Computing the Number of s-Matchings in Cyclooctatetraene Chains
Abstract
:1. Introduction
2. Computation of s-Matchings in Cyclooctatetraene Chains
3. Algorithms
Algorithm 1: Algorithm for setting up the transfer matrix forms T, W, X, Y, Z for the corresponding s. |
Input: Enter the value of s. Result: Required echelon matrix form depending on the rows 1, , , . ; “Here, the steps given after adding this algorithm will be based on the needed matrix”; ; ; ; ; for do for s do ; ; ; ; end end for do for s do ; ; ; ; end end for do for s do ; ; ; ; end end for do for s do ; ; ; ; end end |
Algorithm 2: Design the algorithm to calculate in which u and v represent vertices of graph . |
Input: Enter the value of s. ; ; ; ; ; ; ; Result: . |
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gottfriedsen, J.; Miloslavina, A.; Edelmann, F.T. Cyclooctatetraene made easy. Tetrahedron Lett. 2004, 45, 3583–3584. [Google Scholar] [CrossRef]
- Chang, J.L.; Cheng, M.Z.; Huang, Y.J. Theoretical Study of the Negative Ion Photoelectron Spectrum of Cyclooctatetraene via Computation of Franck-Condon Factors. J. Phys. Chem. A 2020, 124, 3205–3213. [Google Scholar] [CrossRef]
- Deslongchamps, G.; Deslongchamps, P. Bent Bonds (τ) and the Antiperiplanar Hypothesis-The Chemistry of Cyclooctatetraene and Other C8H8 Isomers. J. Org. Chem. 2018, 83, 5751–5755. [Google Scholar] [CrossRef]
- Tomilin, O.B.; Fomina, L.V.; Rodionova, E.V. Possible Skeletal Transformations of Cyclooctatetraene in Its Thermal Isomerization. Russ. J. Org. Chem. 2022, 58, 488–498. [Google Scholar] [CrossRef]
- Qi, J.F.; Ni, J.B.; Geng, X.Y. The expected values for the Kirchhoff indices in the random cyclooctatetraene and spiro chains. J. Discret. Applited Math. 2022, 321, 240–249. [Google Scholar] [CrossRef]
- Hosoya, H. Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332–2339. [Google Scholar] [CrossRef]
- Ye, Y.L.; Pan, X.F.; Liu, H.Q. Ordering unicyclic graphs with respect to Hosoya indices and Merrifield-Simmons indices. Match-Commun. Math. Comput. Chem. 2008, 59, 191–202. [Google Scholar]
- Huang, G.H.; Wu, R.F.; Deng, H.Y. The expected values of Hosoya index and Merrifield-Simmons index in a random spiro chain. Util. Math. 2019, 110, 195–202. [Google Scholar]
- Bai, Y.L.; Zhao, B.; Zhao, P.Y. Extremal Merrifield-Simmons Index and Hosoya Index of Polyphenyl Chains. Match-Commun. Math. Comput. Chem. 2009, 62, 649–656. [Google Scholar]
- Huang, G.H.; Kuang, M.J.; Deng, H.Y. The expected values of Hosoya index and Merrifield-Simmons index in a random polyphenylene chain. J. Comb. Optim. 2016, 32, 550–562. [Google Scholar] [CrossRef]
- Yang, W.L. Hosoya and Merrifleld-Simmons Indices in Random Polyphenyl Chains. Acta Math. Appl. Sin. Engl. Ser. 2021, 37, 485–494. [Google Scholar] [CrossRef]
- Hosoya, H. Important mathematical structures of the topological index Z for tree graphs. J. Chem. Inf. Model. 2007, 47, 744–750. [Google Scholar] [CrossRef]
- Ou, J. On acyclic molecular graphs with maximal Hosoya index, energy, and short diameter. J. Math. Chem. 2008, 43, 328–337. [Google Scholar] [CrossRef]
- Ou, J. On extremal unicyclic molecular graphs with maximal Hosoya index. Discrete Appl. Math. 2009, 157, 391–397. [Google Scholar] [CrossRef]
- Li, S.C.; Zhu, Z.X. On the Hosoya index of unicyclic graphs with a given diameter. ARS Comb. 2014, 114, 111–128. [Google Scholar]
- Qiao, Y.F.; Zhan, F.Q. Ordering polygonal chains with respect to Hosoya index. Appl. Math.-J. Chin. Univ. Ser. B 2012, 27, 305–319. [Google Scholar] [CrossRef]
- Behmaram, A. On the Number of 4-Matchings in Graphs. Match-Commun. Math. Comput. Chem. 2009, 62, 381–388. [Google Scholar]
- Vesalian, R.; Asgari, F. Number of 5-Matchings in Graphs. Match-Commun. Math. Comput. Chem. 2013, 69, 33–46. [Google Scholar]
- Vesalian, R.; Namazi, R.; Asgari, F. Number of 6-Matchings in Graphs. Match-Commun. Math. Comput. Chem. 2015, 73, 239–265. [Google Scholar]
- Zeng, Y.Q.; Zhang, F.J. Extremal polyomino chains on k-matchings and k-independent sets. J. Math. Chem. 2007, 42, 125–140. [Google Scholar] [CrossRef]
- Cao, Y.F.; Zhang, F.J. Extremal polygonal chains on k-matchings. Match-Commun. Math. Comput. Chem. 2008, 60, 217–235. [Google Scholar]
- Liu, Y.; Su, X.L.; Xiong, D.N. Integer k-matchings of graphs: k-Berge-Tutte formula, k-factor-critical graphs and k-barriers. Discret Appl. Math. 2021, 297, 120–128. [Google Scholar] [CrossRef]
- Behmaram, A.; Azari, H.Y.; Ashrafi, A.R. On the Number of Matchings and Independent Sets in (3,6)-Fullerenes. Match-Commun. Math. Comput. Chem. 2013, 70, 525–532. [Google Scholar]
- Hosoya, H.; Ohkami, N. Operator technique for obtaining the recursion formulas of characteristic and matching polynomials as applied to polyhex graphs. J. Comput. Chem. 1983, 4, 585–593. [Google Scholar] [CrossRef]
- Randić, M.; Hosoya, H.; Polansky, O.E. On the construction of the matching polynomial for unbranched catacondensed benzenoids. J. Comput. Chem. 1989, 10, 683–697. [Google Scholar]
- Mayer, V. Nonsquare transfer-matrix technique applied to the simulation of electronic diffraction by a three-dimensional circular aperture. Phys. Rev. E 2000, 61, 5953–5960. [Google Scholar] [CrossRef]
- Feyzollahzadeh, M.; Bamdad, M. An efficient technique in transfer matrix method for beam-like structures vibration analysis. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 2022, 236, 7641–7656. [Google Scholar] [CrossRef]
- Dastjerdi, S.; Abbasi, M. A vibration analysis of a cracked micro-cantilever in an atomic force microscope by using transfer matrix method. Ultramicroscopy 2019, 196, 33–39. [Google Scholar] [CrossRef]
- Krauss, W. Ryan, Computationally efficient modeling of flexible robots using the transfer matrix method. J. Vib. Control. 2012, 18, 596–608. [Google Scholar] [CrossRef]
- Hosoya, H.; Motoyama, A. An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two-and three-dimensional rectangular and torus lattices. J. Math. Phys. 1985, 26, 157–167. [Google Scholar] [CrossRef]
- Hayat, S.; Suhaili, N.; Jamil, H. Statistical significance of valency-based topological descriptors for correlating thermodynamic properties of benzenoid hydrocarbons with applications. Comput. Theor. Chem. 2023, 1227, 114259. [Google Scholar] [CrossRef]
- Hayat, S.; Khan, A.; Ali, K.; Liu, J.B. Structure-property modeling for thermodynamic properties of benzenoid hydrocarbons by temperature-based topological indices. Ain Shams Eng. J. 2024, 15, 102586. [Google Scholar] [CrossRef]
- Oz, M.S. Computing the Number of Matchings in Catacondensed Benzenoid Systems. Match-Commun. Math. Comput. Chem. 2023, 89, 223–243. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Han, H.; Geng, X. Computing the Number of s-Matchings in Cyclooctatetraene Chains. Symmetry 2024, 16, 951. https://doi.org/10.3390/sym16080951
Chen S, Han H, Geng X. Computing the Number of s-Matchings in Cyclooctatetraene Chains. Symmetry. 2024; 16(8):951. https://doi.org/10.3390/sym16080951
Chicago/Turabian StyleChen, Shiqin, Hui Han, and Xianya Geng. 2024. "Computing the Number of s-Matchings in Cyclooctatetraene Chains" Symmetry 16, no. 8: 951. https://doi.org/10.3390/sym16080951
APA StyleChen, S., Han, H., & Geng, X. (2024). Computing the Number of s-Matchings in Cyclooctatetraene Chains. Symmetry, 16(8), 951. https://doi.org/10.3390/sym16080951