Computed Mass-Fragmentation Energy Profiles of Some Acetalized Monosaccharides for Identification in Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Candidate Structures
2.2. Activation Energy Descriptor
2.3. Computational Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Structure 1 | RM1 | PM7 | DFT DH | DFT DG | Structure 6 | RM1 | PM7 | DFT DH | DFT DG |
---|---|---|---|---|---|---|---|---|---|
RM1 | 1 | 0.999 | 0.93 | 0.989 | RM1 | 1 | 0.991 | 0.783 | 0.949 |
PM7 | 0.999 | 1 | 0.921 | 0.986 | PM7 | 0.991 | 1 | 0.756 | 0.933 |
DFT DH | 0.93 | 0.921 | 1 | 0.956 | DFT DH | 0.783 | 0.756 | 1 | 0.857 |
DFT DG | 0.989 | 0.986 | 0.956 | 1 | DFT DG | 0.949 | 0.933 | 0.857 | 1 |
Structure 2 | RM1 | PM7 | DFT DH | DFT DG | Structure 7 | RM1 | PM7 | DFT DH | DFT DG |
RM1 | 1 | 0.988 | 0.795 | 0.955 | RM1 | 1 | 0.956 | 1 | 0.992 |
PM7 | 0.988 | 1 | 0.841 | 0.961 | PM7 | 0.956 | 1 | 0.955 | 0.985 |
DFT DH | 0.795 | 0.841 | 1 | 0.89 | DFT DH | 1 | 0.955 | 1 | 0.992 |
DFT DG | 0.955 | 0.961 | 0.89 | 1 | DFT DG | 0.992 | 0.985 | 0.992 | 1 |
Structure 3 | RM1 | PM7 | DFT DH | DFT DG | Structure 8 | RM1 | PM7 | DFT DH | DFT DG |
RM1 | 1 | 0.944 | 0.921 | 0.96 | RM1 | 1 | 0.922 | 0.981 | 0.986 |
PM7 | 0.944 | 1 | 0.934 | 0.981 | PM7 | 0.922 | 1 | 0.87 | 0.957 |
DFT DH | 0.921 | 0.934 | 1 | 0.954 | DFT DH | 0.981 | 0.87 | 1 | 0.974 |
DFT DG | 0.96 | 0.981 | 0.954 | 1 | DFT DG | 0.986 | 0.957 | 0.974 | 1 |
Structure 4 | RM1 | PM7 | DFT DH | DFT DG | Structure 9 | RM1 | PM7 | DFT DH | DFT DG |
RM1 | 1 | 0.946 | 0.993 | 0.996 | RM1 | 1 | 0.984 | 0.814 | 0.916 |
PM7 | 0.946 | 1 | 0.939 | 0.929 | PM7 | 0.984 | 1 | 0.831 | 0.948 |
DFT DH | 0.993 | 0.939 | 1 | 0.984 | DFT DH | 0.814 | 0.831 | 1 | 0.931 |
DFT DG | 0.996 | 0.929 | 0.984 | 1 | DFT DG | 0.916 | 0.948 | 0.931 | 1 |
Structure 5 | RM1 | PM7 | DFT DH | DFT DG | Structure 10 | RM1 | PM7 | DFT DH | DFT DG |
RM1 | 1 | 0.984 | 0.987 | 0.973 | RM1 | 1 | 0.992 | 0.999 | 0.996 |
PM7 | 0.984 | 1 | 0.948 | 0.927 | PM7 | 0.992 | 1 | 0.987 | 0.976 |
DFT DH | 0.987 | 0.948 | 1 | 0.997 | DFT DH | 0.999 | 0.987 | 1 | 0.998 |
DFT DG | 0.973 | 0.927 | 0.997 | 1 | DFT DG | 0.996 | 0.976 | 0.998 | 1 |
Structures | 1 | 2 | 6 | 8 | 9 | Variance |
---|---|---|---|---|---|---|
M -> m/z 245 | 206.7 | 207.6 | 211.6 | 206.3 | 202 | 11.743 |
M -> m/z 187 | 219.8 | 216 | 217.3 | 241.6 | 213.1 | 131.33 |
M -> m/z 159 | 220.5 | 221.6 | 220.8 | 218.6 | 214.9 | 7.207 |
M -> m/z 127 | 332.8 | 265.9 | 286.1 | 293.9 | 251.7 | 958.28 |
M -> m/z 101 | 215.6 | 213.5 | 213.7 | 213.7 | 208.6 | 6.837 |
Structures | 1 | 2 | 6 | 8 | 9 | |
1 | 1 | 0.9921 | 0.9986 | 0.9511 | 0.9879 | |
2 | 0.9921 | 1 | 0.9939 | 0.9440 | 0.9970 | |
6 | 0.9986 | 0.9939 | 1 | 0.9443 | 0.9875 | |
8 | 0.9511 | 0.9440 | 0.9443 | 1 | 0.9623 | |
9 | 0.9879 | 0.9970 | 0.9875 | 0.9623 | 1 | |
Structures | 1 | 2 | 6 | 8 | 9 | |
1 | 1 | 0.9268 | 0.8833 | 0.7096 | 0.9897 | |
2 | 0.9268 | 1 | 0.9743 | 0.4646 | 0.9618 | |
6 | 0.8833 | 0.9743 | 1 | 0.5192 | 0.9410 | |
8 | 0.7096 | 0.4646 | 0.5192 | 1 | 0.6801 | |
9 | 0.9897 | 0.9618 | 0.9410 | 0.6801 | 1 |
Structures | 1 | 2 | 6 | 8 | 9 | Variance |
---|---|---|---|---|---|---|
M -> m/z 245 | 211 | 207.8 | 209.4 | 206 | 199.6 | 19.47 |
M -> m/z 187 | 210 | 216.8 | 215.5 | 211.2 | 213.7 | 8.113 |
M -> m/z 159 | 229.4 | 230.7 | 230.6 | 224.3 | 229.3 | 6.923 |
M -> m/z 127 | 263.5 | 239.4 | 236.6 | 265.1 | 241.6 | 192.5 |
M -> m/z 101 | 227.8 | 223.2 | 222.2 | 222.7 | 223.1 | 5.155 |
Structures | 1 | 2 | 6 | 8 | 9 | |
1 | 1 | 0.9100 | 0.9024 | 0.9900 | 0.8999 | |
2 | 0.9100 | 1 | 0.9956 | 0.9018 | 0.9952 | |
6 | 0.9024 | 0.9956 | 1 | 0.8838 | 0.9841 | |
8 | 0.9900 | 0.9018 | 0.8838 | 1 | 0.8949 | |
9 | 0.8999 | 0.9952 | 0.9841 | 0.8949 | 1 | |
Structures | 1 | 2 | 6 | 8 | 9 | |
1 | 1 | 0.8730 | 0.8954 | 0.9609 | 0.8661 | |
2 | 0.8730 | 1 | 0.9925 | 0.9563 | 0.9906 | |
6 | 0.8954 | 0.9925 | 1 | 0.9499 | 0.9688 | |
8 | 0.9609 | 0.9563 | 0.9499 | 1 | 0.9667 | |
9 | 0.8661 | 0.9906 | 0.9688 | 0.9667 | 1 |
Structures | 1 | 2 | 6 | 8 | 9 | Variance |
---|---|---|---|---|---|---|
M -> m/z 245 | 225.9 | 222.2 | 223.8 | 218.9 | 210.9 | 34.383 |
M -> m/z 187 | 240.2 | 245.5 | 245.5 | 240.6 | 242.2 | 6.635 |
M -> m/z 159 | 245.2 | 245.4 | 246.3 | 240.2 | 244.4 | 5.71 |
M -> m/z 127 | 306.9 | 281.6 | 279 | 309.6 | 283.2 | 221.59 |
M -> m/z 101 | 244.7 | 239.6 | 238.6 | 239.7 | 239.6 | 5.873 |
Structures | 1 | 2 | 6 | 8 | 9 | |
1 | 1 | 0.9694 | 0.9651 | 0.9973 | 0.9490 | |
2 | 0.9694 | 1 | 0.9992 | 0.9797 | 0.9922 | |
6 | 0.9651 | 0.9992 | 1 | 0.9756 | 0.9896 | |
8 | 0.9973 | 0.9797 | 0.9756 | 1 | 0.9582 | |
9 | 0.9490 | 0.9922 | 0.9896 | 0.9582 | 1 | |
Structures | 1 | 2 | 6 | 8 | 9 | |
1 | 1 | 0.9104 | 0.8862 | 0.9611 | 0.9622 | |
2 | 0.9104 | 1 | 0.9959 | 0.9753 | 0.9881 | |
6 | 0.8862 | 0.9959 | 1 | 0.9526 | 0.9745 | |
8 | 0.9611 | 0.9753 | 0.9526 | 1 | 0.9941 | |
9 | 0.9622 | 0.9881 | 0.9745 | 0.9941 | 1 |
References
- Vicidomini, C.; Roviello, V.; Roviello, G.N. In Silico Investigation on the Interaction of Chiral Phytochemicals from Opuntia ficus-indica with SARS-CoV-2 Mpro. Symmetry 2021, 13, 1041. [Google Scholar] [CrossRef]
- Kind, T.; Fiehn, O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanal. Rev. 2010, 2, 23–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kind, T.; Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform. 2007, 8, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasche, F.; Svatoš, A.; Maddula, R.K.; Böcker, C.; Böcker, S. Identifying the unknowns by aligning fragmentation trees. Anal. Chem. 2011, 83, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.; Greiner, R.; Wishart, D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 2015, 11, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Mistrík, R. Mass FrontierTM 3.0. Available online: http://www.highchem.com (accessed on 20 March 2017).
- Cautereels, J.; Claeys, M.; Geldof, D.; Blockhuys, F. Quantum chemical mass spectrometry: Ab initio prediction of electron ionization mass spectra and identification of new fragmentation pathways. J. Mass Spectrom. 2016, 51, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Towards first principles calculation of electron impact mass spectra of molecules. Angew. Chem. Int. Ed. Engl. 2013, 52, 6306–6312. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Grimme, S. How to Compute Electron Ionization Mass Spectra from First Principles. J. Phys. Chem. A 2016, 120, 3755–3766. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, H.M.; Wallenstein, M.B.; Wahrhaftig, A.L.; Eyring, H. Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules. Proc. Natl. Acad. Sci. USA 1952, 38, 667–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaniya, A.; Fiehn, O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. TrAC Trends Anal. Chem. 2015, 69, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedorova, E.; Stavrianidi, A.; Minenkova, I.; Buryak, A. Calculations of the Thermodynamic Characteristics and Physicochemical Properties of Symmetric and Asymmetric Isomeric Compounds for Identification in Chromatography-Mass Spectrometry. Symmetry 2021, 13, 1681. [Google Scholar] [CrossRef]
- Dinca, N. Chemical structure identification by differential mass spectra. In Applications of Mass Spectrometry in Life Safety—NATO Science for Peace and Security Series A: Chemistry and Biology; Popescu, C., Zamfir, A.D., Dinca, N., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 221–233. [Google Scholar]
- Dinca, N.; Stanescu, M.D.; Sisu, E.; Mracec, M. Differential mass spectrometry (Diff MS) and computational chemistry. II. Diff MS and MO semi-empirical analyses of exo- and endo-5,10-methylene-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-11-ols. Rev. Chim. 2004, 55, 347–350. [Google Scholar]
- Harja, F.; Bettendorf, C.; Grosu, I.; Dinca, N. Stereochemistry studies of some 1,3-dioxane derivatives by differential mass spectrometry and computational chemistry. In Applications of Mass Spectrometry in Life Safety—NATO Science for Peace and Security Series A: Chemistry and Biology; Popescu, C., Zamfir, A.D., Dinca, N., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 185–191. [Google Scholar]
- Dinca, N.; Covaci, A. Structural identification by differential mass spectrometry as a criterion for selecting the best quantum chemical calculation of formation enthalpy for tetrachlorinated biphenyls. Rapid Commun. Mass Spectrom. 2012, 26, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Dinca, N.; Dragan, S.; Dinca, M.; Sisu, E.; Covaci, A. New quantitative structure-fragmentation relationship strategy for chemical structure identification using the calculated enthalpy of formation as a descriptor for the fragments produced in electron ionization mass spectrometry: A case study with tetrachlorinated biphenyls. Anal. Chem. 2014, 86, 4949–4955. [Google Scholar] [PubMed]
- Gross, J. Mass Spectrometry—A Textbook, 3rd ed.; Springer: Cham, Switzerland, 2011; pp. 36–40. [Google Scholar]
- Splitter, J.S. Applications of Mass Spectrometry to Organic Stereochemistry, 1st ed.; Verlag Chemie: Weinheim, Germany, 1994; pp. 343–352. [Google Scholar]
- Hypercube, Inc. HyperChem™ Professional, Version 8.0.10 for Windows; Hypercube, Inc.: Gainesville, FL, USA. Available online: http://www.hypercubeusa.com/?tabid=360 (accessed on 20 March 2021).
- Rocha, G.B.; Freire, R.O.; Simas, A.M.; Stewart, J.J.P. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006, 27, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- MOPAC2012; Stewart, J.J.P. Stewart Computational Chemistry, Colorado Springs, CO, USA. Version 15.027W. Available online: http://OpenMOPAC.net/ (accessed on 20 March 2021).
- Stewart, J.J.P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. Available online: http://www.jmol.org/ (accessed on 20 March 2021).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09. Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Wang, S.; Dong, C.; Yu, L.; Guo, C.; Jiang, K. Dissociation of protonated N-(3-phenyl-2H-chromen-2-ylidene)-benzenesulfonamide in the gas phase: Cyclization via sulfonyl cation transfer. Rapid Commun. Mass Spectrom. 2016, 30, 95–100. [Google Scholar] [CrossRef]
- Pinto, A.C.; Vessecchi, R.; da Silva, C.G.; Lourenço Amorim, A.C.; dos Santos Júnior, H.M.; Rezende, M.J.C.; Gates, P.J.; Rezende, C.M.; Lopes, N.P. Electrospray ionization tandem mass spectrometry analysis of isopimarane diterpenes from Velloziaceae. Rapid Commun. Mass Spectrom. 2016, 30, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Osburn, S.; Plaviak, A.; Pestok, J.; Van Stipdonk, M.J. Apparent activation of H2O and elimination of H2 from gas-phase mixed-metal complexes containing silver, calcium and deprotonated glycine. Rapid Commun. Mass Spectrom. 2016, 30, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Pascariu, M.C.; Șișu, E.; Ordodi, V.L.; Rusnac, L.M. Spectral Analysis of Diisopropylidenated Monosaccharides. Low Energy EI-MS Fragmentation Study. Chem. Bull. “Politeh.” Univ. 2011, 56, 6–11. [Google Scholar]
Ion | Fragmentation |
---|---|
m/z 245 | [M–CH3•]+ |
m/z 229 | See Figure 1 and Figure 2 |
m/z 187 | [M–acetone–CH3•]+ |
m/z 171 | [M–acetone–HOCH2•]+ |
m/z 159 | See Figure 1 and Figure 2 |
m/z 127 | [M–2 × cetone–HO•]+ |
m/z 101 | See Figure 1 and Figure 2 |
| ||||||
---|---|---|---|---|---|---|
Ion Structure | m/z 260 | m/z 245 | m/z 229 | m/z 187 | m/z 171 | m/z 127 |
1 | −74.3 | −93.8 | −46.8 | −21.5 | 66 | 141.2 |
2 | - | −93.4 | - | 1.95 | 67.3 | 103.7 |
3 | - | −96.6 | - | −21.5 | 57 | 124.5 |
4 | - | −96.6 | - | 1.95 | 34.5 | 140.6 |
5 | - | - | - | 3.3 | - | - |
6 | - | - | - | −34.2 | - | - |
7 | - | - | - | 3.3 | - | - |
8 | - | - | - | −34.2 | - | - |
1 | | | | | | |
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 |
Structure | DAF | DAG | DAGal | DAM | DAS | DAAlo | DAF_Spiran | DAGal_Furan | DAM_Beta | DAS_Spiran |
---|---|---|---|---|---|---|---|---|---|---|
(4) | (1) | (3) | (2) | (5) | (6) | (7) | (8) | (9) | (10) | |
ΔfH (M) | −283.1 | −287.1 | −282.6 | −288.1 | −286.7 | −286.0 | −287.0 | −284.3 | −284.1 | −285.0 |
ΔfH (M+) | −74.3 | −79.7 | −76.1 | −80.2 | −78.1 | −78.2 | −72.1 | −75.8 | −80.6 | −67.4 |
ΔfH (ion) | ||||||||||
m/z 245 | −96.6 | −99.6 | −97.3 | −102.0 | −101.8 | −99.3 | −104.5 | −103.6 | −102.6 | −99.8 |
m/z 229 | −46.8 | −42.4 | −33.0 | |||||||
m/z 187 | −34.2 | −39.4 | −36.4 | −40.2 | −4.1 | −39.4 | −39.9 | −45.4 | −43.1 | −10.0 |
m/z 171 | 34.5 | 9.6 | 37.0 | |||||||
m/z 159 | 11.7 | 8.8 | 12.2 | 11.9 | 12.2 | |||||
m/z 127 | 103.7 | 105.1 | 87.2 | 79.4 | 134.0 | 78.6 | 105.0 | 109.5 | 95.4 | 134.0 |
m/z 101 | 98.8 | 98.8 | 98.8 | 98.8 | 98.8 | |||||
ΔfH (M frag) = ΔfH (ion) + ΣΔfH (F) − ΔfH (M) (1) | ||||||||||
M -> m/z 245 | 211.4 | 212.4 | 210.1 | 211.0 | 209.7 | 211.6 | 207.3 | 205.6 | 206.4 | 210.1 |
M -> m/z 229 | 214.9 | 218.8 | 232.3 | |||||||
M -> m/z 187 | 221.1 | 219.9 | 218.3 | 220.1 | 254.7 | 218.7 | 219.2 | 211.0 | 213.2 | 247.2 |
M -> m/z 171 | 243.5 | 218.1 | 249.6 | |||||||
M -> m/z 159 | 220.0 | 218.2 | 219.5 | 217.5 | 217.6 | |||||
M -> m/z 127 | 284.1 | 289.5 | 267.1 | 264.9 | 318.0 | 261.9 | 289.3 | 291.1 | 276.8 | 316.4 |
M -> m/z 101 | 221.1 | 219.8 | 220.4 | 218.3 | 218.8 |
Structure | (4) | (1) | (3) | (2) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|---|
ΔfH (M) | −277.1 | −280.8 | −277.7 | −281.7 | −281.6 | −280.1 | −278.6 | −278.9 | −275.9 | −280.6 |
ΔfH (M+) | −74.0 | −79.7 | −76.5 | −79.2 | −82.7 | −78.9 | −76.7 | −76.3 | −79.7 | −71.3 |
ΔfH (ion) | ||||||||||
m/z 245 | −99.4 | −102.0 | −96.2 | −102.1 | −100.7 | −96.5 | −99.4 | −100.6 | −101.9 | −97.7 |
m/z 229 | −54.3 | −41.6 | −34.0 | |||||||
m/z 187 | −37.5 | −33.4 | −37.7 | −38.2 | −11.5 | −35.3 | −7.2 | −9.8 | −35.2 | −8.6 |
m/z 171 | 13.2 | 40.4 | 36.5 | |||||||
m/z 159 | 14.3 | 14.6 | 15.4 | 14.3 | 13.7 | |||||
m/z 127 | 109.7 | 155.7 | 118.8 | 87.9 | 161.6 | 109.7 | 119.5 | 118.8 | 79.6 | 179.3 |
m/z 101 | 89.9 | 89.9 | 89.9 | 89.9 | 89.9 | |||||
ΔfH (M frag) = ΔfH (ion) + ΣΔfH (F) − ΔfH (M) (1) | ||||||||||
M -> m/z 245 | 205.6 | 206.7 | 209.5 | 207.6 | 208.8 | 211.6 | 207.2 | 206.3 | 202 | 210.8 |
M -> m/z 229 | 201.5 | 214.8 | 226.2 | |||||||
M -> m/z 187 | 212.1 | 219.8 | 212.5 | 216.0 | 242.6 | 217.3 | 243.9 | 241.6 | 213.1 | 244.5 |
M -> m/z 171 | 213.5 | 241.4 | 241.3 | |||||||
M -> m/z 159 | 220.5 | 221.6 | 220.8 | 218.6 | 214.9 | |||||
M -> m/z 127 | 283.0 | 332.8 | 292.9 | 265.9 | 339.5 | 286.1 | 294.4 | 293.9 | 251.7 | 356.2 |
M -> m/z 101 | 215.6 | 213.5 | 213.7 | 213.7 | 208.6 |
Structure | (4) | (1) | (3) | (2) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|---|
ΔfH (M) | −1559.5 | −1565.4 | −1562.9 | −1564.0 | −1566.7 | −1561.4 | −1562.7 | −1560.3 | −1558.7 | −1565.2 |
ΔfH (M+) | −1371.1 | −1368.4 | −1366.7 | −1367.1 | −1371.2 | −1370.3 | −1371.2 | −1367.1 | −1368.9 | −1367.9 |
ΔfH (ion) | ||||||||||
m/z 245 | −1264.7 | −1266.0 | −1263.3 | −1267.8 | −1273.3 | −1263.5 | −1270.6 | −1265.8 | −1270.5 | −1266.3 |
m/z 229 | −1239.6 | −1227.6 | −1237.7 | |||||||
m/z 187 | −867.0 | −873.4 | −870.4 | −865.2 | −830.3 | −863.9 | −867.6 | −867.1 | −862.9 | −838.5 |
m/z 171 | −827.6 | −835.4 | −815.7 | |||||||
m/z 159 | −728.9 | −726.2 | −723.7 | −728.9 | −722.3 | |||||
m/z 127 | −522.8 | −531.4 | −534.6 | −554.1 | −494.5 | −554.3 | −522.4 | −524.7 | −546.6 | −494.5 |
m/z 101 | −465.7 | −465.7 | −465.7 | −465.7 | −465.7 | |||||
ΔfH (M frag) = ΔfH (ion) + ΣΔfH (F) − ΔfH (M) (1) | ||||||||||
M -> m/z 245 | 206.3 | 211.0 | 211.0 | 207.8 | 204.9 | 209.4 | 203.5 | 206.0 | 199.6 | 210.4 |
M -> m/z 229 | 213.5 | 228.8 | 222.6 | |||||||
M -> m/z 187 | 210.5 | 210.0 | 210.5 | 216.8 | 254.4 | 215.5 | 213.0 | 211.2 | 213.7 | 244.6 |
M -> m/z 171 | 232.0 | 227.5 | 251.1 | |||||||
M -> m/z 159 | 229.4 | 230.7 | 230.6 | 224.3 | 229.3 | |||||
M -> m/z 127 | 266.2 | 263.5 | 257.8 | 239.4 | 301.8 | 236.6 | 269.8 | 265.1 | 241.6 | 300.2 |
M -> m/z 101 | 227.8 | 223.2 | 222.2 | 222.7 | 223.1 |
Structure | (4) | (1) | (3) | (2) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|---|
ΔfG (M) | −1886.7 | −1892.7 | −1892.1 | −1891.0 | −1895.0 | −1888.5 | −1890.1 | −1887.7 | −1885.8 | −1893.3 |
ΔfG (M+) | −1698.1 | −1693.7 | −1693.9 | −1692.0 | −1698.5 | −1696.6 | −1698.2 | −1693.3 | −1695.4 | −1694.7 |
ΔfG (ion) | ||||||||||
m/z 245 | −1557.9 | −1557.4 | −1557.3 | −1559.4 | −1567.4 | −1555.3 | −1563.2 | −1559.4 | −1565.5 | −1559.3 |
m/z 229 | −1523.3 | −1510.7 | −1519.8 | |||||||
m/z 187 | −1072.4 | −1076.9 | −1075.9 | −1070.0 | −1032.0 | −1067.4 | −1071.9 | −1071.5 | −1068.1 | −1041.2 |
m/z 171 | −1019.7 | −1031.1 | −1005.5 | |||||||
m/z 159 | −913.0 | −911.2 | −907.7 | −913.0 | −906.9 | |||||
m/z 127 | −654.9 | −663.0 | −665.1 | −686.7 | −624.9 | −686.7 | −655.5 | −655.3 | −679.9 | −624.9 |
m/z 101 | −591.7 | −591.7 | −591.7 | −591.7 | −591.7 | |||||
ΔfG (M frag) = ΔfG (ion) + ΣΔfG (F) − ΔfG (M) (2) | ||||||||||
M -> m/z 245 | 219.4 | 225.9 | 225.4 | 222.2 | 218.3 | 223.8 | 217.5 | 218.9 | 210.9 | 224.7 |
M -> m/z 229 | 226.6 | 244.6 | 238.4 | |||||||
M -> m/z 187 | 238.7 | 240.2 | 240.7 | 245.5 | 287.4 | 245.5 | 242.7 | 240.6 | 242.2 | 276.6 |
M -> m/z 171 | 264.1 | 258.1 | 286.6 | |||||||
M -> m/z 159 | 245.2 | 245.4 | 246.3 | 240.2 | 244.4 | |||||
M -> m/z 127 | 309.1 | 306.9 | 304.3 | 281.6 | 347.3 | 279.0 | 311.8 | 309.6 | 283.2 | 345.7 |
M -> m/z 101 | 244.7 | 239.6 | 238.6 | 239.7 | 239.6 |
Structures 1–10 | RM1 | PM7 | DFT ΔH | DFT ΔG |
---|---|---|---|---|
RM1 | 1 | 0.97 | 0.92 | 0.97 |
PM7 | 0.97 | 1 | 0.90 | 0.96 |
DFT ΔfH | 0.92 | 0.90 | 1 | 0.95 |
DFT ΔfG | 0.97 | 0.96 | 0.95 | 1 |
Structures | 1 | 2 | 6 | 8 | 9 | Variance |
---|---|---|---|---|---|---|
M -> m/z 245 | 212.4 | 211 | 211.6 | 205.6 | 206.4 | 9.96 |
M -> m/z 187 | 219.9 | 220.1 | 218.7 | 211 | 213.2 | 17.61 |
M -> m/z 159 | 220 | 218.2 | 219.5 | 217.5 | 217.6 | 1.28 |
M -> m/z 127 | 289.5 | 264.9 | 261.9 | 291.1 | 276.8 | 182.34 |
M -> m/z 101 | 221.1 | 219.8 | 220.4 | 218.3 | 218.8 | 1.31 |
Structures | 1 | 2 | 6 | 8 | 9 | 1 | 2 | 6 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0.9976 | 0.9978 | 0.9973 | 0.9969 | 1 | 1 | 0.9795 | 0.9973 | 0.8770 | 0.9368 |
2 | 0.9976 | 1 | 0.9989 | 0.9938 | 0.9956 | 2 | 0.9795 | 1 | 0.9622 | 0.7630 | 0.8481 |
6 | 0.9978 | 0.9989 | 1 | 0.9973 | 0.9988 | 6 | 0.9973 | 0.9622 | 1 | 0.9091 | 0.9591 |
8 | 0.9973 | 0.9938 | 0.9973 | 1 | 0.9994 | 8 | 0.8770 | 0.7630 | 0.9091 | 1 | 0.9895 |
9 | 0.9969 | 0.9956 | 0.9988 | 0.9994 | 1 | 9 | 0.9368 | 0.8481 | 0.9591 | 0.9895 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascariu, M.-C.; Dinca, N.; Cojocariu, C.; Sisu, E.; Serb, A.; Birza, R.; Georgescu, M. Computed Mass-Fragmentation Energy Profiles of Some Acetalized Monosaccharides for Identification in Mass Spectrometry. Symmetry 2022, 14, 1074. https://doi.org/10.3390/sym14051074
Pascariu M-C, Dinca N, Cojocariu C, Sisu E, Serb A, Birza R, Georgescu M. Computed Mass-Fragmentation Energy Profiles of Some Acetalized Monosaccharides for Identification in Mass Spectrometry. Symmetry. 2022; 14(5):1074. https://doi.org/10.3390/sym14051074
Chicago/Turabian StylePascariu, Mihai-Cosmin, Nicolae Dinca, Carolina Cojocariu, Eugen Sisu, Alina Serb, Romina Birza, and Marius Georgescu. 2022. "Computed Mass-Fragmentation Energy Profiles of Some Acetalized Monosaccharides for Identification in Mass Spectrometry" Symmetry 14, no. 5: 1074. https://doi.org/10.3390/sym14051074
APA StylePascariu, M.-C., Dinca, N., Cojocariu, C., Sisu, E., Serb, A., Birza, R., & Georgescu, M. (2022). Computed Mass-Fragmentation Energy Profiles of Some Acetalized Monosaccharides for Identification in Mass Spectrometry. Symmetry, 14(5), 1074. https://doi.org/10.3390/sym14051074