# Weak Gravitational Lensing around Bardeen Black Hole with a String Cloud in the Presence of Plasma

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{10}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Bardeen Spacetime with a Cloud of Strings

## 3. Weak Gravitational Lensing with Plasma

#### 3.1. Uniform Plasma with ${\omega}_{e}^{2}=const$

#### 3.2. Non-Uniform Plasma with Singular Isothermal Sphere Medium

#### 3.3. $Non$-$Singular$ $Isothermal$ $Gas$ $Sphere$

## 4. Magnification of Image Source in the Presence of Plasma

#### 4.1. Uniform Plasma with ${\omega}_{e}^{2}=\phantom{\rule{3.33333pt}{0ex}}\mathrm{const}$

#### 4.2. Non-Uniform Plasma with SIS Medium

## 5. Conclusions

- We analyzed the horizon radius for various values of the black hole in Bardeen gravity with a cloud string parameter a. The results show that the radius of horizon ${r}_{h}$ is decreasing in the presence of parameter q, and the effect of string clouds is inverse.
- In the presence of the parameter a and magnetic charge q of the Bardeen spacetime metric with a cloud of a string field, the deflection angle of light beams around the BH decreases. In addition, with fixed values of the magnetic charge q and parameter a, the influence of uniform plasma on the gravitational weak deflection angle is also shown in Figure 3.
- As seen in Figure 4, the deflection angle of light rays around the compact object increases as the value of the parameter responsible for the non-uniform plasma medium increases.
- The deflection angle of a light beam around the BH is larger in the uniform case than in the non-uniform case, and this is true regardless of the values of the parameters a and q in the plasma (Figure 6).
- For various values of the parameter a and magnetic charge q in Bardeen spacetime in the presence of a cloud string field, we have explored the overall magnification of the image source caused by gravitational weak lensing. We have demonstrated that the magnetic charge $q/M$ has an impact on the total magnification of the image but that the total magnification also increases with an increase in the parameter a (see Figure 8 and Figure 9).
- Finally, we have investigated the total magnification’s reliance on the plasma medium and found that it increases as the plasma medium’s uniform and non-uniform properties are increased.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hawking, S.W. Black hole explosions? Nature
**1974**, 248, 30–31. [Google Scholar] [CrossRef] - Born, M.; Infeld, L. Foundations of the New Field Theory. Proc. R. Soc. Lond. A
**1934**, 144, 425–451. [Google Scholar] [CrossRef] - Hendi, S.H.; Panahiyan, S.; Eslam Panah, B. Geometrical method for thermal instability of nonlinearly charged BTZ Black Holes. arXiv
**2015**, arXiv:1509.07014. [Google Scholar] [CrossRef] [Green Version] - Dehghani, M. Thermodynamics of (2 + 1)-dimensional charged black holes with power-law Maxwell field. Phys. Rev. D
**2016**, 94, 104071. [Google Scholar] [CrossRef] - Dehghani, M.; Hamidi, S.F. Thermal stability analysis of nonlinearly charged asymptotic AdS black hole solutions. Phys. Rev. D
**2017**, 96, 044025. [Google Scholar] [CrossRef] - Bardeen, J.M. Non-singular general-relativistic gravitational collapse. In Proceedings of the International Conference GR5, Tbilisi, Georgia, 9–16 September 1968; p. 174. [Google Scholar]
- Ayón-Beato, E.; García, A. The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B
**2000**, 493, 149–152. [Google Scholar] [CrossRef] [Green Version] - Rodrigues, M.E.; Junior, E.L.B.; Silva, M.V.d.S. Using dominant and weak energy conditions for build new classe of regular black holes. JCAP
**2018**, 2018, 59. [Google Scholar] [CrossRef] [Green Version] - Dymnikova, I. Regular electrically charged vacuum structures with de Sitter centre in nonlinear electrodynamics coupled to general relativity. Class. Quantum Gravity
**2004**, 21, 4417–4428. [Google Scholar] [CrossRef] - Rodrigues, M.E.; Silva, M.V.d.S. Bardeen regular black hole with an electric source. JCAP
**2018**, 2018, 025. [Google Scholar] [CrossRef] [Green Version] - Bambi, C.; Modesto, L. Rotating regular black holes. Phys. Lett. B
**2013**, 721, 329–334. [Google Scholar] [CrossRef] [Green Version] - Eiroa, E.F.; Sendra, C.M. Gravitational lensing by a regular black hole. Class. Quantum Gravity
**2011**, 28, 085008. [Google Scholar] [CrossRef] [Green Version] - Zhou, S.; Chen, J.; Wang, Y. Geodesic Structure of Test Particle in Bardeen Spacetime. Int. J. Mod. Phys. D
**2012**, 21, 1250077. [Google Scholar] [CrossRef] [Green Version] - Moreno, C.; Sarbach, O. Stability properties of black holes in self-gravitating nonlinear electrodynamics. Phys. Rev. D
**2003**, 67, 024028. [Google Scholar] [CrossRef] [Green Version] - Sharif, M.; Javed, W. Quantum Corrections for a Bardeen Regular Black Hole. J. Korean Phys. Soc.
**2010**, 57, 217. [Google Scholar] [CrossRef] [Green Version] - Chirenti, C.; Saa, A.; Skákala, J. Quasinormal modes for the scattering on a naked Reissner-Nordström singularity. Phys. Rev. D
**2012**, 86, 124008. [Google Scholar] [CrossRef] [Green Version] - Joshi, P.S.; Malafarina, D.; Narayan, R. Distinguishing black holes from naked singularities through their accretion disc properties. Class. Quantum Gravity
**2014**, 31, 015002. [Google Scholar] [CrossRef] - Tsukamoto, N. Gravitational lensing by a photon sphere in a Reissner-Nordström naked singularity spacetime in strong deflection limits. Phys. Rev. D
**2021**, 104, 124016. [Google Scholar] [CrossRef] - Gürses, M.; Gürsey, F. Derivation of the string equation of motion in general relativity. Phys. Rev. D
**1975**, 11, 967–969. [Google Scholar] [CrossRef] [Green Version] - Gürses, M.; Gürsey, F. Lorentz covariant treatment of the Kerr-Schild geometry. J. Math. Phys.
**1975**, 16, 2385–2390. [Google Scholar] [CrossRef] [Green Version] - Stachel, J. String matter: Perfect dust and hydrodynamics. In Proceedings of the General Relativity and Gravitation 1977, Waterloo, NSW, Canada, 7–13 August 1977; p. 324. [Google Scholar]
- Letelier, P.S. Clouds of strings in general relativity. Phys. Rev. D
**1979**, 20, 1294–1302. [Google Scholar] [CrossRef] - Herscovich, E.; Richarte, M.G. Black holes in Einstein-Gauss-Bonnet gravity with a string cloud background. Phys. Lett. B
**2010**, 689, 192–200. [Google Scholar] [CrossRef] [Green Version] - Graça, J.P.M.; Salako, G.I.; Bezerra, V.B. Quasinormal modes of a black hole with a cloud of strings in Einstein-Gauss-Bonnet gravity. Int. J. Mod. Phys. D
**2017**, 26, 1750113. [Google Scholar] [CrossRef] [Green Version] - Ghosh, S.G.; Papnoi, U.; Maharaj, S.D. Cloud of strings in third order Lovelock gravity. Phys. Rev. D
**2014**, 90, 044068. [Google Scholar] [CrossRef] [Green Version] - Ghosh, S.G.; Maharaj, S.D. Cloud of strings for radiating black holes in Lovelock gravity. Phys. Rev. D
**2014**, 89, 084027. [Google Scholar] [CrossRef] [Green Version] - Mustafa, G.; Atamurotov, F.; Hussain, I.; Shaymatov, S.; Övgün, A. Shadows and gravitational weak lensing by the Schwarzschild black hole in the string cloud background with quintessential field. Chin. Phys. C
**2022**, 46, 125107. [Google Scholar] [CrossRef] - Atamurotov, F.; Hussain, I.; Mustafa, G.; Övgün, A. Weak deflection angle and shadow cast by the charged-Kiselev black hole with cloud of strings in plasma. Chin. Phys. C
**2023**, 47, 025102. [Google Scholar] [CrossRef] - Atamurotov, F.; Hussain, I.; Mustafa, G.; Jusufi, K. Shadow and quasinormal modes of the Kerr-Newman-Kiselev-Letelier black hole. Eur. Phys. J. C
**2022**, 82, 831. [Google Scholar] [CrossRef] - Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J.
**2019**, 875, L1. [Google Scholar] [CrossRef] - Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J.
**2019**, 875, L6. [Google Scholar] [CrossRef] - Event Horizon Telescope Collaboration. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett.
**2022**, 930, L12. [Google Scholar] [CrossRef] - Synge, J.L. The escape of photons from gravitationally intense stars. Mon. Not. Roy. Astron. Soc.
**1966**, 131, 463. [Google Scholar] [CrossRef] - Luminet, J.P. Image of a spherical black hole with thin accretion disk. Astron. Astrophys.
**1979**, 75, 228–235. [Google Scholar] - Bardeen, J.M. Timelike and null geodesics in the Kerr metric. In Black Holes; Les Astres Occlus: Les Houches, France, 1973; pp. 215–239. [Google Scholar]
- Falcke, H.; Melia, F.; Agol, E. Viewing the Shadow of the Black Hole at the Galactic Center. Astrophys. J.
**2000**, 528, L13–L16. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bambi, C.; Freese, K. Apparent shape of super-spinning black holes. Phys. Rev. D.
**2009**, 79, 043002. [Google Scholar] [CrossRef] [Green Version] - Hioki, K.; Maeda, K.I. Measurement of the Kerr spin parameter by observation of a compact object’s shadow. Phys. Rev. D
**2009**, 80, 024042. [Google Scholar] [CrossRef] [Green Version] - Abdujabbarov, A.; Atamurotov, F.; Kucukakca, Y.; Ahmedov, B.; Camci, U. Shadow of Kerr-Taub-NUT black hole. Astrophys. Space Sci.
**2013**, 344, 429–435. [Google Scholar] [CrossRef] - Amarilla, L.; Eiroa, E.F. Shadow of a Kaluza-Klein rotating dilaton black hole. Phys. Rev. D
**2013**, 87, 044057. [Google Scholar] [CrossRef] [Green Version] - Atamurotov, F.; Abdujabbarov, A.; Ahmedov, B. Shadow of rotating non-Kerr black hole. Phys. Rev. D
**2013**, 88, 064004. [Google Scholar] [CrossRef] - Tsukamoto, N. Black hole shadow in an asymptotically flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes. Phys. Rev. D.
**2018**, 97, 064021. [Google Scholar] [CrossRef] [Green Version] - Ghasemi-Nodehi, M.; Azreg-Aïnou, M.; Jusufi, K.; Jamil, M. Shadow, quasinormal modes, and quasiperiodic oscillations of rotating Kaluza-Klein black holes. Phys. Rev. D.
**2020**, 102, 104032. [Google Scholar] [CrossRef] - EHT Collaboration. Constraints on black-hole charges with the 2017 EHT observations of M87*. Phys. Rev. D.
**2021**, 103, 104047. [Google Scholar] [CrossRef] - He, P.Z.; Fan, Q.Q.; Zhang, H.R.; Deng, J.B. Shadows of rotating Hayward-de Sitter black holes with astrometric observables. Eur. Phys. J. C
**2020**, 80, 1195. [Google Scholar] [CrossRef] - de Vries, A. The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set A
_{4}. Class. Quantum Gravity**2000**, 17, 123–144. [Google Scholar] [CrossRef] - Abdujabbarov, A.A.; Rezzolla, L.; Ahmedov, B.J. A coordinate-independent characterization of a black hole shadow. Mon. Not. R. Astron. Soc.
**2015**, 454, 2423–2435. [Google Scholar] [CrossRef] [Green Version] - Grenzebach, A.; Perlick, V.; Lämmerzahl, C. Photon regions and shadows of Kerr-Newman-NUT black holes with a cosmological constant. Phys. Rev. D
**2014**, 89, 124004. [Google Scholar] [CrossRef] [Green Version] - Hou, X.; Xu, Z.; Wang, J. Rotating black hole shadow in perfect fluid dark matter. J. Cosmol. Astropart. Phys.
**2018**, 2018, 40. [Google Scholar] [CrossRef] [Green Version] - Perlick, V.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Black hole shadow in an expanding universe with a cosmological constant. Phys. Rev. D.
**2018**, 97, 104062. [Google Scholar] [CrossRef] [Green Version] - Cunha, P.V.P.; Eiró, N.A.; Herdeiro, C.A.R.; Lemos, J.P.S. Lensing and shadow of a black hole surrounded by a heavy accretion disk. J. Cosmol. Astropart. Phys.
**2020**, 2020, 035. [Google Scholar] [CrossRef] [Green Version] - Afrin, M.; Kumar, R.; Ghosh, S.G. Parameter estimation of hairy Kerr black holes from its shadow and constraints from M87*. arXiv
**2021**, arXiv:2103.11417. [Google Scholar] [CrossRef] - Bambhaniya, P.; Dey, D.; Joshi, A.B.; Joshi, P.S.; Solanki, D.N.; Mehta, A. Shadows and negative precession in non-Kerr spacetime. Phys. Rev. D.
**2021**, 103, 084005. [Google Scholar] [CrossRef] - Cunha, P.V.; Herdeiro, C.A.; Kleihaus, B.; Kunz, J.; Radu, E. Shadows of Einstein–dilaton–Gauss–Bonnet black holes. Phys. Let. B
**2017**, 768, 373–379. [Google Scholar] [CrossRef] - Atamurotov, F.; Papnoi, U.; Jusufi, K. Shadow and deflection angle of charged rotating black hole surrounded by perfect fluid dark matter. Class. Quantum Gravity
**2022**, 39, 025014. [Google Scholar] [CrossRef] - Papnoi, U.; Atamurotov, F. Rotating charged black hole in 4 D Einstein-Gauss-Bonnet gravity: Photon motion and its shadow. Phys. Dark Universe
**2022**, 35, 100916. [Google Scholar] [CrossRef] - Bozza, V.; Capozziello, S.; Iovane, G.; Scarpetta, G. Strong field limit of black hole gravitational lensing. Gen. Rel. Grav.
**2001**, 33, 1535. [Google Scholar] [CrossRef] - Bozza, V. Gravitational lensing in the strong field limit. Phys. Rev. D.
**2002**, 66, 103001. [Google Scholar] [CrossRef] [Green Version] - Bozza, V.; Luca, F.D.; Scarpetta, G. Kerr black hole lensing for generic observers in the strong deflection limit. Phys. Rev. D.
**2006**, 74, 063001. [Google Scholar] [CrossRef] [Green Version] - Eiroa, E.F.; Torres, D.F. Strong field limit analysis of gravitational retro lensing. Phys. Rev. D.
**2004**, 69, 063004. [Google Scholar] [CrossRef] [Green Version] - Virbhadra, K.S.; Ellis, G.F.R. Schwarzschild black hole lensing. Phys. Rev. D.
**2000**, 62, 084003. [Google Scholar] [CrossRef] [Green Version] - Virbhadra, K.S.; Ellis, G.F.R. Gravitational lensing by naked singularities. Phys. Rev. D.
**2002**, 65, 103004. [Google Scholar] [CrossRef] - Virbhadra, K.S. Relativistic images of Schwarzschild black hole lensing. Phys. Rev. D.
**2009**, 79, 083004. [Google Scholar] [CrossRef] [Green Version] - Islam, S.U.; Kumar, R.; Ghosh, S.G. Gravitational lensing by black holes in the 4D Einstein-Gauss-Bonnet gravity. J. Cosmol. Astropart. Phys.
**2020**, 2020, 030. [Google Scholar] [CrossRef] - Lu, X.; Xie, Y. Weak and strong deflection gravitational lensing by a renormalization group improved Schwarzschild black hole. Eur. Phys. J. C
**2019**, 79, 1016. [Google Scholar] [CrossRef] [Green Version] - Wang, C.Y.; Shen, Y.F.; Xie, Y. Weak and strong deflection gravitational lensings by a charged Horndeski black hole. JCAP
**2019**, 2019, 022. [Google Scholar] [CrossRef] [Green Version] - Gao, Y.X.; Xie, Y. Gravitational lensing by hairy black holes in Einstein-scalar-Gauss-Bonnet theories. Phys. Rev. D
**2021**, 103, 043008. [Google Scholar] [CrossRef] - Bozza, V. Comparison of approximate gravitational lens equations and a proposal for an improved new one. Phys. Rev. D
**2008**, 78, 103005. [Google Scholar] [CrossRef] [Green Version] - Takizawa, K.; Ono, T.; Asada, H. Gravitational lens without asymptotic flatness: Its application to Weyl gravity. Phys. Rev. D
**2020**, 102, 064060. [Google Scholar] [CrossRef] - Perlick, V.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Influence of a plasma on the shadow of a spherically symmetric black hole. Phys. Rev. D.
**2015**, 92, 104031. [Google Scholar] [CrossRef] [Green Version] - Perlick, V.; Tsupko, O.Y. Light propagation in a plasma on Kerr spacetime: Separation of the Hamilton-Jacobi equation and calculation of the shadow. Phys. Rev. D.
**2017**, 95, 104003. [Google Scholar] [CrossRef] [Green Version] - Chowdhuri, A.; Bhattacharyya, A. Shadow analysis for rotating black holes in the presence of plasma for an expanding universe. Phys. Rev. D
**2021**, 104, 064039. [Google Scholar] [CrossRef] - Atamurotov, F.; Ahmedov, B.; Abdujabbarov, A. Optical properties of black holes in the presence of a plasma: The shadow. Phys. Rev. D
**2015**, 92, 084005. [Google Scholar] [CrossRef] [Green Version] - Atamurotov, F.; Jusufi, K.; Jamil, M.; Abdujabbarov, A.; Azreg-Aïnou, M. Axion-plasmon or magnetized plasma effect on an observable shadow and gravitational lensing of a Schwarzschild black hole. Phys. Rev. D
**2021**, 104, 064053. [Google Scholar] [CrossRef] - Babar, G.Z.; Babar, A.Z.; Atamurotov, F. Optical properties of Kerr–Newman spacetime in the presence of plasma. Eur. Phys. J. C
**2020**, 80, 761. [Google Scholar] [CrossRef] - Fathi, M.; Olivares, M.; Villanueva, J.R. Analytical study of light ray trajectories in Kerr spacetime in the presence of an inhomogeneous anisotropic plasma. arXiv
**2021**, arXiv:2104.07721. [Google Scholar] [CrossRef] - Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Gravitational lensing in a non-uniform plasma. Mon. Not. R. Astron. Soc
**2010**, 404, 1790–1800. [Google Scholar] [CrossRef] [Green Version] - Rogers, A. Frequency-dependent effects of gravitational lensing within plasma. Mon. Not. R. Astron. Soc.
**2015**, 451, 17. [Google Scholar] [CrossRef] - Atamurotov, F.; Abdujabbarov, A.; Han, W.B. Effect of plasma on gravitational lensing by a Schwarzschild black hole immersed in perfect fluid dark matter. Phys. Rev. D
**2021**, 104, 084015. [Google Scholar] [CrossRef] - Atamurotov, F.; Abdujabbarov, A.; Rayimbaev, J. Weak gravitational lensing Schwarzschild-MOG black hole in plasma. Eur. Phys. J. C
**2021**, 81, 118. [Google Scholar] [CrossRef] - Babar, G.Z.; Atamurotov, F.; Babar, A.Z. Gravitational lensing in 4-D Einstein-Gauss-Bonnet gravity in the presence of plasma. Phys. Dark Universe
**2021**, 32, 100798. [Google Scholar] [CrossRef] - Abdujabbarov, A.; Toshmatov, B.; Schee, J.; Stuchlík, Z.; Ahmedov, B. Gravitational lensing by regular black holes surrounded by plasma. Int. J. Mod. Phys. D
**2017**, 26, 1741011. [Google Scholar] [CrossRef] - Javed, W.; Hussain, I.; Övgün, A. Weak deflection angle of Kazakov-Solodukhin black hole in plasma medium using Gauss-Bonnet theorem and its greybody bonding. Eur. Phys. J. Plus
**2022**, 137, 148. [Google Scholar] [CrossRef] - Atamurotov, F.; Ghosh, S.G. Gravitational weak lensing by a naked singularity in plasma. Eur. Phys. J. Plus
**2022**, 137, 662. [Google Scholar] [CrossRef] - Ghaffarnejad, H.; Niad, H. Weak Gravitational Lensing from Regular Bardeen Black Holes. Int. J. Theor. Phys.
**2016**, 55, 1492–1505. [Google Scholar] [CrossRef] [Green Version] - Atamurotov, F.; Alloqulov, M.; Abdujabbarov, A.; Ahmedov, B. Testing the Einstein-Æther gravity: Particle dynamics and gravitational lensing. Eur. Phys. J. Plus
**2022**, 137, 634. [Google Scholar] [CrossRef] - Atamurotov, F.; Jamil, M.; Jusufi, K. Quantum effects on the black hole shadow and deflection angle in the presence of plasma. Chin. Phys. C
**2023**, 47, 035106. [Google Scholar] [CrossRef] - Rodrigues, M.E.; Vieira, H.A. Bardeen solution with a cloud of strings. Phys. Rev. D
**2022**, 106, 084015. [Google Scholar] [CrossRef] - Hinshaw, G.; Krauss, L.M. Gravitational Lensing by isothermal spheres with finite core radii: Galaxies and dark matte. Ap. J.
**1987**, 320, 468. [Google Scholar] [CrossRef] - Morozova, V.S.; Ahmedov, B.J.; Tursunov, A.A. Gravitational lensing by a rotating massive object in a plasma. Astrophys. Space Sci.
**2013**, 346, 513–520. [Google Scholar] [CrossRef] [Green Version] - Wang, Y. Observational signatures of the weak lensing magnification of supernovae. JCAP
**2005**, 2005, 005. [Google Scholar] [CrossRef] - Gonzalez, E.J.; Foëx, G.; Nilo Castellón, J.L.; Domínguez Romero, M.J.; Alonso, M.V.; García Lambas, D.; Moreschi, O.; Gallo, E. Low X-ray luminosity galaxy clusters—III. Weak lensing mass determination at 0.18 < z < 0.70. MNRAS
**2015**, 452, 2225–2235. [Google Scholar] [CrossRef] [Green Version] - Kalantari, Z.; Rahvar, S.; Ibrahim, A. Fermi-GBM Observation of GRB 090717034: χ
^{2}Test Confirms Evidence of Gravitational Lensing by a Supermassive Black Hole with a Million Solar Mass. Astrophys. J.**2022**, 934, 106. [Google Scholar] [CrossRef] - Wen, D.; Kemball, A.J. Testing Primordial Black Hole Dark Matter with ALMA Observations of the Gravitational Lens B1422 + 231. arXiv
**2022**, arXiv:2210.16444. [Google Scholar] [CrossRef]

**Figure 2.**The separatrix line indicates the border corresponding to extremal black holes, which separates black holes from no black holes.

**Figure 3.**The dependence of the deflection angle ${\widehat{\alpha}}_{uni}$ on the impact parameter b and parameter a, and magnetic charge q for different values of parameter $a/M$, plasma medium ${\omega}_{e}^{2}/{\omega}^{2}$, and magnetic charge q. The corresponding fixed parameter used is b = 4.

**Figure 4.**The effect of the impact parameter b, parameter a, and magnetic charge q on the deflection angle ${\widehat{\alpha}}_{SIS}$ for different values of parameter $a/M$, plasma medium ${\omega}_{c}^{2}/{\omega}^{2}$, and magnetic charge q. The associated fixed parameter is b = 4.

**Figure 5.**Deflection angle ${\widehat{\alpha}}_{\mathrm{NSIS}}$ as a function of impact parameter b, plasma frequency $\frac{{\omega}_{c}^{2}}{{\omega}^{2}}$, and parameter a and magnetic charge q. The fixed parameters used are $b=4$ and ${r}_{c}=3$.

**Figure 6.**Plot of the deflection angle ${\widehat{\alpha}}_{b}$ as a function of the impact parameter b, magnetic charge q, and parameter a. The corresponding fixed parameters used are $b=4$ and ${r}_{c}=3$.

**Figure 7.**Schematic view of the gravitational lensing system (adopted from Ref. [81]).

**Figure 8.**The total magnification of the image brightness in the presence of uniform plasma as a function of ${\omega}_{c}^{2}/{\omega}^{2}$, q, b, and a. The fixed parameters used are ${R}_{s}=2$, $b=3$, and ${x}_{0}=0.055$.

**Figure 9.**The total magnification of the image brightness in the presence of SIS as a function of ${\omega}_{c}^{2}/{\omega}^{2}$, q, b, and a. The fixed parameters used are ${R}_{s}=2$, $b=3$, and ${x}_{0}=0.055$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Atamurotov, F.; Alibekov, H.; Abdujabbarov, A.; Mustafa, G.; Aripov, M.M.
Weak Gravitational Lensing around Bardeen Black Hole with a String Cloud in the Presence of Plasma. *Symmetry* **2023**, *15*, 848.
https://doi.org/10.3390/sym15040848

**AMA Style**

Atamurotov F, Alibekov H, Abdujabbarov A, Mustafa G, Aripov MM.
Weak Gravitational Lensing around Bardeen Black Hole with a String Cloud in the Presence of Plasma. *Symmetry*. 2023; 15(4):848.
https://doi.org/10.3390/sym15040848

**Chicago/Turabian Style**

Atamurotov, Farruh, Husan Alibekov, Ahmadjon Abdujabbarov, Ghulam Mustafa, and Mersaid M. Aripov.
2023. "Weak Gravitational Lensing around Bardeen Black Hole with a String Cloud in the Presence of Plasma" *Symmetry* 15, no. 4: 848.
https://doi.org/10.3390/sym15040848