# A Note on Generalized Solitons

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

**Lemma**

**1.**

**Proof.**

**Lemma**

**2.**

**Proof.**

## 3. A Characterization of a Euclidean Space

**Theorem**

**1.**

**Proof.**

## 4. Quasi-Einstein Manifolds

**Theorem**

**2.**

**Proof.**

**Theorem**

**3.**

**Proof.**

**Theorem**

**4.**

## 5. Examples and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hamilton, R. Three-manifolds with positive Ricci curvature. J. Differ. Geom.
**1982**, 17, 255–306. [Google Scholar] [CrossRef] - Besse, A.L. Einstein Manifolds; Classics in Mathematics; Springer: Berlin, Germany, 1987. [Google Scholar]
- Chaki, M.C.; Maity, R.K. On quasi Einstein manifolds. Publ. Math. Debrecen
**2000**, 57, 297–306. [Google Scholar] [CrossRef] - Barbosa, A.; Ribeiro, E. Some characterizations for compact almost Ricci solitons. Proc. Am. Math. Soc.
**2012**, 140, 213–223. [Google Scholar] - Deshmukh, S.; Al-Sodais, H.; Turki, N. Some Results on Ricci Almost Solitons. Symmetry
**2021**, 13, 430. [Google Scholar] [CrossRef] - Dwivedi, S. Some results on Ricci-Bourguignon solitons and almost solitons. Can. Math. Bull.
**2020**, 64, 591–604. [Google Scholar] [CrossRef] - Gomes, J.N.; Wang, Q.; Xia, C. On h-almost Ricci soliton. J. Geom. Phys.
**2017**, 114, 216–222. [Google Scholar] [CrossRef] - Marrero, J.C. The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl.
**1992**, 162, 77–86. [Google Scholar] [CrossRef] - Neto, B.L.; de Oliveira, H.P. Generalized quasi Yamabe gradient solitons. Differ. Geom. Its Appl.
**2016**, 49, 167–175. [Google Scholar] [CrossRef] - Petersen, P. Riemannian Geometry, 2nd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 2006; Volume 171. [Google Scholar]
- Pigola, S.; Rigoli, M.; Rimoldi, M.; Setti, A.G. Ricci almost solitons. Ann. Della Sc. Norm. Super. Pisa-Cl. Sci.
**2011**, 5, 757–799. [Google Scholar] [CrossRef] - Wang, L.F. On noncompact τ-quasi-Einstein metrics. Pac. J. Math.
**2011**, 254, 449–464. [Google Scholar] [CrossRef] - Barbosa, A.; Ribeiro, E. On conformal solutions of the Yamabe flow. Arch. Math.
**2013**, 101, 79–89. [Google Scholar] [CrossRef] - Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker Inc.: New York, NY, USA, 1970. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ishan, A.; Deshmukh, S.
A Note on Generalized Solitons. *Symmetry* **2023**, *15*, 954.
https://doi.org/10.3390/sym15040954

**AMA Style**

Ishan A, Deshmukh S.
A Note on Generalized Solitons. *Symmetry*. 2023; 15(4):954.
https://doi.org/10.3390/sym15040954

**Chicago/Turabian Style**

Ishan, Amira, and Sharief Deshmukh.
2023. "A Note on Generalized Solitons" *Symmetry* 15, no. 4: 954.
https://doi.org/10.3390/sym15040954