomite | Dolomite | Slate | Carbonaceous Slate | Sphalerite | Sphalerite | Sphalerite | Sphalerite | Sphalerite | Sphalerite |
La | 51.339 | 39.965 | 40.072 | 41.451 | 45.744 | 0.108 | 0.067 | 0.064 | 0.062 | 0.043 | 0.054 |
Ce | 103.846 | 78.935 | 78.835 | 82.01 | 90.21 | 0.183 | 0.112 | 0.119 | 0.099 | 0.085 | 0.102 |
Pr | 12.455 | 9.556 | 9.588 | 9.757 | 10.883 | 0.02 | 0.012 | 0.011 | 0.009 | 0.008 | 0.009 |
Nd | 43.427 | 33.084 | 33.152 | 33.834 | 37.814 | 0.08 | 0.039 | 0.041 | 0.029 | 0.032 | 0.032 |
Sm | 8.193 | 6.228 | 6.198 | 6.141 | 6.939 | 0.015 | 0.007 | 0.008 | 0.006 | 0.006 | 0.004 |
Eu | 1.651 | 1.367 | 1.333 | 1.345 | 1.557 | 0.004 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 |
Gd | 7.199 | 5.711 | 5.642 | 5.53 | 6.435 | 0.014 | 0.008 | 0.006 | 0.005 | 0.006 | 0.007 |
Tb | 1.028 | 0.829 | 0.796 | 0.77 | 0.932 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Dy | 5.046 | 4.166 | 3.914 | 3.791 | 4.658 | 0.014 | 0.008 | 0.007 | 0.009 | 0.006 | 0.007 |
Ho | 1.057 | 0.84 | 0.783 | 0.73 | 0.919 | 0.003 | 0.003 | 0.002 | 0.002 | 0.001 | 0.002 |
Er | 3.203 | 2.573 | 2.399 | 2.296 | 2.869 | 0.009 | 0.005 | 0.005 | 0.006 | 0.004 | 0.006 |
Tm | 0.501 | 0.392 | 0.363 | 0.344 | 0.44 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Yb | 3.078 | 2.373 | 2.256 | 2.217 | 2.703 | 0.008 | 0.006 | 0.006 | 0.006 | 0.004 | 0.004 |
Lu | 0.522 | 0.415 | 0.395 | 0.375 | 0.451 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Y | 31.399 | 27.782 | 28.094 | 28.083 | 28.239 | 0.113 | 0.061 | 0.052 | 0.049 | 0.039 | 0.044 |
ΣREE | 242.54 | 186.43 | 185.73 | 190.59 | 212.56 | 0.46 | 0.27 | 0.28 | 0.24 | 0.2 | 0.23 |
LREE/HREE | 10.21 | 9.78 | 10.22 | 10.87 | 9.95 | 7.63 | 7.48 | 8.28 | 6.71 | 7.22 | 6.99 |
δEu | 0.64 | 0.69 | 0.68 | 0.69 | 0.7 | 0.85 | 1.36 | 0.85 | 1.2 | 0.95 | 1.16 |
δCe | 0.96 | 0.94 | 0.94 | 0.95 | 0.94 | 0.89 | 0.89 | 0.97 | 0.91 | 1.03 | 1.01 |
(La/Yb)N | 11.25 | 11.36 | 11.98 | 12.6 | 11.41 | 9.3 | 7.71 | 7.32 | 7.42 | 7.29 | 9.51 |
(La/Sm)N | 3.94 | 4.04 | 4.07 | 4.25 | 4.15 | 4.43 | 5.92 | 4.78 | 6.92 | 4.68 | 7.99 |
(Gd/Yb)N | 1.89 | 1.94 | 2.02 | 2.01 | 1.92 | 1.43 | 1.1 | 0.86 | 0.74 | 1.17 | 1.52 |
Sample Number | Analysis Object | δ D‰ | δ 18OV-SMOW ‰ | δ18Owater‰ |
---|---|---|---|---|
LYQ-1-3 | quartz | −93.9 | 17.61 | 6.40 |
LYQ-2-3 | quartz | −82.5 | 16.28 | 5.07 |
LYQ-3-3 | quartz | −80.0 | 16.35 | 5.14 |
LYQ-4-3 | quartz | −82.9 | 18.10 | 6.89 |
LYQ-5-3 | quartz | −73.2 | 18.07 | 6.86 |
LYQ-6-3 | quartz | −70.9 | 16.00 | 4.79 |
LYQ-7-3 | quartz | −79.5 | 16.32 | 5.11 |
LYQ-8-3 | quartz | −75.0 | 16.64 | 5.43 |
Mining Area | Temperature | Salinity | Source |
---|---|---|---|
Huize | 164–355 °C | 6–18 wt% NaCleq | [4,20] |
Maoping | 123–206 °C | 6.7–13.8 wt% NaCleq | [20] |
Maozu | 153–248 °C | 2.8–5.3 wt% NaCleq | [20] |
Le Hong | 165–229 °C | 11.3–14.5 wt% NaCleq | [20] |
Jinniuchang | 165–274 °C | 6.5–14.0 wt% NaCleq | [21] |
Daliangzi | 121–263 °C | 3.87–14.04 wt% NaCleq | [22] |
Tianbao Mountain | 157–267 °C | 12.4–20 wt% NaCleq | [23] |
Chipu | 130–250 °C | 8.5–17 wt% NaCleq | [22] |
Shanshulin | 150–280 °C | <15 wt% NaCleq | [24] |
Shaojiwan | 115–170 °C | 0.9–17.5 wt% NaCleq | [25] |
Tianqiao | 150–240 °C | 10 wt% NaCleq | [26] |
Tuanjie (typical MVT Pb-Zn deposit in Huayuan, western Hunan) | 110–317 °C | 7.86–21.20 wt% NaCleq | [27] |
Laoyingqing | 130–306.5 °C | 7.17–20.67 wt% NaCleq | this paper |
Mining Area | Huize | Daliangzi | Tianbao Mountain | Laoyingqing |
---|---|---|---|---|
mineral | sphalerite | sphalerite | sphalerite | sphalerite |
ΣREE (μg/g) | 1.6 | 4.68~5.61 | 4.54 | 0.28 |
LREE/HREE | 30.31 | 5.00~5.27 | 3.89 | 7.39 |
δ Eu | 0.53 | 0.84~0.96 | 0.55 | 1.06 |
δ Ce | 1.1 | 0.74~0.78 | 0.99 | 0.95 |
(La/Yb)N | 430.7 | 8.02~10.35 | 3.16 | 8.09 |
(La/SM)N | 1.85 | 1.20~1.32 | 1.2 | 5.79 |
(Gd/Yb)N | 113.08 | 5.25~7.90 | 2.16 | 1.14 |
literature sources | [53] | [53] | [53] | this paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Gong, H.; Wu, P.; Zhang, C. Geological and Geochemical Characteristics and Genesis of the Laoyingqing Zinc Deposit in Northeastern Yunnan. Minerals 2024, 14, 6. https://doi.org/10.3390/min14010006
Lu J, Gong H, Wu P, Zhang C. Geological and Geochemical Characteristics and Genesis of the Laoyingqing Zinc Deposit in Northeastern Yunnan. Minerals. 2024; 14(1):6. https://doi.org/10.3390/min14010006
Chicago/Turabian StyleLu, Jinhang, Hongsheng Gong, Peng Wu, and Changqing Zhang. 2024. "Geological and Geochemical Characteristics and Genesis of the Laoyingqing Zinc Deposit in Northeastern Yunnan" Minerals 14, no. 1: 6. https://doi.org/10.3390/min14010006
APA StyleLu, J., Gong, H., Wu, P., & Zhang, C. (2024). Geological and Geochemical Characteristics and Genesis of the Laoyingqing Zinc Deposit in Northeastern Yunnan. Minerals, 14(1), 6. https://doi.org/10.3390/min14010006