Spherical Particle Orbits around a Rotating Black Hole in Massive Gravity
Abstract
:1. Introduction and Motivation
2. Massive Theory of Gravity and Its Static Black Hole Solution in the Cosmological Background
3. Spherical Particle Orbits
3.1. Radii of Planar Orbits
Non-Monotonic Behavior of the Solutions
4. Analytical Solutions for the Spherical Particle Orbits
4.1. The Latitudinal Motion
4.2. The Azimuth Motion
4.3. Explicit Examples of Non-Planar Orbits
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Roots of the Polynomial Equation Δ(r) = 0
References
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Rana, P.; Mangalam, A. Astrophysically relevant bound trajectories around a Kerr black hole. Class. Quantum Gravity 2019, 36, 045009. [Google Scholar] [CrossRef] [Green Version]
- Kapec, D.; Lupsasca, A. Particle motion near high-spin black holes. Class. Quantum Gravity 2020, 37, 015006. [Google Scholar] [CrossRef] [Green Version]
- Gralla, S.E.; Lupsasca, A. Null geodesics of the Kerr exterior. Phys. Rev. D 2020, 101, 044032. [Google Scholar] [CrossRef] [Green Version]
- Stein, L.C.; Warburton, N. Location of the last stable orbit in Kerr spacetime. Phys. Rev. D 2020, 101, 064007. [Google Scholar] [CrossRef] [Green Version]
- Compère, G.; Druart, A. Near-horizon geodesics of high spin black holes. Phys. Rev. D 2020, 101, 084042. [Google Scholar] [CrossRef]
- Rana, P.; Mangalam, A. A Geometric Origin for Quasi-periodic Oscillations in Black Hole X-ray Binaries. Astrophys. J. 2020, 903, 121. [Google Scholar] [CrossRef]
- Carter, B. Global Structure of the Kerr Family of Gravitational Fields. Phys. Rev. 1968, 174, 1559–1571. [Google Scholar] [CrossRef] [Green Version]
- Mino, Y. Perturbative approach to an orbital evolution around a supermassive black hole. Phys. Rev. D 2003, 67, 084027. [Google Scholar] [CrossRef] [Green Version]
- Fujita, R.; Hikida, W. Analytical solutions of bound timelike geodesic orbits in Kerr spacetime. Class. Quantum Gravity 2009, 26, 135002. [Google Scholar] [CrossRef] [Green Version]
- Lämmerzahl, C.; Hackmann, E. Analytical Solutions for Geodesic Equation in Black Hole Spacetimes. In 1st Karl Schwarzschild Meeting on Gravitational Physics; Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 170, pp. 43–51. [Google Scholar] [CrossRef]
- Wilkins, D.C. Bound Geodesics in the Kerr Metric. Phys. Rev. D 1972, 5, 814–822. [Google Scholar] [CrossRef]
- Johnston, M.; Ruffini, R. Generalized Wilkins effect and selected orbits in a Kerr-Newman geometry. Phys. Rev. D 1974, 10, 2324–2329. [Google Scholar] [CrossRef]
- Stoghianidis, E.; Tsoubelis, D. Polar orbits in the Kerr space-time. Gen. Relativ. Gravit. 1987, 19, 1235–1249. [Google Scholar] [CrossRef]
- Hughes, S.A. Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. Phys. Rev. D 2000, 61, 084004. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.A. Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms. Phys. Rev. D 2001, 64, 064004. [Google Scholar] [CrossRef] [Green Version]
- Kraniotis, G.V. Precise relativistic orbits in Kerr and Kerr–(anti) de Sitter spacetimes. Class. Quantum Gravity 2004, 21, 4743–4769. [Google Scholar] [CrossRef]
- Fayos, F.; Teijón, C. Geometrical locus of massive test particle orbits in the space of physical parameters in Kerr space–time. Gen. Relativ. Gravit. 2008, 40, 2433–2460. [Google Scholar] [CrossRef] [Green Version]
- Hackmann, E.; Lämmerzahl, C.; Kagramanova, V.; Kunz, J. Analytical solution of the geodesic equation in Kerr-(anti-) de Sitter space-times. Phys. Rev. D 2010, 81, 044020. [Google Scholar] [CrossRef] [Green Version]
- Grossman, R.; Levin, J.; Perez-Giz, G. Harmonic structure of generic Kerr orbits. Phys. Rev. D 2012, 85, 023012. [Google Scholar] [CrossRef] [Green Version]
- Hod, S. Marginally bound (critical) geodesics of rapidly rotating black holes. Phys. Rev. D 2013, 88, 087502. [Google Scholar] [CrossRef] [Green Version]
- Teo, E. Spherical orbits around a Kerr black hole. Gen. Relativ. Gravit. 2021, 53, 10. [Google Scholar] [CrossRef]
- Tavlayan, A.; Tekin, B. Radii of spherical timelike orbits around Kerr black holes. Phys. Rev. D 2021, 104, 124059. [Google Scholar] [CrossRef]
- Battista, E.; Esposito, G. Geodesic motion in Euclidean Schwarzschild geometry. Eur. Phys. J. C 2022, 82, 1088. [Google Scholar] [CrossRef] [PubMed]
- Freedman, W.L.; Turner, M.S. Colloquium: Measuring and understanding the universe. Rev. Mod. Phys. 2003, 75, 1433–1447. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef] [Green Version]
- De Felice, A.; Tsujikawa, S. f(R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Quiros, I. Selected topics in scalar–tensor theories and beyond. Int. J. Mod. Phys. D 2019, 28, 1930012. [Google Scholar] [CrossRef]
- Fujii, Y.; Maeda, K.-i. The Scalar-Tensor Theory of Gravitation; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Fierz, M.; Pauli, W.E.; Dirac, P.A.M. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1939, 173, 211–232. [Google Scholar] [CrossRef]
- de Rham, C.; Gabadadze, G. Generalization of the Fierz-Pauli action. Phys. Rev. D 2010, 82, 044020. [Google Scholar] [CrossRef] [Green Version]
- de Rham, C.; Gabadadze, G.; Tolley, A.J. Resummation of Massive Gravity. Phys. Rev. Lett. 2011, 106, 231101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rham, C. Massive Gravity. Living Rev. Relativ. 2014, 17, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.G.; Tannukij, L.; Wongjun, P. A class of black holes in dRGT massive gravity and their thermodynamical properties. Eur. Phys. J. C 2016, 76, 119. [Google Scholar] [CrossRef] [Green Version]
- Panpanich, S.; Burikham, P. Fitting rotation curves of galaxies by de Rham-Gabadadze-Tolley massive gravity. Phys. Rev. D 2018, 98, 064008. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A. Implications of a positive cosmological constant for general relativity. Rep. Prog. Phys. 2017, 80, 102901. [Google Scholar] [CrossRef] [Green Version]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Innermost and outermost stable circular orbits in the presence of a positive cosmological constant. Phys. Rev. D 2020, 101, 024050. [Google Scholar] [CrossRef] [Green Version]
- Rincón, A.; Panotopoulos, G.; Lopes, I.; Cruz, N. ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity. Universe 2021, 7, 278. [Google Scholar] [CrossRef]
- Berezhiani, L.; Chkareuli, G.; de Rham, C.; Gabadadze, G.; Tolley, A.J. On black holes in massive gravity. Phys. Rev. D 2012, 85, 044024. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Easson, D.A.; Gao, C.; Saridakis, E.N. Charged black holes in nonlinear massive gravity. Phys. Rev. D 2013, 87, 064001. [Google Scholar] [CrossRef] [Green Version]
- Newman, E.T.; Janis, A.I. Note on the Kerr Spinning-Particle Metric. J. Math. Phys. 1965, 6, 915–917. [Google Scholar] [CrossRef]
- Azreg-Aïnou, M. Generating rotating regular black hole solutions without complexification. Phys. Rev. D 2014, 90, 064041. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.M.; Press, W.H.; Teukolsky, S.A. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J. 1972, 178, 347–370. [Google Scholar] [CrossRef]
- Bardeen, J. Timelike and null geodesics in the Kerr metric. In Les Houches Summer School of Theoretical Physics: Black Holes; American Astronomical Society: Les Houches, France, 1973; pp. 215–240. [Google Scholar]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford Classic Texts in the Physical Sciences; Oxford University Press: Cambridge, UK, 1998. [Google Scholar]
- Kraniotis, G.V. Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries. Eur. Phys. J. C 2021, 81, 147. [Google Scholar] [CrossRef]
- Dokuchaev, V.I.; Nazarova, N.O. Visible Shapes of Black Holes M87* and SgrA*. Universe 2020, 6, 154. [Google Scholar] [CrossRef]
- Song, Y. The evolutions of the innermost stable circular orbits in dynamical spacetimes. Eur. Phys. J. C 2021, 81, 875. [Google Scholar] [CrossRef]
- Chen, C.Y.; Yang, H.Y.K. Curved accretion disks around rotating black holes without reflection symmetry. Eur. Phys. J. C 2022, 82, 307. [Google Scholar] [CrossRef]
- Ospino, J.; Hernández-Pastora, J.L.; Núñez, L.A. All analytic solutions for geodesic motion in axially symmetric space-times. Eur. Phys. J. C 2022, 82, 591. [Google Scholar] [CrossRef]
- Cao, W.; Liu, W.; Wu, X. Integrability of Kerr-Newman spacetime with cloud strings, quintessence and electromagnetic field. Phys. Rev. D 2022, 105, 124039. [Google Scholar] [CrossRef]
- Bogush, I.; Gal’tsov, D.; Gyulchev, G.; Kobialko, K.; Nedkova, P.; Vetsov, T. Photon surfaces, shadows, and accretion disks in gravity with minimally coupled scalar field. Phys. Rev. D 2022, 106, 024034. [Google Scholar] [CrossRef]
- Baines, J.; Berry, T.; Simpson, A.; Visser, M. Constant-r geodesics in the Painlevé–Gullstrand form of Lense–Thirring spacetime. Gen. Relativ. Gravit. 2022, 54, 79. [Google Scholar] [CrossRef]
- Dymnikova, I.; Dobosz, A. Orbits of Particles and Photons around Regular Rotating Black Holes and Solitons. Symmetry 2023, 15, 273. [Google Scholar] [CrossRef]
- Bogush, I.; Kobialko, K.; Gal’tsov, D. Glued massive particles surfaces. arXiv 2023, arXiv:2306.12888. [Google Scholar]
- Fathi, M.; Olivares, M.; Villanueva, J.R. Spherical photon orbits around a rotating black hole with quintessence and cloud of strings. Eur. Phys. J. Plus 2023, 138, 7. [Google Scholar] [CrossRef]
k | u | k | u | k | u | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 1.762 | 2.213, 2.517 | 1 | 0.1 | – | 4.047 | 2 | 0.1 | 2.918 | – |
0 | 0.2 | 1.652 | 2.295, 2.533 | 1 | 0.2 | – | 4.096 | 2 | 0.2 | 2.677 | – |
0 | 0.3 | 1.562 | 2.357, 2.549 | 1 | 0.3 | – | 4.144 | 2 | 0.3 | 2.473 | – |
0 | 0.4 | 1.480 | 2.408, 2.564 | 1 | 0.4 | – | 4.193 | 2 | 0.4 | 2.289 | – |
0 | 0.5 | 1.403 | 2.452, 2.578 | 1 | 0.5 | – | 4.242 | 2 | 0.5 | 2.115 | – |
0 | 0.6 | 1.328 | 2.491, 2.593 | 1 | 0.6 | – | 4.290 | 2 | 0.6 | 1.944 | – |
0 | 0.7 | 1.252 | 2.526, 2.606 | 1 | 0.7 | – | 4.338 | 2 | 0.7 | 1.769 | – |
0 | 0.8 | 1.175 | 2.559, 2.619 | 1 | 0.8 | 1.730 | 2.269, 4.386 | 2 | 0.8 | 1.578 | – |
0 | 0.9 | 1.092 | 2.590, 2.632 | 1 | 0.9 | 1.335 | 2.437, 4.432 | 2 | 0.9 | 1.345 | – |
0 | 1.0 | 1.0 | 2.618, 2.644 | 1 | 1.0 | – | 2.529, 4.478 | 2 | 1.0 | – | – |
Name | u | h | k | |||
---|---|---|---|---|---|---|
(a) | 0.3 | 0.1 | 0.08 | 0.003 | 2.342 | 7.093 |
(b) | 0.9 | 0.1 | 0.08 | 0.890 | 1.921 | 2.208 |
(c) | 0.85 | 0.3 | 0.04 | 0.91 | 5.038 | 6.590 |
(d) | 0.5 | 0.4 | 0.004 | 1.1 | 2.533 | 3.938 |
(e) | 0.6 | 0.6 | 0.0004 | 0.93 | 5.803 | 7.916 |
(f) | 0.8 | 0.7 | 0.01 | 1.3 | 4.109 | 2.711 |
(g) | 0.9 | 0.001 | 0.9 | 2.922 | 1.067 | |
(h) | 0.85 | 1 (polar) | 0.0001 | 1 | 3.497 | 0.0045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathi, M.; Villanueva, J.R.; Cruz, N. Spherical Particle Orbits around a Rotating Black Hole in Massive Gravity. Symmetry 2023, 15, 1485. https://doi.org/10.3390/sym15081485
Fathi M, Villanueva JR, Cruz N. Spherical Particle Orbits around a Rotating Black Hole in Massive Gravity. Symmetry. 2023; 15(8):1485. https://doi.org/10.3390/sym15081485
Chicago/Turabian StyleFathi, Mohsen, José R. Villanueva, and Norman Cruz. 2023. "Spherical Particle Orbits around a Rotating Black Hole in Massive Gravity" Symmetry 15, no. 8: 1485. https://doi.org/10.3390/sym15081485