An Investigation into the Effects of Grinding Medium on Interface Characteristics and Flotation Performance of Sphalerite in Cyanide System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Grinding Experiment
2.3. Cyanide Leaching Experiment
2.4. Flotation Test
2.5. Characteristics of the Pulp
2.6. Characteristics of the Product
3. Results and Discussion
3.1. Effect of Grinding Media on Physicochemical Properties of Sphalerite
3.1.1. Particle Size Distribution
3.1.2. Pulp Chemical Properties of Samples
3.1.3. Surface Morphology of Samples
- (1)
- iron ball
- (2)
- sphalerite
3.2. Chemical Properties of Cyaniding Pulp
3.3. Effect of Grinding Media on Surface Physicochemical Properties of Leaching Residues
3.3.1. SEM and Contact Angle Analysis
3.3.2. XPS Analysis
3.4. Flotation Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aikawa, K.; Ito, M.; Segawa, T.; Jeon, S.; Park, I.; Tabelin, C.B.; Hiroyoshi, N. Depression of Lead-Activated Sphalerite by Pyrite via Galvanic Interactions: Implications to the Selective Flotation of Complex Sulfide Ores. Miner. Eng. 2020, 152, 106367. [Google Scholar] [CrossRef]
- Trejo-Ramos, A.I.; González-Chan, I.J.; Oliva, A.I. Physical Properties of Chemically Deposited ZnS Thin Films: Role of the Solubility Curves and Species Distribution Diagrams. Mater. Sci. Semicond. Process. 2020, 118, 105207. [Google Scholar] [CrossRef]
- Wang, H.; Wen, S.; Han, G.; Feng, Q. Effect of Copper Ions on Surface Properties of ZnSO4-Depressed Sphalerite and Its Response to Flotation. Sep. Purif. Technol. 2019, 228, 1–9. [Google Scholar] [CrossRef]
- Gül, A.; Yüce, A.E.; Sirkeci, A.A.; Özer, M. Use of Non-Toxic Depressants in the Selective Flotation of Copper-Lead-Zinc Ores. Can. Metall. Q. 2008, 47, 111–118. [Google Scholar] [CrossRef]
- Kydros, K.A.; Gallios, G.P.; Matis, K.A. Modification of Pyrite and Sphalerite Flotation by Dextrin. Sep. Sci. Technol. 1994, 29, 2263–2275. [Google Scholar] [CrossRef]
- Lv, C.; Ding, J.; Qian, P.; Li, Q.; Ye, S.; Chen, Y. Comprehensive Recovery of Metals from Cyanidation Tailing. Miner. Eng. 2015, 70, 141–147. [Google Scholar] [CrossRef]
- Nanda, S.; Kumar, S.; Mandre, N.R. Flotation Behavior of a Complex Lead-Zinc Ore Using Individual Collectors and Its Blends for Lead Sulfide. J. Dispers. Sci. Technol. 2022, 1–8. [Google Scholar] [CrossRef]
- Qiu, T.; Nie, Q.; He, Y.; Yuan, Q. Density Functional Theory Study of Cyanide Adsorption on the Sphalerite (110) Surface. Appl. Surf. Sci. 2019, 465, 678–685. [Google Scholar] [CrossRef]
- Osathaphan, K.; Boonpitak, T.; Laopirojana, T.; Sharma, V.K. Removal of Cyanide and Zinc-Cyanide Complex by an Ion-Exchange Process. Water Air Soil Pollut. 2008, 194, 179–183. [Google Scholar] [CrossRef]
- Prestidge, C.A.; Skinner, W.M.; Ralston, J.; Smart, R.S.C. Copper(II) Activation and Cyanide Deactivation of Zinc Sulphide under Mildly Alkaline Conditions. Appl. Surf. Sci. 1997, 108, 333–344. [Google Scholar] [CrossRef]
- Yao, W.; Li, M.; Zhang, M.; Cui, R.; Ning, J.; Shi, J. Effects and Mechanisms of Grinding Media on the Flotation Behavior of Scheelite. ACS Omega 2020, 5, 32076–32083. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wang, J.; Wang, J.; Zhang, X.; Wang, H. Effect of Different Grinding Methods on Floatation of Sphalerite. Nonferrous Met. (Miner. Process. Sect.) 2018, 35–51. [Google Scholar]
- Xia, L.; Hart, B.R. Correlation between the Hydrogen Peroxide Formed during Grinding and the Oxidized Species Present on the Surface of Sphalerite. Miner. Eng. 2019, 130, 165–170. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Gao, P.; Li, Y. Effects of Grinding Media on Grinding Products and Flotation Performance of Chalcopyrite. Miner. Eng. 2020, 145, 106070. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Gao, P.; Li, Y.; Sun, Y. Effects of Particle Size and Ferric Hydroxo Complex Produced by Different Grinding Media on the Flotation Kinetics of Pyrite. Powder Technol. 2020, 360, 1028–1036. [Google Scholar] [CrossRef]
- Rabieh, A.; Eksteen, J.J.; Albijanic, B. The Effect of Grinding Chemistry on Cyanide Leaching of Gold in the Presence of Pyrrhotite. Hydrometallurgy 2017, 173, 115–124. [Google Scholar] [CrossRef]
- Mu, Y.; Cheng, Y.; Peng, Y. The Interaction of Grinding Media and Collector in Pyrite Flotation at Alkaline PH. Miner. Eng. 2020, 152, 106344. [Google Scholar] [CrossRef]
- Liao, N.; Wu, C.; Xu, J.; Feng, B.; Wu, J.; Gong, Y. Effect of Grinding Media on Grinding-Flotation Behavior of Chalcopyrite and Pyrite. Front. Mater. 2020, 7, 176. [Google Scholar] [CrossRef]
- Cao, Y.; Tong, X.; Xie, X.; Song, Q.; Zhang, W.; Du, Y.; Zhang, S. Effects of Grinding Media on the Flotation Performance of Cassiterite. Miner. Eng. 2021, 168, 106919. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Q.; Yang, H.; Shi, D.; Qian, J. Photocatalytic Antibacterial Properties of Copper Doped TiO2 Prepared by High-Energy Ball Milling. Ceram. Int. 2020, 46, 16716–16724. [Google Scholar] [CrossRef]
- Xie, W.; Polikarpov, E.; Choi, J.P.; Bowden, M.E.; Sun, K.; Cui, J. Effect of Ball Milling and Heat Treatment Process on MnBi Powders Magnetic Properties. J. Alloys Compd. 2016, 680, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Han, Y.; Kawatra, S.K. Effects of Grinding Media on Grinding Products and Flotation Performance of Sulfide Ores. Miner. Process. Extr. Metall. Rev. 2020, 42, 172–183. [Google Scholar] [CrossRef]
- Bruckard, W.J.; Sparrow, G.J.; Woodcock, J.T. A Review of the Effects of the Grinding Environment on the Flotation of Copper Sulphides. Int. J. Miner. Process. 2011, 100, 1–13. [Google Scholar] [CrossRef]
- Wei, Y.; Sandenbergh, R.F. Effects of Grinding Environment on the Flotation of Rosh Pinah Complex Pb/Zn Ore. Miner. Eng. 2007, 20, 264–272. [Google Scholar] [CrossRef]
- Peng, Y.; Grano, S.; Fornasiero, D.; Ralston, J. Control of Grinding Conditions in the Flotation of Galena and Its Separation from Pyrite. Int. J. Miner. Process. 2003, 70, 67–82. [Google Scholar] [CrossRef]
- Xia, L.; Hart, B.; Chen, Z.; Furlotte, M.; Gingras, G.; Laflamme, P. A ToF-SIMS Investigation on Correlation between Grinding Environments and Sphalerite Surface Chemistry: Implications for Mineral Selectivity in Flotation. Surf. Interface Anal. 2017, 49, 1397–1403. [Google Scholar] [CrossRef]
- Pozzo, R.L.; Iwasaki, I. Effect of Pyrite and Pyrrhotite on the Corrosive Wear of Grinding Media. Miner. Metall. Process. 1987, 4, 166–171. [Google Scholar] [CrossRef]
- Pozzo, R.L.; Malicsi, A.S.; Iwasaki, I. Pyrite-Pyrrhotite-Grinding Media Contact and Its Effect on Flotation. Miner. Metall. Process. 1990, 7, 16–21. [Google Scholar] [CrossRef]
- Rabieh, A.; Albijanic, B.; Eksteen, J.J. A Review of the Effects of Grinding Media and Chemical Conditions on the Flotation of Pyrite in Refractory Gold Operations. Miner. Eng. 2016, 94, 21–28. [Google Scholar] [CrossRef]
- Yang, J.; Shuai, Z.; Zhou, W.; Ma, S. Grinding Optimization of Cassiterite-Polymetallic Sulfide Ore. Minerals 2019, 9, 134. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y. The Effect of Grinding Media and Environment on the Surface Properties and Flotation Behaviour of Sulfide Minerals. Miner. Process. Extr. Metall. Rev. 1990, 7, 49–79. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, H.; Tong, L.; Jin, R.; Ma, P. Understanding the Effect of Grinding Media on the Adsorption Mechanism of Cyanide to Chalcopyrite Surface by ToF–SIMS, XPS, Contact Angle, Zeta Potential and Flotation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 644, 128799. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Moimane, T.; Plackowski, C.; Peng, Y. The Critical Degree of Mineral Surface Oxidation in Copper Sulphide Flotation. Miner. Eng. 2020, 145, 106075. [Google Scholar] [CrossRef]
- Chen, X.; Peng, Y.; Bradshaw, D. Effect of Regrinding Conditions on Pyrite Flotation in the Presence of Copper Ions. Int. J. Miner. Process. 2013, 125, 129–136. [Google Scholar] [CrossRef]
- Fernández Macía, L.; Petrova, M.; Hubin, A. ORP-EIS to Study the Time Evolution of the [Fe(CN)6]3−/[Fe(CN)6]4− Reaction Due to Adsorption at the Electrochemical Interface. J. Electroanal. Chem. 2015, 737, 46–53. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, S.; Ma, X.; Yang, J.; Zhong, H. Synthesis of Thioxopropanamide Surfactants for Studying the Flotation Performance and Adsorption Mechanism on Chalcopyrite. Appl. Surf. Sci. 2020, 505, 144539. [Google Scholar] [CrossRef]
- Khmeleva, T.N.; Georgiev, T.V.; Jasieniak, M.; Skinner, W.M.; Beattie, D.A. XPS and ToF-SIMS Study of a Chalcopyritepyrite-Sphalerite Mixture Treated with Xanthate and Sodium Bisulphite. Surf. Interface Anal. 2005, 37, 699–709. [Google Scholar] [CrossRef]
- Er, U.; Icli, K.C.; Ozenbas, M. Spin-Coated Copper(I) Thiocyanate as a Hole Transport Layer for Perovskite Solar Cells. J. Solid State Electrochem. 2020, 24, 293–304. [Google Scholar] [CrossRef]
- Smart, R.S.C.; Skinner, W.M.; Gerson, A.R. XPS of Sulphide Mineral Surfaces: Metal-Deficient, Polysulphides, Defects and Elemental Sulphur. Surf. Interface Anal. 1999, 28, 101–105. [Google Scholar] [CrossRef]
- Corin, K.C.; Song, Z.G.; Wiese, J.G.; O’Connor, C.T. Effect of Using Different Grinding Media on the Flotation of a Base Metal Sulphide Ore. Miner. Eng. 2018, 126, 24–27. [Google Scholar] [CrossRef]
Mineral | Grinding Medium | Milling Device | Main Findings | Ref. |
---|---|---|---|---|
Sphalerite | agate medium iron medium | planetary mill | hydroxy iron compounds generated using iron medium | [12] |
Sphalerite | mild steel stainless steel | ball mill | lower overall concentration of H2O2 using mild steel medium | [13] |
Chalcopyrite | ceramic medium iron medium | vertical mill | better hydrophobicity using ceramic medium | [14] |
Pyrite | ceramic medium iron medium | vertical mill | lower formation of ferric hydroxo complexes using ceramic medium | [15] |
Pyrite | steel medium nano-ceramic medium | ball mill | better floatability using steel medium | [18] |
Chalcopyrite | steel medium nano-ceramic medium | ball mill | better floatability using nano-ceramic medium | |
Cassiterite | stainless steel medium ceramic medium | mortar mill | better SHA adsorption using stainless steel medium | [19] |
Component | Zn | S | Fe2O3 | SiO2 | CuO | MnO | K2O | Others |
---|---|---|---|---|---|---|---|---|
Content | 65.2 | 33.2 | 0.49 | 0.17 | 0.06 | 0.03 | 0.02 | 0.08 |
Mineral | Media Type | Metals | Grades and Recoveries of the Valuable Components | Ref. | |
---|---|---|---|---|---|
Recovery (%) | Grade (%) | ||||
Pyrite | ceramic balls iron balls | Fe | 89.19 78.36 | / * / | [15] |
Copper ore | steel balls pebbles ceramic balls | Cu | 84.05 85.24 87.12 | 17.97 17.76 19.96 | [22] |
Chalcopyrite | ceramic balls iron balls ceramic balls iron balls | Cu Fe | 19.22 13.61 19.00 14.17 | 33.14 13.74 30.01 32.94 | [32] |
Base metal sulphide | stainless steel rods chrome steel balls mild steel rods forged steel balls | Cu | 75 74 80 77 | 2.2 2.01 1.75 1.7 | [41] |
Sphalerite | ceramic balls iron balls | Zn | 82.09% 77.04% | / / | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Yang, H.; Tong, L.; Ma, P.; Jin, R.; Zhang, Q. An Investigation into the Effects of Grinding Medium on Interface Characteristics and Flotation Performance of Sphalerite in Cyanide System. Minerals 2022, 12, 1231. https://doi.org/10.3390/min12101231
Zhao Q, Yang H, Tong L, Ma P, Jin R, Zhang Q. An Investigation into the Effects of Grinding Medium on Interface Characteristics and Flotation Performance of Sphalerite in Cyanide System. Minerals. 2022; 12(10):1231. https://doi.org/10.3390/min12101231
Chicago/Turabian StyleZhao, Qianfei, Hongying Yang, Linlin Tong, Pengcheng Ma, Ruipeng Jin, and Qin Zhang. 2022. "An Investigation into the Effects of Grinding Medium on Interface Characteristics and Flotation Performance of Sphalerite in Cyanide System" Minerals 12, no. 10: 1231. https://doi.org/10.3390/min12101231
APA StyleZhao, Q., Yang, H., Tong, L., Ma, P., Jin, R., & Zhang, Q. (2022). An Investigation into the Effects of Grinding Medium on Interface Characteristics and Flotation Performance of Sphalerite in Cyanide System. Minerals, 12(10), 1231. https://doi.org/10.3390/min12101231