Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in the Mosuoying Granite, Panxi Area, Southwest China
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analytical Methods
3.1. Profile Characteristics and Sampling Strategy
3.2. Analytical Methods
4. Results
4.1. Mineral Composition
4.2. Major Elements
4.3. Trace Elements
4.4. Rees in Whole-Rock
5. Discussion
5.1. Element Distrubution Characteristics
5.2. Bedrock Controls Mineralization
5.3. Migration and Enrichment Patterns of Elements
6. Conclusions
- (1)
- The deposit type is characterized by a distribution of light rare earth elements, with the fully weathered layer serving as the primary ore-bearing horizon. The vertical distribution of REEs exhibits a pattern of “low-high-low”.
- (2)
- The REE characteristics in the weathered crust are controlled by the parent rock. Magmatic differentiation does not affect the REE content of the parent rock, while hydrothermal alteration reduces the overall REE content and increases the LREE/HREE ratio, which is unfavorable for mineralization, especially HREE mineralization.
- (3)
- The migration characteristics of elements indicate that the distribution of major elements in the weathering crust is influenced by the properties of the elements themselves and the surrounding environment, while rare earth elements exhibit regular migration patterns. From the semi-weathered layer to the completely weathered layer, all rare earth elements were gained, while from the completely weathered layer to the clay layer, all rare earth elements were lost.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanematsu, K.; Watanabe, Y. Characteristics and genesis of ion adsorption-type rare earth element deposits. Rev. Econ. Geol. 2016, 18, 55–79. [Google Scholar]
- Foley, N.; Ayuso, R.; Hubbard, B.; Bern, C.; Shah, A. Geochemical and Mineralogical Characteristics of REE in Granite-Derived Regolith of the Southeastern United States. Miner. Resour. A Sustain. World 2015, S1–S5, 725–728. [Google Scholar]
- Yang, B.Q.; Zhang, X.P. Analysis of Global Rare Earth Production and Consumption Structure. Chin. Rare Earth. 2014, 35, 110–118. [Google Scholar]
- Riesgo García, M.V.; Krzemień, A.; Manzanedo del Campo, M.Á.; Álvarez, M.M.; Gent, M.R. Rare earth elements mining investment: It is not all about China. Resour. Pol. 2017, 53, 66–76. [Google Scholar] [CrossRef]
- Padrones, J.T.; Imai, A.; Takahashi, R. Geochemical behavior of rare earth elements in weathered granitic rocks in Northern Palawan, Philippines. Resour. Geol. 2017, 67, 231–253. [Google Scholar] [CrossRef]
- Ci, R.A.; Wang, D.Z. Rare Earth Beneficiation and Extraction Technology; Science Press: Beijing, China, 1996. [Google Scholar]
- Zhang, W.; Chen, W.; Mernagh, T.P.; Zhou, L. Quantifying the nature of ore-forming fluids in the Dalucao carbonatite-related REE deposit, Southwest China: Implication for the transport and deposition of REEs. Miner. Depos. 2022, 57, 935–953. [Google Scholar] [CrossRef]
- Weng, Q.; Yang, W.B.; Niu, H.C.; Li, N.B.; Roger, H.M.; Zurevinski, S.; Wu, D. Formation of the Maoniuping giant REE deposit: Constraints from mineralogy and in situ bastnäsite U-Pb geochronology. Am. Mineral. 2022, 107, 282–293. [Google Scholar] [CrossRef]
- Chen, C.J.; Deng, Z.X.; Wu, Q.H.; Yan, L.J.; She, Z.M.; Yan, Z.A. Metallogenic Conditions and Ore—Search Prospect of the Xinpaoshan Ion-Adsorption Type Rare-Earth Deposit in the Yingjiang Area, Western Yunnan. Geol. Explor. 2021, 57, 751–761. [Google Scholar]
- Fan, G.Q.; Qin, Y.L.; Zhan, H.Y.; Xiong, C.L.; Chen, D.Y.; Huang, S.F.; Peng, Y. Metallization regularity and prospecting target area in Panzhihua—Xichang area of Sichuan Province. Chin. Geol. Sur. 2022, 9, 23–31. [Google Scholar]
- Luo, X.Y. Metallogenic conditions and formation mechanism of ion adsorption rare earth deposits in Hunan Province. Acta Mineral. Sin. 2011, A1, 332–333. [Google Scholar]
- Liu, B.; Long, G.Y.; Fu, Y.R.; Yun, P. Metallogenic regularity and new exploration finding of the ion-adsorption type REE deposits in Hainan Island. Miner. Resour. Geol. 2017, 31, 300–305. [Google Scholar]
- 17 newly discovered ion adsorption type light rare earth mineralization sites in Anhui Province. Rare Earth Inf. 2018, 3, 18.
- Zhao, Z.; Wang, D.H.; Wang, C.H.; Wang, Z.; Zou, X.Y.; Feng, W.J.; Zhou, H.; Huang, X.P.; Huang, H.G. Progress in prospecting and research of ion-adsorption type REE deposits. Acta Geosci. Sinica. 2019, 93, 1454–1465. [Google Scholar]
- Xia, X.H.; Liu, T.Q.; Yin, C.; Duan, L.; Yang, W.; Tan, H.Q.; Zhou, J.Y.; Wang, C.H. First discovery of ion adsorption-type (medium—Heavy) REE depositin the Panzhihua—Xichang area, Sichuan Province, and its significance. Geol. Rev. 2022, 68, 1540–1543. [Google Scholar]
- Zou, J.Z.; Nie, F.; Guo, J.C. New discovery of ion-absorption type REE mineral occurrence in the Mianning-Dechang area, Sichuan Province. Geol. China. 2023, 50, 648–649. [Google Scholar]
- Xia, X.H.; Liu, T.Q.; Yin, C.; Duan, L.; Yang, W.; Wang, C.; Li, N.; Wang, C.H.; Tan, H.Q. Geological characteristics and metallogenic factors of the Kuanyu ion adsorption REE deposit in the Panzhihua-Xichang district, Sichuan Province, SW China. Geol. China. 2021. Available online: https://kns.cnki.net/kcms/detail/11.1167.P.20210809.002.html (accessed on 22 September 2023).
- Hou, Z.Q.; Tian, S.H.; Xie, Y.L. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China. Ore Geol. Rev. 2009, 36, 65–89. [Google Scholar] [CrossRef]
- Mabi, A.W.; Yang, Z.X.; Zhang, M.C.; Wen, D.K.; Li, Y.L.; Liu, X.Y. Two Types of Granites in the Western Yangtze Block and Their Implications for Regional Tectonic Evolution: Constraints from Geochemistry and Isotopic Data. Acta Geosci. Sinica. 2018, 92, 89–105. [Google Scholar] [CrossRef]
- Guo, C.L.; Wang, D.H.; Chen, Y.C.; Zhao, Z.G.; Wang, Y.B.; Fu, X.F.; Fu, D.M. SHRIMP U-Pb zircon ages and major element, trace element and Nd-Sr isotope geochemical studies of a Neoproterozoic granitic complex in western Sichuan: Petrogenesis and significance. Acta Petro. Sin. 2007, 23, 2457–2470. [Google Scholar]
- Li, Y.H.M.; Zhao, W.W.; Zhou, M.F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. J. Asian Earth Sci. 2017, 148, 65–95. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Ma, H.W.; Zaw, K.; Zhang, Y.Q.; Wang, M.J.; Wang, Z.; Pan, G.T. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet. Econ. Geol. 2003, 98, 125–145. [Google Scholar]
- Zhou, M.F.; Li, X.X.; Wang, Z.C.; Li, X.C.; Liu, J.C. The genesis of regolith-hosted rare earth element and scandium deposits: Current understanding and outlook to future prospecting. Chin. Sci. Bull. 2020, 65, 3809–3824. [Google Scholar] [CrossRef]
- Lu, L.; Liu, Y.; Liu, H.C.; Zhao, Z.; Wang, C.H.; Xu, X.C. Geochemical and Geochronological Constraints on the Genesis of Ion-Adsorption-Type REE Mineralization in the Lincang Pluton, SW China. Minerals 2020, 10, 1116. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.B.; Huizenga, J.M.; Yan, S.; Yang, Y.Y.; Niu, H.C. Rare earth element enrichment in the ion-adsorption deposits associated granites at Mesozoic extensional tectonic setting in South China. Ore Geol. Rev. 2021, 137, 104317. [Google Scholar] [CrossRef]
- Eric, A.K. Middlemost. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar]
- Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Bai, G.; Wu, C.Y.; Ding, X.S.; Yuan, Z.X.; Huang, D.H.; Wang, P.H. Forming Conditions and Distribution Regularity of Ionic Rare Earth Deposits in the Nanling Area; Institute of Deposit Geology, Ministry of Geology and Mineral Resources: Beijing, China, 1989; pp. 1–105. [Google Scholar]
- Bao, Z.W.; Zhao, Z.H. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Huang, Z.G.; Zhang, W.Q.; Chen, J.H.; Liu, R.H. Red Weathering Crust in Southern China; China Ocean Press: Beijing, China, 1996. [Google Scholar]
- Adi, M.; Kotaro, Y.; Koichiro, W. Geochemistry of Rare Earth Elements(REE) in theWeathered Crusts from the Granitic Rocks in Sulawesi Island, Indonesia. J. Earth Sci. 2014, 25, 460–472. [Google Scholar]
- Schwarz, T. Distribution and genesis of bauxite on the Mambilla Plateau. SE Nigeria. Appl. Geochem. 1997, 12, 119–131. [Google Scholar] [CrossRef]
- Xie, M.J.; Zhou, J.; Wang, X.Q.; Qi, F.Y.; Zhang, B.M.; Wu, H.; Liu, D.S.; Liu, Y.H.; Liu, F.T. Research of Elements′ Migration and Enrichment Characteristics of Ion-adsorption Type REE Deposits in Southern Jiangxi Province. J. Chin. Rare Earth Soc. 2022, 40, 697–710. [Google Scholar]
- San, F.X.; Ling, W.L.; Hu, Y.H.; Xie, S.Y. Element and Sr-Nd isotopic geochemistry profiles of weathered dioritic rocks in the eastern Three Gorges and its implication. Geochemica 2013, 42, 430–446. [Google Scholar]
- Cao, W.J.; Ji, H.B.; Zhu, X.F.; Zhao, X.Y.; Qiao, M.M. Contrast of geochemical features of typical weathered profiles in Guizhou Plateau. Carsologica Sin. 2012, 31, 131–138. [Google Scholar]
- Zhao, Z.; Wang, D.H.; Chen, Z.Y.; Guo, N.X.; Liu, X.X.; He, H.H. Metallogenic Specialization of Rare Earth Mineralized Igneous Rocks in the Eastern Nanling Region. Geotecton. Metallog. 2014, 38, 255–263. [Google Scholar]
- Wang, D.H.; Zhao, Z.; Yu, Y.; Wang, C.H.; Dai, J.J.; Sun, Y.; Zhao, T.; Li, J.K.; Huang, F.; Chen, Z.L.; et al. A Review of the Achievements in the Survey and Study of Ion-absorption Type REE Deposits in China. Acta Geosci. Sin. 2017, 38, 317–325. [Google Scholar]
- Ming, T.X.; Xue, G.; Tang, Z.; Yang, Q.B.; Li, X.M.; Bai, Y.; Su, X.Y. Distribution Characteristics and Geological Significance of R are Earth Oxides in Weathered Crust of Pinghe Granite, Western Yunnan. J. Chin. Rare Earth Soc. 2021, 39, 644–652. [Google Scholar]
- Fu, W.; Zhao, Q.; Luo, P.; Li, P.Q.; Lu, J.P.; Zhou, H.; Yi, Z.B.; Xu, C. Mineralization diversity of ion-adsorption type REE deposit in southern China and the critical influence of parent rocks. Acta Geosci. Sin. 2022, 96, 3901–3925. [Google Scholar]
- Zhang, L.; Wu, K.X.; Chen, L.K.; Zhu, P.; Ouyang, H. Overview of Metallogenic Features of Ion-adsorption Type REE Deposits in Southern Jiangxi Province. J. Chin. Soc. Rare Earths 2015, 33, 10–17. [Google Scholar]
- Yang, R.Y.; Huang, Z.X.; Lu, D.F. Trace element geochemistry of granite in the Panxi region. Sci. Sin. Chim. 1988, 2, 183–192. [Google Scholar]
- Yang, X.M.; Zhang, P.S. Geochemical characteristics and petrogenetic significance of rare earth elements in the Guposhan granite complex. J. Chin. Rare Earth Soc. 1991, 1, 70–75. [Google Scholar]
- Hanson, G.N. Rare earth elements in petrogenetic studies of igneous systems. Ann. Rev. Earth Planet. Sci. 1980, 8, 371–406. [Google Scholar] [CrossRef]
- Wang, J.M.; Ding, C.G. The negative Eu anomaly of feldspar in Suzhou A-type granite and its origin significance. Rock. Miner. Anal. 1995, 11, 108–112. [Google Scholar]
- Lu, L.; Wang, C.H.; Wang, D.H.; He, G.W.; Sun, Y. Constrains on metallogenic mechanism of ion-adsorption type REE deposit from mineralogy, geochemistry and chronology of Banggunjianshan granite, Yunnan Province. Acta Geol. Sin. 2023, 97, 1494–1507. [Google Scholar]
- Ci, R.A.; Tian, J. Weathering Crust Leaching Type Rare Earth Ore Chemical Metallurgy; Science Press: Beijing, China, 2006. [Google Scholar]
- Fu, W.; Li, X.T.; Feng, Y.Y.; Feng, M.; Peng, Z.; Yu, H.X.; Lin, H. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology. Chem. Geol. 2019, 520, 33–51. [Google Scholar] [CrossRef]
- Xu, C.; Kynicky, J.; Smith, M.P.; Kopriva, A.; Brtnicky, M.; Urubek, T.; Yang, Y.H.; Zhao, Z.; He, C.; Song, W.L. Origin of heavy rare earth mineralization in South China. Nat. Commun. 2017, 8, 14598. [Google Scholar] [CrossRef]
- Bern, C.R.; Yesavage, T.; Foley, N.K. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration. J. Geochem. Explor. 2017, 172, 29–40. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.F.; Williams-Jones, A.E. The genesis of regolith-hosted heavy rare earth element deposits: Insights from the world-class Zudong deposit in Jiangxi Province, South China. Econ. Geol. 2019, 114, 541–568. [Google Scholar] [CrossRef]
- Huang, Y.F.; Tan, W.; Bao, Z.W.; He, H.P.; Liang, X.L.; Huang, J.; Wang, H. Constraints of parent rock on the formation of ion adsorption HREE deposit in the weathering crust of the Shangyou graint batholith. Geotecton. Metallog. 2022, 46, 303–317. [Google Scholar]
- Gresens, R.L. Composition-volume relationships of metasomatism. Chem. Geol. 1967, 2, 47–55. [Google Scholar] [CrossRef]
- Nesbitt, H.W. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature. 1979, 279, 206–210. [Google Scholar] [CrossRef]
- George, H.B.; William, E.D. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochim. Cosmochim. Acta 1987, 51, 567–587. [Google Scholar]
- Grant, J.A. The Isocon diagram. A simple solution to Gresens’ equation for metasomatic alteration. Econ. Geol. 1986, 81, 1976–1982. [Google Scholar] [CrossRef]
- Guo, S.; Ye, K.; Chen, Y.; Liu, J.B. A normalization solution to mass transfer illustration of multiple progressively altered samples using the isocon diagram. Econ. Geol. 2009, 104, 881–886. [Google Scholar] [CrossRef]
- Guo, S.; Ye, K.; Chen, Y.; Liu, J.B.; Zhang, L.M. Introduction of mass-balance calculation method for component transfer during the opening of a geological system. Acta Petro. Sin. 2013, 29, 1486–1498. [Google Scholar]
- Zhang, B.; Zhu, X.P.; Zhang, B.H.; Gao, R.D.; Zeng, Z.J.; Ma, G.T. Geochemical Characteristics of Tuguanzhai Ion-Adsorption Type REE Deposit in Tengchong, Yunnan. J. Chin. Rare Earth Soc. 2019, 37, 491–506. [Google Scholar]
- Li, M.; Zhou, M.F. The role of clay minerals in forming the regolith-hosted heavy rare earth element deposits. Am. Mineral. 2020, 105, 92–108. [Google Scholar] [CrossRef]
- Zhou, J.M.; Yuan, P.; Yu, L.; Liu, X.Y.; Zhang, B.F.; Fan, W.X.; Liu, D. Mineralogical characteristics of fine particles of the tuff weathering crust from the Bachi rare earth element (REE) deposit. Acta Mineral. Sin. 2018, 38, 420–428. [Google Scholar]
- Wu, P.Q.; Zhou, J.W.; Huang, J.; Lin, X.J.; Liang, X.L. Enrichment and fractionation of rare earth elements in ion-adsorption rare earth elements deposits: Constraints of iron oxide-clay mineral composites. Geochimica 2022, 51, 271–282. [Google Scholar]
- Quinn, K.A.; Byrne, R.H.; Schijf, J. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: Influence of pH and ionic strength. Mar. Chem. 2006, 99, 128–150. [Google Scholar] [CrossRef]
Layer | Humic | Clay | Completely Weathered | Semi-Weathered | Bedrock | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | A1 | B1 | B2 | B3 | B4 | B5 | C1 | C2 | C3 | C4 | C5 | D1 | D2 | D3 | E1 | E2 | E3 |
SiO2 | 57.17 | 58.00 | 48.30 | 57.37 | 56.57 | 56.15 | 55.58 | 57.21 | 68.89 | 64.45 | 69.70 | 72.26 | 64.31 | 67.96 | 70.65 | 70.45 | 74.62 |
Al2O3 | 18.17 | 21.31 | 27.11 | 22.90 | 23.31 | 23.29 | 19.90 | 22.45 | 17.24 | 18.61 | 16.78 | 14.36 | 19.13 | 17.51 | 14.72 | 14.36 | 12.32 |
Fe2O3 | 4.98 | 5.81 | 7.95 | 6.04 | 6.07 | 5.24 | 8.55 | 4.27 | 2.58 | 3.35 | 2.40 | 2.56 | 3.42 | 2.46 | 2.34 | 3.71 | 2.95 |
MgO | 0.68 | 0.67 | 0.58 | 0.33 | 0.42 | 0.56 | 2.19 | 0.47 | 0.24 | 0.45 | 0.09 | 0.14 | 0.47 | 0.42 | 0.34 | 0.47 | 0.18 |
CaO | 0.26 | 0.25 | 0.15 | 0.12 | 0.12 | 0.16 | 1.02 | 0.17 | 0.14 | 0.24 | 0.09 | 0.27 | 0.19 | 0.18 | 1.46 | 1.74 | 0.57 |
Na2O | 0.70 | 0.43 | 0.74 | 0.32 | 0.36 | 0.38 | 0.32 | 0.44 | 0.35 | 0.81 | 0.50 | 1.26 | 0.46 | 0.41 | 3.13 | 3.1 | 2.55 |
K2O | 4.50 | 4.89 | 3.38 | 4.77 | 5.08 | 6.29 | 3.96 | 5.95 | 6.38 | 6.76 | 6.95 | 6.67 | 6.51 | 5.57 | 6.02 | 4.52 | 5.25 |
MnO | 0.174 | 0.044 | 0.021 | 0.021 | 0.031 | 0.022 | 0.106 | 0.023 | 0.013 | 0.021 | 0.012 | 0.020 | 0.030 | 0.021 | 0.018 | 0.031 | 0.025 |
P2O5 | 0.179 | 0.095 | 0.070 | 0.064 | 0.056 | 0.071 | 0.074 | 0.083 | 0.045 | 0.100 | 0.057 | 0.051 | 0.080 | 0.056 | 0.098 | 0.145 | 0.065 |
TiO2 | 0.647 | 0.676 | 0.912 | 0.503 | 0.545 | 0.705 | 1.013 | 0.661 | 0.306 | 0.516 | 0.106 | 0.207 | 0.591 | 0.342 | 0.193 | 0.386 | 0.182 |
S | 0.042 | 0.008 | 0.012 | 0.019 | 0.007 | 0.021 | 0.029 | 0.010 | 0.010 | 0.022 | 0.015 | 0.018 | 0.024 | 0.018 | 0.0131 | 0.0127 | 0.0127 |
LOI | 11.79 | 7.65 | 11.02 | 7.01 | 6.63 | 6.85 | 6.53 | 7.66 | 3.72 | 4.00 | 3.18 | 1.87 | 4.61 | 4.42 | 0.24 | 0.32 | 0.51 |
SUM | 99.19 | 99.84 | 100.24 | 99.47 | 99.20 | 99.74 | 99.28 | 99.40 | 99.92 | 99.32 | 99.88 | 99.68 | 99.82 | 99.36 | 99.22 | 99.25 | 99.24 |
CIA | 76.89 | 79.28 | 86.39 | 81.47 | 80.74 | 77.32 | 78.97 | 77.39 | 71.51 | 70.44 | 69.00 | 63.65 | 72.77 | 73.98 | 58.11 | 60.54 | 59.55 |
Layer | Humic | Clay | Completely Weathered | Semi-Weathered | Bedrock | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | A1 | B1 | B2 | B3 | B4 | B5 | C1 | C2 | C3 | C4 | C5 | D1 | D2 | D3 | E1 | E2 | E3 |
Rb | 343.0 | 356.0 | 270.0 | 335.0 | 271.0 | 385.0 | 462.0 | 426.0 | 404.0 | 364.0 | 410.0 | 495.0 | 335.0 | 412 | 406.0 | 338.0 | 373.0 |
Sr | 49.3 | 35.8 | 59.2 | 46.9 | 47.0 | 76.0 | 71.7 | 26.8 | 25.9 | 21.4 | 57.0 | 63.2 | 45.7 | 27.5 | 37.9 | 79.8 | 81.9 |
Y | 46.0 | 139.0 | 41.1 | 77.4 | 42.6 | 40.3 | 35.5 | 171.0 | 110.0 | 124.0 | 76.7 | 89.6 | 48.8 | 56.8 | 90.5 | 93.1 | 33.9 |
Zr | 231.0 | 442.0 | 191.0 | 264.0 | 359.0 | 553.0 | 365.0 | 215.0 | 258.0 | 294.0 | 615.0 | 666.0 | 243.0 | 228 | 255.0 | 282.0 | 212.0 |
Nb | 20.8 | 19.7 | 14.9 | 25.6 | 30.4 | 33.7 | 26.0 | 12.9 | 16.6 | 20.1 | 28.9 | 27.6 | 30.1 | 10.8 | 12.6 | 13.1 | 25.2 |
Ba | 350.0 | 405.0 | 1029.0 | 433.0 | 448.0 | 683.0 | 854.0 | 350.2 | 493.0 | 327.1 | 561.0 | 769.0 | 593.0 | 501 | 227 | 796 | 442 |
La | 32.3 | 100.0 | 46.1 | 91.1 | 92.0 | 107.0 | 138.0 | 95.3 | 167.0 | 181.0 | 169.0 | 203.0 | 109.0 | 111 | 119 | 89.0 | 111 |
Ce | 105.0 | 162.0 | 86.2 | 143.0 | 161.0 | 183.0 | 215.0 | 160.0 | 251.0 | 309.0 | 282.0 | 318.0 | 159.0 | 198 | 197 | 140 | 161 |
Pr | 16.2 | 18.1 | 9.8 | 14.8 | 19.6 | 19.0 | 23.6 | 17.9 | 27.0 | 32.3 | 29.5 | 34.5 | 15.9 | 19.1 | 21.9 | 15.4 | 16.6 |
Nd | 38.5 | 71.2 | 37.5 | 55.2 | 74.0 | 71.0 | 85.5 | 69.0 | 103.0 | 122.0 | 113.0 | 130.0 | 56.2 | 71.7 | 78.6 | 58.9 | 58.9 |
Sm | 13.3 | 15.7 | 8.2 | 11.7 | 13.8 | 13.4 | 15.5 | 16.6 | 20.1 | 24.3 | 21.0 | 24.3 | 10.8 | 14.1 | 16.7 | 13.2 | 11.6 |
Eu | 1.7 | 1.6 | 1.3 | 1.3 | 1.5 | 1.4 | 1.0 | 1.0 | 1.3 | 1.6 | 1.6 | 1.5 | 1.0 | 0.6 | 0.552 | 1.13 | 0.907 |
Gd | 12.7 | 15.9 | 7.6 | 10.3 | 11.2 | 10.2 | 10.9 | 18.2 | 17.6 | 21.0 | 15.4 | 18.0 | 9.1 | 11.8 | 13.8 | 12.2 | 9.03 |
Tb | 2.1 | 2.8 | 1.2 | 1.7 | 1.6 | 1.5 | 1.5 | 3.2 | 2.7 | 3.1 | 2.2 | 2.5 | 1.4 | 1.8 | 2.36 | 2.04 | 1.31 |
Dy | 8.5 | 18.1 | 7.6 | 10.4 | 8.7 | 8.1 | 7.6 | 22.4 | 15.8 | 18.3 | 11.5 | 13.2 | 8.1 | 10.1 | 14.3 | 12.4 | 6.84 |
Ho | 2.5 | 4.0 | 1.6 | 2.1 | 1.7 | 1.6 | 1.4 | 4.8 | 3.1 | 3.6 | 2.2 | 2.6 | 1.6 | 1.9 | 2.82 | 2.54 | 1.20 |
Er | 3.5 | 11.3 | 4.5 | 6.0 | 4.5 | 4.2 | 3.6 | 13.6 | 8.3 | 9.8 | 6.0 | 7.0 | 4.6 | 5.2 | 7.72 | 6.89 | 3.07 |
Tm | 0.9 | 1.6 | 0.7 | 0.9 | 0.6 | 0.6 | 0.5 | 1.9 | 1.2 | 1.4 | 0.9 | 1.0 | 0.7 | 0.7 | 1.15 | 0.989 | 0.436 |
Yb | 3.5 | 9.9 | 4.3 | 5.6 | 3.9 | 4.2 | 3.4 | 11.6 | 7.1 | 8.8 | 5.7 | 6.7 | 4.4 | 4.5 | 7.37 | 6.23 | 2.77 |
Lu | 0.8 | 1.4 | 0.6 | 0.8 | 0.6 | 0.6 | 0.5 | 1.6 | 1.0 | 1.3 | 0.8 | 1.0 | 0.6 | 0.6 | 1.04 | 0.890 | 0.408 |
Hf | 7.1 | 12.6 | 5.8 | 8.2 | 10.5 | 12.1 | 10.1 | 8.5 | 8.8 | 9.9 | 14.3 | 14.0 | 7.7 | 8 | 9.40 | 8.73 | 6.17 |
Ta | 2.3 | 2.2 | 1.6 | 2.8 | 2.7 | 2.4 | 2.3 | 1.6 | 1.8 | 2.2 | 3.2 | 2.2 | 3.7 | 1.2 | 1.74 | 1.43 | 2.36 |
Th | 31.7 | 43.6 | 24.5 | 42.0 | 54.7 | 83.8 | 65.5 | 46.9 | 66.7 | 118.0 | 109.0 | 123.0 | 56.3 | 58.3 | 77.7 | 36.5 | 49.9 |
U | 7.4 | 8.7 | 5.5 | 8.6 | 8.3 | 9.0 | 14.8 | 8.5 | 10.4 | 11.9 | 10.7 | 10.4 | 10.2 | 7.2 | 10.3 | 6.44 | 5.35 |
∑REE | 256.3 | 531.1 | 238.1 | 405.1 | 411.0 | 443.5 | 517.1 | 555.3 | 687.5 | 803 | 700.1 | 807.4 | 408.5 | 477.5 | 574.8 | 454.9 | 419.0 |
∑LREE | 192.0 | 351.3 | 179.6 | 304.1 | 346.6 | 380.0 | 462.1 | 342.2 | 548.0 | 644.3 | 593.5 | 685.5 | 340.1 | 399.8 | 447.6 | 329.8 | 369.0 |
∑HREE | 64.3 | 179.8 | 58.5 | 101.0 | 64.4 | 63.5 | 55.0 | 213.1 | 139.5 | 158.7 | 106.6 | 121.9 | 68.4 | 77.7 | 127.3 | 125.1 | 49.9 |
∑LREE/∑HREE | 2.99 | 1.95 | 3.07 | 3.01 | 5.38 | 5.98 | 8.40 | 1.61 | 3.93 | 4.06 | 5.57 | 5.62 | 4.97 | 5.15 | 3.52 | 2.64 | 7.39 |
(La/Yb)N | 6.6 | 7.3 | 7.7 | 11.6 | 16.9 | 18.4 | 29.0 | 5.9 | 16.9 | 14.8 | 21.4 | 21.9 | 17.6 | 17.7 | 11.6 | 10.3 | 28.7 |
(La/Sm)N | 1.6 | 4.1 | 3.6 | 5.0 | 4.3 | 5.2 | 5.7 | 39.4 | 69.1 | 74.9 | 69.9 | 84.0 | 45.1 | 45.9 | 4.6 | 4.35 | 6.18 |
(Gd/Yb)N | 3.0 | 1.3 | 1.5 | 1.5 | 2.4 | 2.0 | 2.6 | 1.3 | 2.1 | 2.0 | 2.3 | 2.2 | 1.7 | 2.2 | 1.55 | 1.62 | 2.70 |
Nb/Ta | 9.04 | 8.95 | 9.31 | 9.14 | 11.26 | 14.04 | 11.30 | 8.06 | 9.22 | 9.14 | 9.03 | 12.55 | 8.14 | 9.00 | 7.24 | 9.16 | 10.68 |
Zr/Hf | 32.54 | 35.08 | 32.93 | 32.20 | 34.19 | 45.70 | 36.14 | 25.29 | 29.32 | 29.70 | 43.01 | 45.75 | 31.56 | 28.50 | 27.13 | 32.30 | 34.36 |
δEu | 0.39 | 0.31 | 0.50 | 0.35 | 0.36 | 0.35 | 0.22 | 0.18 | 0.21 | 0.21 | 0.26 | 0.21 | 0.30 | 0.14 | 0.11 | 0.27 | 0.26 |
δCe | 1.10 | 0.85 | 0.93 | 0.85 | 0.87 | 0.90 | 0.83 | 0.87 | 0.82 | 0.90 | 0.89 | 0.84 | 0.82 | 0.95 | 0.88 | 0.85 | 0.82 |
B/C | B/D | B/E | C/D | C/E | D/E | |
---|---|---|---|---|---|---|
La2O3 | 0.58 | 0.62 | 0.82 | 1.06 | 1.41 | 1.33 |
Ce2O3 | 0.60 | 0.65 | 0.89 | 1.08 | 1.47 | 1.36 |
Pr2O3 | 0.62 | 0.70 | 0.91 | 1.12 | 1.45 | 1.29 |
Nd2O3 | 0.63 | 0.72 | 0.94 | 1.15 | 1.50 | 1.31 |
Sm2O3 | 0.64 | 0.77 | 0.91 | 1.19 | 1.41 | 1.19 |
Eu2O3 | 1.09 | 1.37 | 1.65 | 1.26 | 1.51 | 1.20 |
Gd2O3 | 0.66 | 0.85 | 0.95 | 1.28 | 1.42 | 1.11 |
Tb2O3 | 0.69 | 0.93 | 0.92 | 1.34 | 1.33 | 1.00 |
Dy2O3 | 0.70 | 1.01 | 0.95 | 1.44 | 1.35 | 0.94 |
Ho2O3 | 0.73 | 1.08 | 1.01 | 1.49 | 1.38 | 0.93 |
Er2O3 | 0.74 | 1.09 | 1.04 | 1.48 | 1.40 | 0.95 |
Tm2O3 | 0.75 | 1.10 | 1.03 | 1.48 | 1.37 | 0.93 |
Yb2O3 | 0.76 | 1.07 | 1.02 | 1.41 | 1.34 | 0.95 |
Lu2O3 | 0.77 | 1.09 | 1.03 | 1.42 | 1.33 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, L.; Yan, B.; Liu, Y.; Gao, Y.; Yin, C.; Zhu, L.; Tan, S.; Ding, D.; Jiang, H. Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in the Mosuoying Granite, Panxi Area, Southwest China. Minerals 2023, 13, 1449. https://doi.org/10.3390/min13111449
Gan L, Yan B, Liu Y, Gao Y, Yin C, Zhu L, Tan S, Ding D, Jiang H. Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in the Mosuoying Granite, Panxi Area, Southwest China. Minerals. 2023; 13(11):1449. https://doi.org/10.3390/min13111449
Chicago/Turabian StyleGan, Ling, Bing Yan, Yuqing Liu, Yan Gao, Chuan Yin, Liye Zhu, Shuang Tan, Di Ding, and Haiyun Jiang. 2023. "Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in the Mosuoying Granite, Panxi Area, Southwest China" Minerals 13, no. 11: 1449. https://doi.org/10.3390/min13111449
APA StyleGan, L., Yan, B., Liu, Y., Gao, Y., Yin, C., Zhu, L., Tan, S., Ding, D., & Jiang, H. (2023). Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in the Mosuoying Granite, Panxi Area, Southwest China. Minerals, 13(11), 1449. https://doi.org/10.3390/min13111449