Identification and Origin of Jurassic (~182 Ma) Zircon Grains from Chromitite within the Peridotite of the Jijal Complex, Kohistan Arc in North Pakistan
Abstract
:1. Introduction
2. Geology Background and Field Occurrence
3. Analytical Methods and Results
3.1. Analytical Methods
3.2. Zircon Trace Element and Isotope Composition
3.3. Chromite (Chrome Spinel) Chemistry
4. Discussion
4.1. Age of the Jijal Complex and Kohistan Arc
4.2. Parent Magma Equilibrium with Chrome Spinel
4.3. How Did Crustal Zircon Grains Enter the Jijal Chromitite?
4.4. Where Zircons Came from and Tectonic Implications
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Spot | Th (ppm) | U (ppm) | Th/U | Isotopic Ratio | Age | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | ||||
2016PD51-01 | 292 | 316 | 0.9 | 0.0514 | 0.0033 | 0.2055 | 0.0126 | 0.0290 | 0.0004 | 259 | 113 | 190 | 11 | 184 | 3 |
2016PD51-02 | 2131 | 1717 | 1.2 | 0.0494 | 0.0020 | 0.1989 | 0.0077 | 0.0292 | 0.0003 | 168 | 72 | 184 | 7 | 185 | 2 |
2016PD51-03 | 802 | 778 | 1.0 | 0.0517 | 0.0037 | 0.2090 | 0.0145 | 0.0293 | 0.0005 | 271 | 129 | 193 | 12 | 186 | 3 |
2016PD51-04 | 674 | 954 | 0.7 | 0.0498 | 0.0017 | 0.1864 | 0.0058 | 0.0271 | 0.0002 | 187 | 56 | 174 | 5 | 173 | 2 |
2016PD51-05 | 784 | 1080 | 0.7 | 0.0507 | 0.0020 | 0.1960 | 0.0072 | 0.0281 | 0.0003 | 226 | 67 | 182 | 6 | 178 | 2 |
2016PD51-06 | 671 | 1021 | 0.7 | 0.0538 | 0.0041 | 0.2101 | 0.0155 | 0.0283 | 0.0005 | 363 | 135 | 194 | 13 | 180 | 3 |
2016PD51-08 | 204 | 278 | 0.7 | 0.0548 | 0.0026 | 0.2273 | 0.0105 | 0.0301 | 0.0004 | 405 | 81 | 208 | 9 | 191 | 2 |
2016PD51-09 | 409 | 537 | 0.8 | 0.0536 | 0.0030 | 0.2025 | 0.0110 | 0.0274 | 0.0004 | 353 | 98 | 187 | 9 | 174 | 2 |
2016PD51-10 | 369 | 302 | 1.2 | 0.0519 | 0.0038 | 0.1914 | 0.0137 | 0.0268 | 0.0005 | 279 | 131 | 178 | 12 | 170 | 3 |
2016PD51-11 | 317 | 1016 | 0.3 | 0.0530 | 0.0018 | 0.2092 | 0.0066 | 0.0286 | 0.0003 | 329 | 55 | 193 | 6 | 182 | 2 |
2016PD51-12 | 217 | 2333 | 0.1 | 0.0520 | 0.0021 | 0.2116 | 0.0083 | 0.0295 | 0.0003 | 285 | 71 | 195 | 7 | 188 | 2 |
2016PD51-14 | 87 | 90 | 1.0 | 0.0486 | 0.0043 | 0.2038 | 0.0176 | 0.0304 | 0.0006 | 128 | 154 | 188 | 15 | 193 | 4 |
2016PD51-15 | 767 | 1011 | 0.8 | 0.0523 | 0.0034 | 0.2287 | 0.0143 | 0.0318 | 0.0005 | 297 | 115 | 209 | 12 | 201 | 3 |
Spot. No | 2016PD51-01 | 2016PD51-02 | 2016PD51-03 | 2016PD51-04 | 2016PD51-05 | 2016PD51-06 | 2016PD51-08 | 2016PD51-09 | 2016PD51-10 | 2016PD51-11 | 2016PD51-12 | 2016PD51-14 | 2016PD51-15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ti | 4.39 | 6.77 | 3.645 | 3.4 | 3.42 | 5.367 | 8.94 | 5.712 | 6.6 | 8.66392 | 7.48 | 9.98 | 11.81 |
Y | 2067 | 4049 | 3101 | 4657 | 6287 | 2339 | 1889 | 3002 | 2402 | 2486 | 2656 | 976 | 4768 |
Nb | 9.54 | 15.36 | 11.82 | 30.07 | 22.38 | 8.64 | 6.71 | 14.61 | 7.73 | 13.86 | 9.30 | 3.09 | 34.44 |
La | 0.23 | 0.15 | 0.13 | 0.42 | 0.16 | 1.13 | 3.24 | 1.64 | 0.67 | 2.01 | 2.15 | 0.07 | 4.57 |
Ce | 25.26 | 97.97 | 42.42 | 57.30 | 46.43 | 34.59 | 25.30 | 31.57 | 31.98 | 23.33 | 7.28 | 10.68 | 60.85 |
Pr | 0.34 | 0.68 | 0.38 | 0.47 | 0.51 | 0.55 | 1.12 | 0.82 | 0.87 | 0.90 | 0.56 | 0.37 | 2.13 |
Nd | 5.23 | 11.51 | 6.28 | 7.05 | 8.36 | 6.64 | 11.37 | 9.45 | 12.79 | 8.96 | 4.03 | 3.95 | 22.28 |
Sm | 10.10 | 21.19 | 14.00 | 20.43 | 24.72 | 11.48 | 14.46 | 16.56 | 21.60 | 14.37 | 7.74 | 7.30 | 33.52 |
Eu | 0.15 | 0.29 | 0.15 | 0.13 | 0.16 | 0.18 | 0.23 | 0.30 | 0.30 | 0.41 | 0.23 | 0.17 | 0.97 |
Gd | 51.3 | 94.1 | 73.5 | 117.1 | 148.3 | 53.0 | 53.9 | 85.1 | 83.2 | 73.1 | 43.5 | 31.8 | 171.8 |
Tb | 18.31 | 35.21 | 27.64 | 43.18 | 57.04 | 20.18 | 17.67 | 28.48 | 25.27 | 23.68 | 20.39 | 10.24 | 49.37 |
Dy | 207 | 418 | 328 | 515 | 686 | 240 | 199 | 328 | 271 | 270 | 254 | 111 | 549 |
Ho | 71 | 145 | 115 | 177 | 242 | 83 | 66 | 111 | 89 | 89 | 89 | 37 | 174 |
Er | 288 | 603 | 457 | 679 | 938 | 349 | 264 | 424 | 348 | 352 | 419 | 144 | 627 |
Tm | 56.03 | 132.08 | 92.55 | 135.09 | 182.09 | 79.19 | 56.97 | 85.17 | 71.00 | 81.83 | 114.34 | 31.35 | 130.75 |
Yb | 465 | 1303 | 838 | 1201 | 1583 | 795 | 560 | 785 | 688 | 853 | 1274 | 293 | 1315 |
Lu | 78.2 | 169.9 | 111.9 | 148.6 | 199.6 | 111.0 | 71.1 | 102.4 | 95.0 | 122.7 | 202.3 | 49.0 | 163.1 |
Hf | 9464 | 10,671 | 7095 | 8365 | 8245 | 8696 | 6850 | 6608 | 7300 | 10,344 | 18,864 | 7599 | 8483 |
Ta | 2.13 | 8.74 | 3.7175 | 5.76 | 4 | 8.6687 | 1.816 | 3.5592 | 1.883 | 11.79264 | 29.07 | 0.92 | 9.85 |
U | 316 | 1717 | 778 | 954 | 1080 | 1021 | 278 | 537 | 302 | 1016 | 2333 | 90 | 1011 |
Th | 292 | 2131 | 802 | 674 | 784 | 671 | 204 | 409 | 369 | 317 | 217 | 87 | 767 |
Spot No | 176Yb/177Hf | 176Lu/177Hf | 176Hf/177Hf | 2σ | 176Hf/177Hf(t)i | εHf(t) | TDM1(Ma) |
---|---|---|---|---|---|---|---|
2016PD51-01 | 0.033 | 0.001 | 0.282847 | 0.000027 | 0.282842 | 6.5 | 580 |
2016PD51-02 | 0.050 | 0.002 | 0.282877 | 0.000028 | 0.282869 | 7.5 | 547 |
2016PD51-03 | 0.031 | 0.001 | 0.282879 | 0.000026 | 0.282875 | 7.7 | 532 |
2016PD51-04 | 0.034 | 0.001 | 0.282841 | 0.000031 | 0.282837 | 6.1 | 587 |
2016PD51-05 | 0.041 | 0.002 | 0.282940 | 0.000039 | 0.282935 | 9.7 | 450 |
2016PD51-06 | 0.023 | 0.001 | 0.282936 | 0.000025 | 0.282933 | 9.6 | 448 |
2016PD51-08 | 0.048 | 0.002 | 0.282922 | 0.000035 | 0.282916 | 9.3 | 479 |
2016PD51-10 | 0.046 | 0.002 | 0.282842 | 0.000028 | 0.282836 | 6.0 | 594 |
2016PD51-11 | 0.048 | 0.002 | 0.282839 | 0.000028 | 0.282832 | 6.1 | 600 |
Spot. No | K2O | CaO | TiO2 | Na2O | MgO | Al2O3 | SiO2 | Cr2O3 | MnO | FeO | NiO | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2016PD51-01 | 0.00 | 0.03 | 0.15 | 0.01 | 14.95 | 11.38 | 0.06 | 58.62 | 0.30 | 13.08 | 0.02 | 98.60 |
2016PD51-02 | 0.01 | 0.07 | 0.42 | 0.02 | 13.67 | 10.74 | 0.05 | 59.16 | 0.26 | 14.29 | 0.10 | 98.80 |
2016PD51-03 | 0.02 | 0.05 | 0.37 | 0.03 | 11.34 | 11.36 | 0.03 | 59.36 | 0.33 | 16.53 | 0.03 | 99.44 |
2016PD51-04 | 0.01 | 0.04 | 0.41 | 0.02 | 10.40 | 11.11 | 0.03 | 59.02 | 0.24 | 18.36 | 0.04 | 99.68 |
2016PD51-05 | 0.00 | 0.01 | 0.36 | 0.01 | 10.34 | 6.51 | 0.05 | 63.41 | 0.26 | 18.49 | 0.05 | 99.49 |
2016PD51-06 | 0.00 | 0.01 | 0.58 | 0.02 | 8.81 | 6.98 | 0.05 | 62.61 | 0.64 | 19.79 | 0.06 | 99.53 |
2016PD51-07 | 0.00 | 0.03 | 0.44 | 0.02 | 10.68 | 6.74 | 0.02 | 62.54 | 0.56 | 18.81 | 0.00 | 99.83 |
2016PD51-08 | 0.00 | 0.08 | 0.32 | 0.02 | 10.78 | 7.94 | 0.04 | 59.49 | 0.45 | 19.34 | 0.04 | 98.50 |
2016PD51-09 | 0.01 | 0.01 | 0.18 | 0.07 | 11.77 | 10.61 | 0.24 | 57.67 | 0.48 | 17.40 | 0.06 | 98.49 |
2016PD51-10 | 0.01 | 0.00 | 0.22 | 0.00 | 11.27 | 9.92 | 0.23 | 59.40 | 0.53 | 17.06 | 0.12 | 98.75 |
2016PD51-11 | 0.01 | 0.01 | 0.45 | 0.00 | 12.61 | 10.04 | 0.22 | 58.93 | 0.48 | 16.58 | 0.10 | 99.43 |
2016PD51-12 | 0.00 | 0.04 | 0.35 | 0.01 | 10.68 | 8.31 | 0.05 | 60.86 | 0.51 | 17.60 | 0.06 | 98.45 |
2016PD51-13 | 0.00 | 0.00 | 0.46 | 0.03 | 11.23 | 7.13 | 0.10 | 61.24 | 0.33 | 18.54 | 0.05 | 99.12 |
2016PD51-14 | 0.00 | 0.02 | 0.21 | 0.03 | 10.08 | 8.73 | 0.18 | 61.98 | 0.42 | 17.95 | 0.06 | 99.65 |
2016PD51-15 | 0.02 | 0.09 | 0.39 | 0.00 | 12.24 | 13.83 | 0.16 | 54.62 | 0.38 | 17.00 | 0.07 | 98.80 |
2016PD51-16 | 0.00 | 0.00 | 0.21 | 0.01 | 13.84 | 12.04 | 0.21 | 58.40 | 0.49 | 13.41 | 0.02 | 98.62 |
2016PD51-17 | 0.01 | 0.05 | 0.24 | 0.02 | 12.76 | 11.69 | 0.19 | 59.76 | 0.33 | 14.81 | 0.09 | 99.94 |
2016PD51-18 | 0.00 | 0.01 | 0.16 | 0.01 | 14.27 | 10.67 | 0.02 | 60.06 | 0.45 | 13.88 | 0.08 | 99.61 |
2016PD51-19 | 0.01 | 0.01 | 0.33 | 0.04 | 13.02 | 10.65 | 0.01 | 59.61 | 0.53 | 14.99 | 0.00 | 99.20 |
2016PD51-20 | 0.00 | 0.00 | 0.26 | 0.02 | 13.60 | 11.93 | 0.06 | 59.12 | 0.34 | 13.47 | 0.08 | 98.89 |
2016PD51-21 | 0.00 | 0.00 | 0.15 | 0.06 | 11.17 | 11.50 | 0.20 | 57.38 | 0.25 | 18.24 | 0.08 | 99.01 |
2016PD51-22 | 0.00 | 0.03 | 0.32 | 0.00 | 12.48 | 9.74 | 0.12 | 60.30 | 0.40 | 15.56 | 0.12 | 99.08 |
2016PD51-23 | 0.01 | 0.05 | 0.39 | 0.00 | 13.99 | 11.52 | 0.11 | 57.53 | 0.51 | 14.98 | 0.09 | 99.16 |
2016PD51-24 | 0.02 | 0.04 | 0.29 | 0.00 | 12.46 | 9.29 | 0.14 | 59.96 | 0.42 | 15.45 | 0.10 | 98.16 |
2016PD51-25 | 0.00 | 0.03 | 0.35 | 0.01 | 12.67 | 10.65 | 0.17 | 59.17 | 0.43 | 16.02 | 0.10 | 99.59 |
2016PD51-26 | 0.01 | 0.04 | 0.37 | 0.00 | 12.87 | 10.12 | 0.00 | 59.30 | 0.52 | 15.67 | 0.10 | 98.99 |
2016PD51-27 | 0.00 | 0.02 | 0.22 | 0.02 | 13.84 | 10.63 | 0.07 | 59.81 | 0.59 | 14.17 | 0.05 | 99.40 |
2016PD51-28 | 0.01 | 0.02 | 0.44 | 0.00 | 13.00 | 11.04 | 0.05 | 58.85 | 0.36 | 15.49 | 0.14 | 99.41 |
2016PD51-29 | 0.00 | 0.01 | 0.32 | 0.05 | 12.44 | 12.21 | 0.05 | 56.93 | 0.39 | 17.12 | 0.16 | 99.68 |
2016PD51-30 | 0.00 | 0.00 | 0.35 | 0.01 | 12.87 | 11.09 | 0.18 | 57.28 | 0.49 | 16.58 | 0.06 | 98.91 |
References
- Burg, J.P.; Bodinier, J.L.; Chaudhry, S.; Hussain, S.; Dawood, H. Infra-arc mantle–crust transition and intra-arc mantle diapirs in the Kohistan Complex (Pakistani Himalaya): Petro-structural evidence. Terra Nova 1998, 10, 74–80. [Google Scholar] [CrossRef]
- Dhuime, B.; Bosch, D.; Garrido, C.J.; Bodinier, J.L.; Bruguier, O.; Hussain, S.S.; Dawood, H. Geochemical architecture of the lower-to middle-crustal section of a paleo-island arc (Kohistan Complex, Jijal–Kamila area, northern Pakistan): Implications for the evolution of an oceanic subduction zone. J. Petrol. 2009, 50, 531–569. [Google Scholar] [CrossRef]
- Ewing, T.A.; Müntener, O. The mantle source of island arc magmatism during early subduction: Evidence from Hf isotopes in rutile from the Jijal Complex (Kohistan arc, Pakistan). Lithos 2018, 308, 262–277. [Google Scholar] [CrossRef]
- Khan, M.A.; Kakar, M.I.; Ulrich, T.; Ali, L.; Kerr, A.C.; Mahmood, K.; Siddiqui, R.H. Genesis of Manganese Deposits in the Ali Khanzai Block of the Zhob Ophiolite, Pakistan: Inferences from Geochemistry and Mineralogy. J. Earth Sci. 2020, 31, 884–895. [Google Scholar] [CrossRef]
- Garrido, C.J.; Bodinier, J.L.; Dhuime, B.; Bosch, D.; Chanefo, I.; Bruguier, O.; Burg, J.P. Origin of the island arc Moho transition zone via melt-rock reaction and its implications for intracrustal differentiation of island arcs: Evidence from the Jijal complex (Kohistan complex, northern Pakistan). Geology 2007, 35, 683–686. [Google Scholar] [CrossRef]
- Dhuime, B.; Bosch, D.; Bodinier, J.L.; Garrido, C.J.; Bruguier, O.; Hussain, S.S.; Dawood, H. Multistage evolution of the Jijal ultramafic–mafic complex (Kohistan, N Pakistan): Implications for building the roots of island arcs. Earth Planet. Sci. Lett. 2007, 261, 179–200. [Google Scholar] [CrossRef]
- Bosch, D.; Garrido, C.J.; Bruguier, O.; Dhuime, B.; Bodinier, J.L.; Padròn-Navarta, J.A.; Galland, B. Building an island-arc crustal section: Time constraints from a LA-ICP-MS zircon study. Earth Planet. Sci. Lett. 2011, 309, 268–279. [Google Scholar] [CrossRef]
- Jan, M.Q.; Windley, B.F. Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal Complex Northwest Pakistan. J. Petrol. 1990, 31, 667–715. [Google Scholar] [CrossRef]
- Stern, R.J.; Ali, K.A.; Liegois, J.P.; Johnson, P.R.; Kozdrojs, W.; Kattan, F.H. Distribution and significance of pre-Neoproterozoic zircon grains in juvenile Neoproterozoic igneous rocks of the Arabian–Nubian shield. Am. J. Sci. 2010, 310, 791–811. [Google Scholar] [CrossRef]
- Grimes, C.B.; Wooden, J.L.; Cheadle, M.J.; John, B.E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Mineralog. Petrol. 2015, 158, 757–783. [Google Scholar] [CrossRef]
- Belousova, E.A.; González-Jiménez, J.M.; Graham, I.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N.; Martin, L.; Craven, S.; Talavera, C. The enigma of crustal zircon grains in upper-mantle rocks: Clues from the Tumut ophiolite, southeast Australia. Geology 2015, 43, 119–122. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Marchesi, C.; Griffin, W.L.; Gervilla, F.; Belousova, E.A.; Garrido, C.J.; Barra, F. Zircon recycling and crystallization during formation of chromite- and Ni-arsenide ores in the subcontinental lithospheric mantle (Serranía de Ronda, Spain). Ore Geol. Rev. 2017, 90, 193–209. [Google Scholar] [CrossRef]
- Li, H.Y.; Chen, R.X.; Zheng, Y.F.; Hu, Z. The crust-mantle interaction in continental subduction channels: Zircon evidence from orogenic peridotite in the Sulu orogen. J. Geophys. Res. Solid Earth. 2016, 121, 687–712. [Google Scholar] [CrossRef] [Green Version]
- Liati, A.; Franz, L.; Gebauer, D.; Fanning, C.K. The timing of mantle and crustal events in South Namibia, as defined by SHRIMP-dating of zircon domains from a garnet peridotite xenolith of the Gibeon Kimberlite Province. J. Afr. Earth Sci. 2004, 39, 147–157. [Google Scholar] [CrossRef]
- McGowan, N.M.; Griffin, W.L.; González-Jiménez, J.M.; Belousova, E.A.; Afonso, J.; Shi, R.; McCammon, C.A.; Pearson, N.J.; O’Reilly, S.Y. Tibetan chromitites: Excavating the slab graveyard. Geology 2015, 43, 179–182. [Google Scholar] [CrossRef]
- Robinson, P.T.; Trumbull, R.B.; Schmitt, Z.; Yang, J.S.; Li, J.W.; Zhou, M.F.; Erzinger, J.; Dare, S.; Xiong, F. The origin and significance of crustal minerals in ophiolitic chromitite and peridotites. Gondwana Res. 2015, 27, 486–506. [Google Scholar] [CrossRef]
- Zheng, J.; Griffin, W.L.; O’Reilly, S.Y.; Zhang, M.; Pearson, N. Zircon grains in mantle xenoliths record the Triassic Yangtze–North China continental collision. Earth Planet. Sci. Lett. 2006, 247, 130–142. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Li, J.X.; Liu, C.Z. Zircon U–Pb chronology and Hf isotopic constraints on the petrogenesis of Gangdese batholiths, southern Tibet. Chem. Geol. 2009, 262, 229–245. [Google Scholar] [CrossRef]
- Jagoutz, O.; Bouilhol, P.; Schaltegger, U.; Müntener, O. The isotopic evolution of the Kohistan Ladakh arc from subduction initiation to continent arc collision. Geol. Soc. Lond. Spec. Publ. 2018, 483, 165–182. [Google Scholar] [CrossRef]
- Huang, F.; Xu, J.F.; Wang, B.D.; Zeng, Y.C.; Liu, X.J.; Liu, H.; Yu, H.X. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Sci. 2020, 45, 2785–2804. [Google Scholar]
- Burg, J.P.; Arbaret, L.; Chaudhry, N.M.; Dawood, H.; Hussain, S.; Zeilinger, G. Shear strain localization from the upper mantle to the middle crust of the Kohistan Arc (Pakistan). In High-Strain Zones: Structure and Physical Properties; Bruhn, D., Burlini, L., Eds.; Geological Society Special Publications: London, UK, 2005; pp. 25–38. [Google Scholar]
- Yamamoto, H. Contrasting metamorphic P–T–time paths of the Kohistan granulites and tectonics of the western Himalayas. J. Geol. Soc. Lond. 1993, 150, 843–856. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Von-Quadt, A.; Doddick, J.C.; Spiegel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace elements and REE analyses. Geostandard. Newslett. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report Pb-204. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. (Ed.) User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003. [Google Scholar]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Cai, F.L.; Ding, L.; Yue, Y.H. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth Planet. Sci. Lett. 2011, 305, 195–206. [Google Scholar] [CrossRef]
- Wang, C.; Ding, L.; Zhang, L.Y.; Kapp, P.; Pullen, A.; Yue, Y.H. Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa Terrane: Implications for early subduction of Neo–Tethyan oceanic lithosphere. Lithos 2016, 262, 320–333. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society Special Publications: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace element chemistry of zircon grains from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Arif, M.; Jan, M.Q. Petrotectonic significance of the chemistry of chromite in the ultramafic–mafic complexes of Pakistan. J. Asian Earth Sci. 2006, 27, 628–646. [Google Scholar] [CrossRef]
- Schaltegger, U.; Zeilinger, G.; Frank, M.; Burg, J.P. Multiple mantle sources during island arc magmatism: U-Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova 2002, 14, 461–468. [Google Scholar] [CrossRef]
- Zeilinger, G. Structural and geochronological study of the lowest Kohistan complex, Indus Kohistan region in Pakistan, NW Himalaya. J. Comp. Neurol. 2002, 478, 418–426. [Google Scholar]
- Anczkiewicz, R.; Vance, D. Isotopic constraints on the evolution of metamorphic conditions in the Jijal-Patan Complex and Kamila Belt of the Kohistan Arc, Pakistan Himalaya, Tectonics of the Nanga Parbat syntaxis and the western Himalaya. Geol. Soc. Spec. Publ. 2000, 170, 321–331. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nakamura, E. Sm-Nd dating of garnet granulites from the Kohistan Complex, northern Pakistan. J. Geol. Soc. Lond. 1996, 153, 965–969. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nakamura, E. Timing of magmatic and metamorphic events in the Jijal Complex of the Kohistan Arc deduced from Sm-Nd dating of mafic granulites. Geol. Soc. Lond. Spec. Publ. 2000, 170, 313–319. [Google Scholar] [CrossRef]
- Bouilhol, P.; Jagoutz, O.; Hanchar, J.M.; Dudas, F.O. Dating the India-Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 2013, 366, 163–175. [Google Scholar] [CrossRef]
- Schaltegger, U.; Frank, M.; Burg, J.P. A 120 Million Years Record of Magmatism and Crustal Melting in the Kohistan Batholith. In Proceedings of the EGS-AGU-EUG Joint Assembly, Nice, France, 6–11 April 2003. [Google Scholar]
- Zhou, M.F.; Robinson, P.T.; Su, B.X.; Gao, J.F.; Li, J.W.; Yang, J.S.; Malpas, J. Com-positions of chromite, associated minerals, and parental magmas of podiform chromite deposits. The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res. 2014, 26, 262–283. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Crawford, A.J.; Sebastien, M. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Maurel, C.; Maurel, P. Etude experimentale de la distribution de l’aluminium entre bain silicate basique et spinelle chromifere. Implications petrogenetiques: Teneur en chrome des spinelles. Bull. Mineral. 1982, 105, 197–202. [Google Scholar] [CrossRef]
- Xiong, F.H.; Yang, J.S.; Robinson, P.T.; Xu, X.Z.; Liu, Z.; Zhou, W.D.; Feng, G.Y.; Xu, J.F.; Li, J.; Niu, X.L. High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geol. Rev. 2017, 80, 1020–1041. [Google Scholar] [CrossRef]
- Rui, H.C.; Jiao, J.G.; Xia, M.Z.; Yang, J.S.; Xia, Z.D. Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and Geochemical Evidence. J. Earth Sci. 2019, 3, 467–493. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Yamamoto, S.; Komiya, T.; Yamamoto, H.; Kaneko, Y.; Terabayashi, M.; Katayama, I. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, Southern Tibet. Isl. Arc 2013, 22, 89–103. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, J.J.; Xia, B.; Zhang, C.; Zhang, L.F. Metamorphism and Zircon Geochronological Studies of Metagabbro Vein in the Yushugou Granulite-Peridotite Complex from South Tianshan, China. J. Earth Sci. 2019, 30, 1215–1229. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, J.P.; Xiong, Q. Zircon from Orogenic Peridotite: An Ideal Indicator for Mantle-Crust Interaction in Subduction Zones. J. Earth Sci. 2019, 30, 666–678. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Xia, Q.X.; Zheng, Y.F.; Chen, Y.X. Protolith control on fluid availability for zircon growth during continental subduction-zone metamorphism in the dabie orogen. J. Asian Earth Sci. 2013, 67–68, 93–113. [Google Scholar] [CrossRef]
- Turner, S.; Hawkesworth, C.; Calsteren, P.; Heath, E.; Macdonald, R.; Black, S. U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth Planet. Sci. Lett. 1996, 142, 191–207. [Google Scholar] [CrossRef]
- Schulz, B.; Klemd, R.; Bratz, H. Host rock compositional controls on zircon trace element signatures in metabasites from the austroalpine basement. Geochim. Cosmochim. Acta 2006, 70, 697–710. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 16, 469–500. [Google Scholar] [CrossRef]
- Pedersen, R.B.; Searle, M.T.; Corfield, R.I. U–Pb zircon ages from the Spontang ophiolite, Ladakh Himalaya. J. Geol. Soc. Lond. 2001, 158, 513–520. [Google Scholar] [CrossRef]
- Kang, Z.Q.; Xu, J.F.; Wilde, S.A.; Feng, Z.H.; Chen, J.L.; Wang, B.D.; Fu, W.C.; Pan, H.B. Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc. Lithos 2014, 200, 157–168. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, H. Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting. J. Earth Sci. 2020, 31, 223–236. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.-L.; Ding, L.; Zhang, L.-Y.; Wang, C.; Yue, Y.-H. Identification and Origin of Jurassic (~182 Ma) Zircon Grains from Chromitite within the Peridotite of the Jijal Complex, Kohistan Arc in North Pakistan. Minerals 2020, 10, 1085. https://doi.org/10.3390/min10121085
Ding X-L, Ding L, Zhang L-Y, Wang C, Yue Y-H. Identification and Origin of Jurassic (~182 Ma) Zircon Grains from Chromitite within the Peridotite of the Jijal Complex, Kohistan Arc in North Pakistan. Minerals. 2020; 10(12):1085. https://doi.org/10.3390/min10121085
Chicago/Turabian StyleDing, Xiang-Li, Lin Ding, Li-Yun Zhang, Chao Wang, and Ya-Hui Yue. 2020. "Identification and Origin of Jurassic (~182 Ma) Zircon Grains from Chromitite within the Peridotite of the Jijal Complex, Kohistan Arc in North Pakistan" Minerals 10, no. 12: 1085. https://doi.org/10.3390/min10121085
APA StyleDing, X.-L., Ding, L., Zhang, L.-Y., Wang, C., & Yue, Y.-H. (2020). Identification and Origin of Jurassic (~182 Ma) Zircon Grains from Chromitite within the Peridotite of the Jijal Complex, Kohistan Arc in North Pakistan. Minerals, 10(12), 1085. https://doi.org/10.3390/min10121085