Comprehensive Review of Solid State Transformers in the Distribution System: From High Voltage Power Components to the Field Application
Abstract
:1. Introduction
1.1. SingleStage SST
1.2. TwoStage SST
1.3. ThreeStage SST
2. Review of Related Works/Literature Appraisal
3. Critical Evaluation and Discussion
3.1. Solid State Transformer Architecture
3.2. TransformerIsolated DCDC Converter
3.3. High Frequency DCAC Inverter
3.4. Embryonic Development—HFHP Isolated DCDC Module
4. Transformer as Galvanic Isolator of the DAB/DHB
 Nanocrystalline (FT3M): Possesses saturation flux density, B_{max,}1.23 (T), Curie temperature T_{c} 570 (°C) and maximum operation temperature.150 (°C).
 Ferrite (3F3): Possesses saturation flux density, B_{max}, 0.45 (T), Curie temperature T_{c} 200 (°C) and maximum operation temperature. 120 (°C).
 Superalloy: Possesses saturation flux density, B_{max} 0.79~0.87 (T), Curie temperature T_{c} 430 (°C) and maximum operation temperature. 125 (°C).
 Amorphous (2605SA): Possesses saturation flux density, B_{max} 1.57(T), Curie temperature T_{c} 392 (°C) and maximum operation temperature. 150 (°C).
5. Applications of SST and DCDC Converter
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
 Huber, J.E.; Kolar, J.W. SolidState Transformers: On the Origins and Evolution of Key Concepts. IEEE Ind. Electron. Mag. 2016, 10, 19–28. [Google Scholar] [CrossRef]
 Acikgoz, H.; Kececioglu, O.F.; Yildiz, C.; Gani, A.; Sekkeli, M. Performance analysis of electronic power transformer based on neurofuzzy controller. SpringerPlus 2016, 5, 1350. [Google Scholar] [CrossRef]
 Heinemann, L.; Mauthe, G. The universal power electronics based distribution transformer, an unified approach. In Proceedings of the 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), Vancouver, BC, Canada, 17–21 June 2001; Volume 502, pp. 504–509. [Google Scholar]
 Roy, R.B.; Rokonuzzaman, M.; HossamEHaider, M. Design and analysis of the power electronic transformer for power quality improvement. In Proceedings of the 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 21–23 May 2015; pp. 1–5. [Google Scholar]
 Falcones, S.; Ayyanar, R.; Mao, X. A DC–DC MultiportConverterBased SolidState Transformer Integrating Distributed Generation and Storage. IEEE Trans. Power Electron. 2013, 28, 2192–2203. [Google Scholar] [CrossRef]
 Ahmed, K.; Yahaya, N.Z.; Asirvadam, V.S.; Ibrahim, O. Modeling and Simulation of Power Electronic Distribution Transformer Based on a Three Level Converter. Appl. Mech. Mater. 2015, 785, 151–155. [Google Scholar] [CrossRef]
 Merwe, J.W.V.d.; Mouton, H.D.T. The solidstate transformer concept: A new era in power distribution. In Proceedings of the AFRICON 2009, Nairobi, Kenya, 23–25 September 2009; pp. 1–6. [Google Scholar]
 Zhao, T.; Wang, G.; Bhattacharya, S.; Huang, A.Q. Voltage and Power Balance Control for a Cascaded HBridge ConverterBased SolidState Transformer. IEEE Trans. Power Electron. 2013, 28, 1523–1532. [Google Scholar] [CrossRef]
 Shadfar, H.; Ghorbani Pashakolaei, M.; Akbari Foroud, A. Solidstate transformers: An overview of the concept, topology, and its applications in the smart grid. Int. Trans. Electr. Energy Syst. 2021, 31, e12996. [Google Scholar] [CrossRef]
 Mcmurray, W. Power Converter Circuits Having A High Frequency Link. U.S. Patent No. 3,517,300, 23 June 1970. [Google Scholar]
 Pratik Mandon, A.P. Eswara Prasad. Solid State Transformer (SST) Market Outlook—2028. Available online: https://www.alliedmarketresearch.com/solidstatetransformermarket (accessed on 22 August 2022).
 Davis, S. Are SolidState Transformers Ready for Prime Time? Available online: https://www.electronicdesign.com/technologies/alternativeenergy/article/21199414/aresolidstatetransformersreadyforprimetime (accessed on 16 August 2022).
 Mumuluh, R.N. Design Considerations for a High Power, Medium Frequency Transformer for a DCDC Converter Stage of a Solid State Transformer. Doctor’s Dissertation, University College Dublin, Dublin, Ireland, 2016. [Google Scholar]
 Hengsi, Q.; Kimball, J.W. Acac dual active bridge converter for solid state transformer. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 3039–3044. [Google Scholar]
 She, X.; Huang, A.Q.; Wang, G. 3D Space Modulation with Voltage Balancing Capability for a Cascaded SevenLevel Converter in a SolidState Transformer. IEEE Trans. Power Electron. 2011, 26, 3778–3789. [Google Scholar] [CrossRef]
 Beldjajev, V. Research and Development of the New Topologies for the Isolation Stage of the Power Electronic Transformer; Tallinn University of Technology: Tallinn, Estonia, 2013. [Google Scholar]
 Falcones, S.; Mao, X.; Ayyanar, R. Topology comparison for Solid State Transformer implementation. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
 Shojaei, A.; Joós, G. A topology for threestage Solid State Transformer. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
 Dheeraj Reddy, D.S.K.S. Design of Solid State Transformer. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2015, 357–364. [Google Scholar]
 Sharun John, B.N.R. Active power electronic transformer a standard building block for smart grid. In Proceedings of the International Journal of Electrical Engineering & Technology (IJEET), Ernakulam, India, 30–31 December 2014; pp. 178–184. [Google Scholar]
 She, X.; Yu, X.; Wang, F.; Huang, A.Q. Design and demonstration of a 3.6kV 2013;120V/10KVA solid state transformer for smart grid application. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 3429–3436. [Google Scholar]
 Wang, G.; Huang, X.; Wang, J.; Zhao, T.; Bhattacharya, S.; Huang, A.Q. Comparisons of 6.5kV 25A Si IGBT and 10kV SiC MOSFET in SolidState Transformer application. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 100–104. [Google Scholar]
 Aswathy Vijayakumar, R.R.N.; Stephy, J.; Mathew, S.; Keerthi, S.J. A Review on Active Power Electronic Transformer. Int. J. Mod. Trends Eng. Res. 2017, 4, 67–73. [Google Scholar]
 Ozdemir, S.; Balci, S.; Altin, N.; Sefa, I. Design and performance analysis of the threelevel isolated DCDC converter with the nanocyrstalline core transformer. Int. J. Hydrog. Energy 2017, 42, 17801–17812. [Google Scholar] [CrossRef]
 Srinithi, S.; Vaikundaselvan, B.; Sathya, S.N.; Sivan Raj, C. Hardware Implementation of Bidirectional Full Bridge Isolated DC DC Converter. Int. J. Res. Electron. Electr. Eng. 2017, 3, 1–7. [Google Scholar] [CrossRef]
 Kim, S.; Cha, H.; Ahmed, H.F.; Choi, B.; Kim, H. Isolated Double StepDown DC–DC Converter with Improved ZVS Range and No Transformer Saturation Problem. IEEE Trans. Power Electron. 2017, 32, 1792–1804. [Google Scholar] [CrossRef]
 Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. StepUp DC–DC Converters: A Comprehensive Review of VoltageBoosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
 Fan, H.; Li, H. HighFrequency Transformer Isolated Bidirectional DC–DC Converter Modules with High Efficiency Over Wide Load Range for 20 kVA SolidState Transformer. IEEE Trans. Power Electron. 2011, 26, 3599–3608. [Google Scholar] [CrossRef]
 Dewangan, R.; Potdar, R. Comparative Analysis of Multilevel Inverter and Its PWM Schemes. Int. J. Dig. Appl. Contemp. Res. 2015, 4. Available online: https://ijdacr.com/uploads/papers/4030015005.pdf (accessed on 23 July 2022).
 Bharati Mishra, S.S.K. Design of an improved PWM inverter using PI controller. Int. J. Multidiscip. Res. Dev. 2016, 3, 92–95. [Google Scholar]
 Kalavalli, C.; Paveethra, S.; Murugesan, S.; Ali, N.; Venkatesh, V. Design And Implementation of High Efficiency H6 PV Inverter with Dual Axis Tracking. Int. J. Sci. Technol. Res. 2020, 9, 4728. [Google Scholar]
 Hyun, J.; Jung, J.H. Practical Design of Dual Active Bridge Converter as Isolated Bidirectional Power Interface for Solid State Transformer Applications. J. Electr. Eng. Technol. 2016, 11, 1265–1273. [Google Scholar] [CrossRef]
 Harish Tata, P.M.S. A Literature Survey on Multilevel Inverter and its Parameter. Int. J. Eng. Technol. Appl. Sci. 2016, 2, 1–16. [Google Scholar]
 Raihani, A. Performance Evaluation for Different Levels Multilevel Inverters Application for Renewable Energy Resources. J. Eng. Technol. 2017, 6, 90–96. [Google Scholar]
 Akash Trivedi, S.; Rohan, A.; Mit, S.; Ankit, P. Design and Development of 3 Phase PWM Inverter. In Proceedings of the National Conference on Emerging Trends, Challenges & Opportunities in Power Sector, Ahmedabad, India, 3–4 March 2017; pp. 85–88. [Google Scholar]
 Gajowik, T. Review of multilevel converters for application in solid state transformers. Przegląd Elektrotechniczny 2017, 1, 3–7. [Google Scholar] [CrossRef]
 PHANIKUMAR, A.B.; VALI, A.K. Renewable Energy Sources Based SinglePhase Seven Level Inverter Fed Induction Motor Drive. Int. J. Soc. Sci. Technol. 2017, 6, 1044–1049. [Google Scholar]
 Costa, L.F.; Buticchi, G.; Liserre, M. Optimum Design of a MultipleActiveBridge DC–DC Converter for Smart Transformer. IEEE Trans. Power Electron. 2018, 33, 10112–10121. [Google Scholar] [CrossRef]
 Ji, Z.; Rao, R.; Wang, Q.; Li, D.; Sun, Y.; Wang, J.; Zhao, J. Softstarting scheme for a DC solidstate transformer based on a modular multilevel converter. Energy Rep. 2021, 7, 378–387. [Google Scholar] [CrossRef]
 Sathisha, K.; PintoPiusA, J. Comparison of two Different Approaches for Harmonic Analysis of Single Phase Inverter. Int. J. Innov. Res. Electr. Electron. Instrum. Control. Eng. 2017, 5, 1–6. [Google Scholar]
 Gao, Z.; Fan, H. A Modular BiDirectional Power Electronic Transformer. J. Power Electron. 2016, 16, 399–413. [Google Scholar] [CrossRef]
 Chakraborty, S.; Chattopadhyay, S. Fully ZVS, Minimum RMS Current Operation of the DualActive HalfBridge Converter Using ClosedLoop ThreeDegreeofFreedom Control. IEEE Trans. Power Electron. 2018, 33, 10188–10199. [Google Scholar] [CrossRef]
 Ling, C.; Ge, B.; Bi, D.; Ma, Q. An effective power electronic transformer applied to distribution system. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–6. [Google Scholar]
 Huang, A.; Crow, M.L.; Heydt, G.; Zheng, J.; Dale, S. The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet. Proc. IEEE 2011, 99, 133–148. [Google Scholar] [CrossRef]
 Zhao, C.; LewdeniSchmid, S.; Steinke, J.K.; Weiss, M.; Chaudhuri, T.; Pellerin, M.; Duron, J.; Stefanutti, P. Design, implementation and performance of a modular power electronic transformer (PET) for railway application. In Proceedings of the Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, UK, 30 August–1 September 2011; pp. 1–10. [Google Scholar]
 Li, Z.; Wang, P.; Chu, Z.; Zhu, H.; Sun, Z.; Li, Y. A threephase 10 kVAC750 VDC power electronic transformer for smart distribution grid. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–9. [Google Scholar]
 Morawiec, M.; Lewicki, A.; Krzemiński, Z. Power Electronic Transformer for Smart Grid application. In Proceedings of the 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 22–23 March 2015; pp. 1–6. [Google Scholar]
 Yun, H.J.; Kim, H.S.; Ryu, M.H.; Baek, J.W.; Kim, H.J. A simple and practical voltage balance method for a solidstate transformer using cascaded Hbridge converters. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPEECCE Asia), Seoul, Korea, 1–5 June 2015; pp. 2415–2420. [Google Scholar]
 Ge, J.; Zhao, Z.; Yuan, L.; Lu, T. Energy FeedForward and Direct FeedForward Control for SolidState Transformer. IEEE Trans. Power Electron. 2015, 30, 4042–4047. [Google Scholar] [CrossRef]
 Zhao, B.; Song, Q.; Liu, W. A Practical Solution of HighFrequencyLink Bidirectional SolidState Transformer Based on Advanced Components in Hybrid Microgrid. IEEE Trans. Ind. Electron. 2015, 62, 4587–4597. [Google Scholar] [CrossRef]
 Madhusoodhanan, S.; Tripathi, A.; Patel, D.; Mainali, K.; Kadavelugu, A.; Hazra, S.; Bhattacharya, S.; Hatua, K. SolidState Transformer and MV Grid Tie Applications Enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs Based Multilevel Converters. IEEE Trans. Ind. Appl. 2015, 51, 3343–3360. [Google Scholar] [CrossRef]
 Chen, H.; Prasai, A.; Moghe, R.; Chintakrinda, K.; Divan, D. A 50kVA ThreePhase SolidState Transformer Based on the Minimal Topology: DynaC. IEEE Trans. Power Electron. 2016, 31, 8126–8137. [Google Scholar] [CrossRef]
 NilaOlmedo, N.; MendozaMondragon, F.; EspinosaCalderon, A.; Moreno. ARM+FPGA platform to manage solidstatesmart transformer in smart grid application. In Proceedings of the 2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 30 November–2 December 2016; pp. 1–6. [Google Scholar]
 Chen, H.; Divan, D. SoftSwitching SolidState Transformer (S4T). IEEE Trans. Power Electron. 2018, 33, 2933–2947. [Google Scholar] [CrossRef]
 Liu, Y.; Ge, B.; AbuRub, H. Interactive Grid Interfacing System by MatrixConverterBased Solid State Transformer With Model Predictive Control. IEEE Trans. Ind. Inform. 2020, 16, 2533–2541. [Google Scholar] [CrossRef]
 She, X.; Huang, A.Q.; Burgos, R. Review of SolidState Transformer Technologies and Their Application in Power Distribution Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 186–198. [Google Scholar] [CrossRef]
 Zhao, C.; Dujic, D.; Mester, A.; Steinke, J.K.; Weiss, M.; LewdeniSchmid, S.; Chaudhuri, T.; Stefanutti, P. Power Electronic Traction Transformer—Medium Voltage Prototype. IEEE Trans. Ind. Electron. 2014, 61, 3257–3268. [Google Scholar] [CrossRef]
 Steiner, M.; Reinold, H. Medium frequency topology in railway applications. In Proceedings of the 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, 2–5 September 2007; pp. 1–10. [Google Scholar]
 Watson, A.J.; Wheeler, P.W.; Clare, J.C. Field programmable gate array based control of Dual Active Bridge DC/DC Converter for the UNIFLEXPM project. In Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, UK, 30 August–1 September 2011; pp. 1–9. [Google Scholar]
 Liu, C.; Li, X.; Zhi, Y.; Cai, G. New breed of solidstate transformer mainly combing hybrid cascaded multilevel converter with resonant DCDC converters. Appl. Energy 2018, 210, 724–736. [Google Scholar] [CrossRef]
 Huber, J.W.K.a.J.E. SolidState Transformers Concepts, Challenges and Opportunities. In Proceedings of the ECPE Workshop—Smart Transformers for Traction and Future Grid Application, Zurich, Switzerland, 4–5 February2016. [Google Scholar]
 Pavlovsky, M.; Haan, S.W.H.d.; Ferreira, J.A. Concept of 50 kW DC/DC converter based on ZVS, quasiZCS topology and integrated thermal and electromagnetic design. In Proceedings of the 2005 European Conference on Power Electronics and Applications, Barcelona, Spain, 11–14 September 2005; p. 9. [Google Scholar]
 Bahmani, M.A.; Thiringer, T.; Kharezy, M. Optimization and experimental validation of mediumfrequency high power transformers in solidstate transformer applications. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 3043–3050. [Google Scholar]
 Theraja, B.L. A Textbook of Electrical Technology Volume II AC and DC Machines; S. Chand Publishing: Uttar Pradesh, India, 2008. [Google Scholar]
 Andersson, C. Design of a 2.5kW DC/DC Fullbridge Converter; Chalmers University of Technology: Göteborg, Sweden, 2011. [Google Scholar]
 Lee, C.; Chen, Y.; Chen, L.; Cheng, P. Efficiency improvement of a DC/AC converter with the power decoupling capability. In Proceedings of the 2012 TwentySeventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 1462–1468. [Google Scholar]
 Rathod, D.K. Solid State Transformer (SST) “Review of Recent Developments”. Proc. Adv. Electron. Electr. Eng. 2014, 4, 45–50. [Google Scholar]
 Engel, S.P.; Soltau, N.; Stagge, H.; Doncker, R.W.D. Dynamic and Balanced Control of ThreePhase HighPower DualActive Bridge DC–DC Converters in DCGrid Applications. IEEE Trans. Power Electron. 2013, 28, 1880–1889. [Google Scholar] [CrossRef]
 Wang, F.; Duarte, J.; Hendrix, M. Design and analysis of active power control strategies for distributed generation inverters under unbalanced grid faults. Gener. Transm. Distrib. IET 2010, 4, 905–916. [Google Scholar] [CrossRef] [Green Version]
 Peng, F.Z.; Hui, L.; GuiJia, S.; Lawler, J.S. A new ZVS bidirectional DCDC converter for fuel cell and battery application. IEEE Trans. Power Electron. 2004, 19, 54–65. [Google Scholar] [CrossRef]
 Cacciato, M.; Consoli, A.; Attanasio, R.; Gennaro, F. SoftSwitching Converter with HF Transformer for GridConnected Photovoltaic Systems. IEEE Trans. Ind. Electron. 2010, 57, 1678–1686. [Google Scholar] [CrossRef]
 Sangtaek, H.; Divan, D. Bidirectional DC/DC converters for plugin hybrid electric vehicle (PHEV) applications. In Proceedings of the 2008 TwentyThird Annual IEEE Applied Power Electronics Conference and Exposition, Austin, TX, USA, 24–28 February 2008; pp. 784–789. [Google Scholar]
 Inoue, S.; Akagi, H. A Bidirectional DC–DC Converter for an Energy Storage System with Galvanic Isolation. IEEE Trans. Power Electron. 2007, 22, 2299–2306. [Google Scholar] [CrossRef]
 Samad, M. Solid State Transformers: The StateoftheArt, Challenges and Applications. In Proceedings of the Proceedings of the World Congress on Engineering, London, UK, 3–5 July 2019. [Google Scholar]
 Shamshuddin, M.A.; Rojas, F.; Cardenas, R.; Pereda, J.; Diaz, M.; Kennel, R. Solid State Transformers: Concepts, Classification, and Control. Energies 2020, 13, 2319. [Google Scholar] [CrossRef]
 Khan, S.; Rahman, K.; Tariq, M.; Hameed, S.; Alamri, B.; Babu, T.S. SolidState Transformers: Fundamentals, Topologies, Applications, and Future Challenges. Sustainability 2022, 14, 319. [Google Scholar] [CrossRef]
 Huber, J.E.; Kolar, J.W. Volume/weight/cost comparison of a 1MVA 10 kV/400 V solidstate against a conventional lowfrequency distribution transformer. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 4545–4552. [Google Scholar]
 Ortiz, G.; Leibl, M.; Kolar, J.W.; Apeldoorn, O. Medium frequency transformers for solidstatetransformer applications—Design and experimental verification. In Proceedings of the 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), 22–25 April 2013; pp. 1285–1290. [Google Scholar]
 Meena, C.S.; Kumar, A.; Jain, S.; Rehman, A.U.; Mishra, S.; Sharma, N.K.; Bajaj, M.; Shafiq, M.; Eldin, E.T. Innovation in Green Building Sector for Sustainable Future. Energies 2022, 15, 6631. [Google Scholar] [CrossRef]
 Baek, S.; Bhattacharya, S. Analytical modeling of a mediumvoltage and highfrequency resonant coaxialtype power transformer for a solid state transformer application. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 1873–1880. [Google Scholar]
 Shen, W. Design of HighDensity Transformers for HighFrequency HighPower Converters. Doctoral Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2006. [Google Scholar]
 Kang, M.; Enjeti, P.N.; Pitel, I.J. Analysis and design of electronic transformers for electric power distribution system. IEEE Trans. Power Electron. 1999, 14, 1133–1141. [Google Scholar] [CrossRef]
 Rehman, A.; Ashraf, M. Design and Analysis of PWM Inverter for 100KVA Solid State Transformer in a Distribution System. IEEE Access 2019, 7, 140152–140168. [Google Scholar] [CrossRef]
 Fan, H. Advanced MediumVoltage Bidirectional dcdc Conversion Systems for Future Electric Energy Delivery and Management Systems; The Florida State University College of Engineering: Tallahassee, FL, USA, 2011. [Google Scholar]
 Pavlovsky, M.; de Haan, S.W.H.; Ferreira, J.A. Integral design of 50 kW, 25 kHz dcdc Converter. In Proceedings of the 4th International Conference on Integrated Power Systems, Proceedings ZCS Topology, Naples, Italy, 7–9 June 2006; pp. 1–6. [Google Scholar]
 Ned Mohan, T.M.U.; William, P. Robbins. Power Electronics: Converters, Applications, and Design, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002; p. 832. [Google Scholar]
 Iyer, K.V.; Robbins, W.P.; Mohan, N. Winding design of a high power medium frequency transformer. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 18–20 June 2014; pp. 665–669. [Google Scholar]
 Dincan, C.; Kaer, P. Control and modulation for loss minimization for dc/dc converter in wind farm. In Proceedings of the PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 10–12 May 2016; pp. 1–8. [Google Scholar]
 Tariq, R.; Alhamrouni, I.; Rehman, A.U.; Tag Eldin, E.; Shafiq, M.; Ghamry, N.A.; Hamam, H. An Optimized Solution for Fault Detection and Location in Underground Cables Based on Traveling Waves. Energies 2022, 15, 6468. [Google Scholar] [CrossRef]
 Berasategi, A.; Cabal, C.; Alonso, C.; Estibals, B. European efficiency improvement in photovoltaic applications by means of parallel connection of power converters. In Proceedings of the 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
 Maqbool, H.; Yousaf, A.; Asif, R.M.; Rehman, A.U.; Eldin, E.T.; Shafiq, M.; Hamam, H. An Optimized Fuzzy Based Control Solution for Frequency Oscillation Reduction in Electric Grids. Energies 2022, 15, 6981. [Google Scholar] [CrossRef]
 Vinnikov, D.; Bolgov, V. Efficiency Optimization of the HighPower Isolated DC/DC Converters through THD and Losses Reduction in Isolation Transformers. Renew. Energy Power Qual. J. 2009, 1, 383–389. [Google Scholar] [CrossRef]
 Syed, I.; Khadkikar, V. Replacing the Grid Interface Transformer in Wind Energy Conversion System with SolidState Transformer. IEEE Trans. Power Syst. 2017, 32, 2152–2160. [Google Scholar] [CrossRef]
 Mishra, D.K.; Ghadi, M.J.; Li, L.; Hossain, M.J.; Zhang, J.; Ray, P.K.; Mohanty, A. A review on solidstate transformer: A breakthrough technology for future smart distribution grids. Int. J. Electr. Power Energy Syst. 2021, 133, 107255. [Google Scholar] [CrossRef]
 Gupta, E.; Kumar Sinha, S.; Kumar Vates, U.; Chavan, S.S. A high performance solid state transformer for an efficient electric grid application: Design and analysis for advanced nanocrystalline core material. Mater. Today: Proc. 2021, 46, 2146–2149. [Google Scholar] [CrossRef]
 Wang, W.; Wang, X.; He, J.; Liu, Y.; Li, S.; Nie, Y. Electric stress and dielectric breakdown characteristics under highfrequency voltages with multiharmonics in a solidstate transformer. Int. J. Electr. Power Energy Syst. 2021, 129, 106861. [Google Scholar] [CrossRef]
 Kabalcı, E. CHAPTER 9—Solid state transformers with multilevel inverters. In Multilevel Inverters; Kabalcı, E., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 249–266. [Google Scholar]
 Kaliappan, G.; Rengaraj, M. Aging assessment of transformer solid insulation: A review. Mater. Today Proc. 2021, 47, 272–277. [Google Scholar] [CrossRef]
 Fetisov, Y.K.; Chashin, D.V. Magnetoelectric coilfree voltage transformer based on monolithic ferritepiezoelectric heterostructure. Sens. Actuators A Phys. 2022, 344, 113737. [Google Scholar] [CrossRef]
 Oggier, G.G.; GarcÍa, G.O.; Oliva, A.R. Switching Control Strategy to Minimize Dual Active Bridge Converter Losses. IEEE Trans. Power Electron. 2009, 24, 1826–1838. [Google Scholar] [CrossRef]
 Guo, H.; Guo, L. Health index for power transformer condition assessment based on operation history and test data. Energy Rep. 2022, 8, 9038–9045. [Google Scholar] [CrossRef]
 Shah, D.G.; Crow, M.L. Stability Design Criteria for Distribution Systems with SolidState Transformers. IEEE Trans. Power Deliv. 2014, 29, 14759118. [Google Scholar] [CrossRef]
 Wan, C.; Zou, J.; Tang, H.; Zhang, Q.; Wang, T. Investigation of a power network quality comprehensive control device based on novel cascaded power units. Int. Trans. Electr. Energy Syst. 2020, 30, e12651. [Google Scholar] [CrossRef]
 VacaUrbano, F.; AlvarezAlvarado, M.S. Power quality with solid state transformer integrated smartgrids. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Quito, Ecuador, 20–22 September 2017; pp. 1–6. [Google Scholar]
 Guo, Z.; Sha, D. Introduction. In New Topologies and Modulation Schemes for SoftSwitching Isolated DC–DC Converters; Guo, Z., Sha, D., Eds.; Springer: Singapore, 2020; pp. 1–21. [Google Scholar]
 Wu, K.; Silva, C.W.d.; Dunford, W.G. Stability Analysis of Isolated Bidirectional Dual Active FullBridge DC–DC Converter with Triple PhaseShift Control. IEEE Trans. Power Electron. 2012, 27, 2007–2017. [Google Scholar] [CrossRef]
 Jain, A.K.; Ayyanar, R. Pwm control of dual active bridge: Comprehensive analysis and experimental verification. IEEE Trans. Power Electron. 2011, 26, 1215–1227. [Google Scholar] [CrossRef]
 Zhabelova, G.; Yavarian, A.; Vyatkin, V.; Huang, A.Q. Data center energy efficiency and power quality: An alternative approach with solid state transformer. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 1294–1300. [Google Scholar]
 Huber, J.E.; Böhler, J.; Rothmund, D.; Kolar, J.W. Analysis and celllevel experimental verification of a 25 kW allSiC isolated front end 6.6 kV/400 V ACDC solidstate transformer. CPSS Trans. Power Electron. Appl. 2017, 2, 140–148. [Google Scholar] [CrossRef]
 Kim, M.; Rosekeit, M.; Sul, S.K.; Doncker, R.W.A.A.D. A dualphaseshift control strategy for dualactivebridge DCDC converter in wide voltage range. In Proceedings of the 8th International Conference on Power Electronics—ECCE Asia, Jeju, Korea, 30 May–3 June 2011; pp. 364–371. [Google Scholar]
 Zhao, B.; Song, Q.; Liu, W.; Liu, G.; Zhao, Y. Universal HighFrequencyLink Characterization and Practical FundamentalOptimal Strategy for DualActiveBridge DCDC Converter Under PWM Plus PhaseShift Control. IEEE Trans. Power Electron. 2015, 30, 6488–6494. [Google Scholar] [CrossRef]
 Gorla, N.B.Y.; Kolluri, S.; Chai, M.; Panda, S.K. A Comprehensive Harmonic Analysis and Control Strategy for Improved Input Power Quality in a Cascaded Modular Solid State Transformer. IEEE Trans. Power Electron. 2019, 34, 6219–6232. [Google Scholar] [CrossRef]
 Samejima, T.; Kintsu, K.; Morizane, T.; Kimura, N. Comparison of core material of high frequency transformer for offshore wind generation. In Proceedings of the 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 20–22 June 2018; pp. 348–352. [Google Scholar]
 Khosa, I.; Taimoor, N.; Akhtar, J.; Ali, K.; Rehman, A.U.; Bajaj, M.; Elgbaily, M.; Shouran, M.; Kamel, S. Financial Hazard Assessment for Electricity Suppliers Due to Power Outages: The Revenue Loss Perspective. Energies 2022, 15, 4327. [Google Scholar] [CrossRef]
 Mirza, A.F.; Haider, S.K.; Ahmed, A.; Rehman, A.U.; Shafiq, M.; Bajaj, M.; Zawbaa, H.M.; Szczepankowski, P.; Kamel, S. Generalized regression neural network and fitness dependent optimization: Application to energy harvesting of centralized TEG systems. Energy Rep. 2022, 8, 6332–6346. [Google Scholar] [CrossRef]
 Masood, B.; Guobing, S.; Nebhen, J.; Rehman, A.U.; Iqbal, M.N.; Rasheed, I.; Bajaj, M.; Shafiq, M.; Hamam, H. Investigation and Field Measurements for Demand Side Management Control Technique of Smart Air Conditioners located at Residential, Commercial, and Industrial Sites. Energies 2022, 15, 2482. [Google Scholar] [CrossRef]
 Sarwar, S.; Javed, M.Y.; Jaffery, M.H.; Arshad, J.; Ur Rehman, A.; Shafiq, M.; Choi, J.G. A Novel Hybrid MPPT Technique to Maximize Power Harvesting from PV System under Partial and Complex Partial Shading. Appl. Sci. 2022, 12, 587. [Google Scholar] [CrossRef]
 Sharma, H.; Mishra, S.; Dhillon, J.; Sharma, N.K.; Bajaj, M.; Tariq, R.; Rehman, A.U.; Shafiq, M.; Hamam, H. Feasibility of Solar GridBased Industrial Virtual Power Plant for Optimal Energy Scheduling: A Case of Indian Power Sector. Energies 2022, 15, 752. [Google Scholar] [CrossRef]
 Daniel, K.; Kütt, L.; Iqbal, M.N.; Shabbir, N.; Rehman, A.U.; Shafiq, M.; Hamam, H. Current Harmonic Aggregation Cases for Contemporary Loads. Energies 2022, 15, 437. [Google Scholar] [CrossRef]
 Kshatri, S.; Dhillon, J.; Mishra, S.; Tariq, R.; Sharma, N.; Bajaj, M.; Rehman, A.; Choi, J.G. Reliability Analysis of Bifacial PV PanelBased Inverters Considering the Effect of Geographical Location. Energies 2021, 15, 170. [Google Scholar] [CrossRef]
 Shabbir, N.; Kütt, L.; Jawad, M.; Husev, O.; Rehman, A.; Gardezi, A.; Choi, J.G. ShortTerm Wind Energy Forecasting Using Deep LearningBased Predictive Analytics. Comput. Mater. Contin. 2022, 72, 1017–1033. [Google Scholar] [CrossRef]
 Khalid, A.; Jaffery, M.H.; Javed, M.Y.; Yousaf, A.; Arshad, J.; Ur Rehman, A.; Haider, A.; Althobaiti, M.M.; Shafiq, M.; Hamam, H. Performance Analysis of MarsPowered DescentBased Landing in a Constrained Optimization Control Framework. Energies 2021, 14, 8493. [Google Scholar] [CrossRef]
 Ehsan, U.; Jawad, M.; Javed, U.; Shabih Zaidi, K.; Ur Rehman, A.; Rassõlkin, A.; Althobaiti, M.M.; Hamam, H.; Shafiq, M. A Detailed Testing Procedure of Numerical Differential Protection Relay for EHV Auto Transformer. Energies 2021, 14, 8447. [Google Scholar] [CrossRef]
 Choudhury, S.; Acharya, S.K.; Khadanga, R.K.; Mohanty, S.; Arshad, J.; Ur Rehman, A.; Shafiq, M.; Choi, J.G. Harmonic Profile Enhancement of Grid Connected Fuel Cell through Cascaded HBridge MultiLevel Inverter and Improved Squirrel Search Optimization Technique. Energies 2021, 14, 7947. [Google Scholar] [CrossRef]
 Yousaf, A.; Asif, R.M.; Shakir, M.; Rehman, A.U.; Alassery, F.; Hamam, H.; Cheikhrouhou, O. A Novel Machine LearningBased Price Forecasting for Energy Management Systems. Sustainability 2021, 13, 12693. [Google Scholar] [CrossRef]
 Rafique, W.; Khan, A.; Almogren, A.; Arshad, J.; Yousaf, A.; Jaffery, M.; Rehman, A. Adaptive Fuzzy Logic Controller for Harmonics Mitigation Using Particle Swarm Optimization. Comput. Mater. Contin. 2022, 71, 4275–4293. [Google Scholar] [CrossRef]
 Rizwan, R.; Arshad, J.; Almogren, A.; Jaffery, M.H.; Yousaf, A.; Khan, A.; Ur Rehman, A.; Shafiq, M. Implementation of ANNBased Embedded Hybrid Power Filter Using HILTopology with RealTime Data Visualization through NodeRED. Energies 2021, 14, 7127. [Google Scholar] [CrossRef]
 Khan, A.; Jaffery, M.H.; Javed, Y.; Arshad, J.; Rehman, A.U.; Khan, R.; Bajaj, M.; Kaabar, M.K.A. HardwareintheLoop Implementation and Performance Evaluation of ThreePhase Hybrid Shunt Active Power Filter for Power Quality Improvement. Math. Probl. Eng. 2021, 2021, 8032793. [Google Scholar] [CrossRef]
 Dashtdar, M.; Bajaj, M.; Hosseinimoghadam, S.M.S.; Sami, I.; Choudhury, S.; Rehman, A.U.; Goud, B.S. Improving voltage profile and reducing power losses based on reconfiguration and optimal placement of UPQC in the network by considering system reliability indices. Int. Trans. Electr. Energy Syst. 2021, 31, e13120. [Google Scholar] [CrossRef]
 Arshad, J.; Khan, A.; Aftab, M.; Hussain, M.; Rehman, A.; Ahmad, S.; AlShayea, A. Deep Deterministic Policy Gradient to Regulate Feedback Control Systems Using Reinforcement Learning. Comput. Mater. Contin. 2021, 71, 1153–1169. [Google Scholar] [CrossRef]
 Jakka, V.N.; Acharya, S.; Anurag, A.; Prabowo, Y.; Kumar, A.; Parashar, S.; Bhattacharya, S. Protection Design Considerations of a 10 kV SiC MOSFET Enabled Mobile Utilities Support Equipment Based Solid State Transformer (MUSESST). In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 5559–5565. [Google Scholar]
 Tudorache, T.; Marinescu, A.; Dumbrava, I. Onroad Charging System Demonstrator for EVs. In Proceedings of the 2019 Electric Vehicles International Conference (EV), Bucharest, Romania, 3–4 October 2019; pp. 1–4. [Google Scholar]
 PoolMazun, E.I.; Sandoval, J.J.; Enjeti, P.N.; Pitel, I.J. An Integrated SolidState Transformer with HighFrequency Isolation for EV FastCharging Applications. IEEE J. Emerg. Sel. Top. Ind. Electron. 2020, 1, 46–56. [Google Scholar] [CrossRef]
 Zhao, H.; Yang, B. A Novel Conception for HVDC Transmission Capacity Expansion and Its Control Strategy. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–6. [Google Scholar]
 Kimura, N.; Morizane, T.; Iyoda, I.; Nakao, K.; Yokoyama, T. Application of SolidState Transformer for HVDC Transmission from Offshore Windfarm. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 902–907. [Google Scholar]
 Zapico, A.; Lopez, M.; Rodriguez, A.; Briz, F. Fault tolerant cell design for MMCbased multiport power converters. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar]
 Gu, Z.; Gu, C.; Zhu, M.; Zhu, W.; Li, Z.; Xu, R.; Wang, J. Influence of temperature on frequency domain spectroscopy detection of transformer bushings. Energy Rep. 2022, 8, 381–387. [Google Scholar] [CrossRef]
 Hannan, M.A.; Ker, P.J.; Lipu, M.S.H.; Choi, Z.H.; Rahman, M.S.A.; Muttaqi, K.M.; Blaabjerg, F. State of the Art of SolidState Transformers: Advanced Topologies, Implementation Issues, Recent Progress and Improvements. IEEE Access 2020, 8, 19113–19132. [Google Scholar] [CrossRef]
 Foureaux, N.C.; Adolpho, L.; Silva, S.M.; Brito, J.A.d.S.; Filho, B.d.J.C. Application of solid state transformers in utility scale solar power plants. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 3695–3700. [Google Scholar]
 Tafti, H.D.; Shuyu, C.; Kishore, K.V.R.; Farivar, G.; Yeo, H.L.; Sriram, V.B.; Pou, J.; Tripathi, A. Control of active frontend rectifier of the solidstate transformer with improved dynamic performance during precharging. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 24–26 October 2017; pp. 1–6. [Google Scholar]
 Ronanki, D.; Kelkar, A.; Williamson, S.S. Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation. Energies 2019, 12, 3721. [Google Scholar] [CrossRef]
 Valedsaravi, S.; El Aroudi, A.; MartínezSalamero, L. Review of SolidState Transformer Applications on Electric Vehicle DC UltraFast Charging Station. Energies 2022, 15, 5602. [Google Scholar] [CrossRef]
 Das, D.; Kumar, C. Operation and control of smart transformer based distribution grid in a microgrid system. In Proceedings of the 2017 National Power Electronics Conference (NPEC), Pune, India, 18–20 December 2017; pp. 135–140. [Google Scholar]
 Huber, J.W.K.J.E. Potential future applications and topologies of solidstate transformers (SSTs). In Proceedings of the ECPE 2019 SolidState Transformer Workshop, Lausanne, Switzerland, 14 February 2019. [Google Scholar]
 Chen, H.; Divan, D. Design of a 10kV·A SoftSwitching SolidState Transformer (S4T). IEEE Trans. Power Electron. 2018, 33, 5724–5738. [Google Scholar] [CrossRef]
 Wang, H.; Zhang, Y.; Sun, Y.; Zheng, M.; Liang, X.; Zhang, G.; Tan, K.; Feng, J. Topology and Control Method of a SingleCell MatrixType SolidState Transformer. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2302–2312. [Google Scholar] [CrossRef]
 Zhang, J.; Liu, J.; Yang, J.; Zhao, N.; Wang, Y.; Zheng, T.Q. An LLCLC Type Bidirectional Control Strategy for an LLC Resonant Converter in Power Electronic Traction Transformer. IEEE Trans. Ind. Electron. 2018, 65, 8595–8604. [Google Scholar] [CrossRef]
 Liang, X.; Srdic, S.; Won, J.; Aponte, E.; Booth, K.; Lukic, S. A 12.47 kV Medium Voltage Input 350 kW EV Fast Charger using 10 kV SiC MOSFET. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 17–21 March 2019; pp. 581–587. [Google Scholar]
 Lahooti Eshkevari, A.; Mosallanejad, A.; Sepasian, M. Indepth study of the application of solidstate transformer in design of highpower electric vehicle charging stations. IET Electr. Syst. Transp. 2020, 10, 310–319. [Google Scholar] [CrossRef]
 Cittanti, D.; Gregorio, M.; Bossotto, E.; Mandrile, F.; Bojoi, R. Full Digital Control and MultiLoop Tuning of a ThreeLevel TType Rectifier for Electric Vehicle UltraFast Battery Chargers. Electronics 2021, 10, 1453. [Google Scholar] [CrossRef]
 Shafiei, M.; GhasemiMarzbali, A. Fastcharging station for electric vehicles, challenges and issues: A comprehensive review. J. Energy Storage 2022, 49, 104136. [Google Scholar] [CrossRef]
 Yousaf, A.; Asif, R.M.; Shakir, M.; Rehman, A.U.; Adrees, M. An Improved Residential Electricity Load Forecasting Using a MachineLearningBased Feature Selection Approach and a Proposed Integration Strategy. Sustainability 2021, 13, 6199. [Google Scholar] [CrossRef]
 Bakar Siddique, M.A.; Asad, A.; Asif, R.M.; Rehman, A.U.; Sadiq, M.T.; Ullah, I. Implementation of Incremental Conductance MPPT Algorithm with Integral Regulator by Using Boost Converter in GridConnected PV Array. IETE J. Res. 2021, 1–14. [Google Scholar] [CrossRef]
 Masood, B.; Guobing, S.; Naqvi, R.A.; Rasheed, M.B.; Hou, J.; Rehman, A.U. Measurements and channel modeling of low and medium voltage NBPLC networks for smart metering. IET Gener. Transm. Distrib. 2021, 15, 321–338. [Google Scholar] [CrossRef]
 Masood, B.; Khan, M.A.; Baig, S.; Song, G.; Rehman, A.U.; Rehman, S.U.; Asif, R.M.; Rasheed, M.B. Investigation of Deterministic, Statistical and Parametric NBPLC Channel Modeling Techniques for Advanced Metering Infrastructure. Energies 2020, 13, 3098. [Google Scholar] [CrossRef]
 Rehman, A. Design of High Frequency PWM Inverter as a Part of 100kVA Solid State Transformer; Capital City University: Islamabad, Pakistan, 2022. [Google Scholar]
Parameter  SingleStage (AC to AC Conversion)  TwoStage Using LVDC Link  TwoStage Using HVDC Link  ThreeStage with Both HVDC and LVDC Links 

Input Power Factor Correction  No  Yes  Yes  Yes 
DC Link Provision  No  Yes  Yes  Yes 
Galvanic Isolation from Grid  Yes  Yes  Yes  Yes 
DES and DER Management  No  Yes  Yes  Yes 
Feasibility in SST applications  No  No  No  Yes 
Cost and Weight  Lowest  Lower  Lower  Low 
Input Voltage Regulation  No  Good  Good  Very Good 
Reactive Power Compensation  None  Sure  Sure  Sure 
Circuit Implementation  Easy  Easy  Easy  Easy 
RideThrough Capability of the SST  No  No  No  Yes 
Power Quality Improvement  No  Yes  Yes  Yes 
Input Current Limiting  No  Yes  Yes  Yes 
Load (Ω) (Each Phase)  Input Voltage (V) (Each Phase)  Input Current (A) (Each Phase)  Input Power (W) (Each Phase)  Output Voltage (V) (Each Phase)  Load Current (A) (Each Phase)  Output Power (W) (in Each Phase)  Efficiency Each Phase) % 

100  5000  12.47  62,320  2494  24.94  62,180  99.77 
200  5000  6.242  31,210  2497  12.48  31,170  99.88 
500  5000  2.499  12,500  2499  4.997  12,490  99.94 
1000  5000  1.25  6251  2499  2.499  6247  99.94 
2000  5000  0.6254  3127  2500  1.25  3124  99.91 
3000  5000  0.4171  2086  2500  0.833  2083  99.87 
4000  5000  0.313  1585  2500  0.625  1582  99.83 
5000  5000  0.2505  1252  2500  0.5  1250  99.79 
Writer/Year  Rating/ Specification  Topology/Configuration  Operational Effects/Results  Observation/Attainments 

Brooks et al. (1980)    Singlestage, ACAC (Step Down Conversion)  Reduce the input/applied voltage to a lower value at the output 

Resischi et al. (1995)    Singlestage, ACAC(Step Down Conversion) 


Harada. (1996)    Singlestage, (HF AC link) 
 No arrangement for instantaneous voltage regulation as well as for voltage sag compensation 
Kang et al. (1999)    Threestage (High Frequency AC link) 


J. Edward et al. (2000) Ronan et al. (2002)  10 kVA, 7.2 kV/240 V  Threestage Cascaded HBridge (High Frequency AC link) 


JihSheng et al. (2005)    Threestage (High Frequency AC link)  Provision of PQ functions, galvanic isolation and isolation of a disturbance from either source or load  Different voltage Rising cost but with appreciable efficiency 
J. AiJuan et al. (2006)  5 kVA, 220 V/380 V  Twostage, (AC/AC HF link)  Unbalanced linear load/input voltage  Lower THD 
J. S. Lai et al. (2006)  50 kVA, 2.4 kV/240 V/120 V  Threestage (3 level NPC in MV side) 


Iman et al. (2006)  High Frequency DC link  PF improvement, protection of critical loads and energy storage system  Use of numerous PE converter and DC link electrolytic capacitors  
ImanEini et al. (2008)  Singlephase, threestage, (cascaded Hbridge)  Power factor improvement, protection of critical loads and energy storage system  Low efficiency and reliability  
H. ImanEini et al. (2009)  1.5 kW, 230 V/39 V  Threestage, (Cascaded Hbridge)  Voltage sag Nonlinear load  Harmonic voltage and reactive Power compensation. 
Maitra et al. (2009)  High Frequency DC link  Maintain the source voltage balance among different modules  Lesser efficiency due to a number of components  
M. Sabahi et al. (2010)  2 kW, 110 V/20 V  Singlestage (AC to AC Conversion)  Steady state response 

S. B.Yu Du et al. (2010)  20 kVA, 7.2 kV/240 V  Threestage, (Cascaded HBridge)  Steady state response 

Ling et al. (2011)  High Frequency DC link  Reduction in voltage stress Rating of components  Lower efficiency  
Jie Zeng et al. (2011)  High Frequency AC link  Core loss calculated as 81 W  Efficiency of the SST up to 96.6% (from half to full load)  
C. Zhao et al. (2011)  1.2 MVA, 15 kV/16.7 Hz  Twostage, (Cascaded Hbridge)  Steady state response  Bidirectional power flow 
X. Liu et al. (2012)  1 kW, 208 V/120 V  Threestage (Two Level)  Steady state response  Bidirectional power flow 
Subramanya (2012).    Threestage ACAC (Matrix converter based SST HF DC link)  Reduction in number of components  Escalating efficiency, with reduction in PQ with the voltage stress factor 
Xinyu et al. (2012)    3Φ, singlestage (Matrix converter for PET HF AC link)  Voltage regulation is 0.5–1  Higher THD 
Z. Li et al. (2013)  110 kV AC750 V DC  Twostage, (AC/DC/DC, MMC)  Steady state response  Bidirectional power flow 
Xu She et al. (2014)  3.6 kV120 V/10 kVA  Threestage (FB, HF AC link)  Accessibility for ac as well as DC outputs  Efficiency ranges from 84% to 88% 
M. Morawiec et al. (2015)  600 kVA, 3.3 kV DC/ 3.3 kV DC  Threestage, (Cascaded Hbridge in MV side)  Steady state response  Bidirectional power flow 
H. J. Yun et al. (2015)  5 kW, 300 Vac /380 V DC  Twostage, (Cascaded Hbridge)  Steady state response  Bidirectional power flow 
J. Ge et al. (2015)  2 kW, 300 V/60 V  Threestage (twolevel) 
 Bidirectional power flow 
B. Zhao et al. (2015)  2 kVA, 380 V/120 V  Threestage, (cascaded) 
 Bidirectional power flow 
Madhusoodhanan et al. (2015)  5.8 KVA, 5 kV DC/800 V DC  Threestage, (NPC)  Steady state response  Bidirectional power flow 
Swapni et al. (2016).    Threestage (High Frequency AC link)  Capability to substitute the old version conventional transformer 

H. Chen et al. (2016)  50 kVA, 480 V/480 V  Singlestage, DynaC (ACAC)  Steady state response  Bidirectional power flow 
N. Nila et al. (2016)  3kVA, 2.4 kV/127 V  Threestage (twolevel)  Steady state response, nonlinear load  Unidirectional 
H. Chen et al. (2016)  10 kVA,208 V  Singlestage ACAC, (Twolevel)  Steady state response  Bidirectional power flow 
Y. Liu et al. (2017)  2 kW, 400 V/208 V  Singlestage, ACAC, (Matrix Based)  Steady state, load variation and unbalanced voltage and current  Bidirectional power flow 
Aleksandar et al. (2018)  High Frequency AC link (3 phase modular)  Possibility/opportunity of SST implementation in marine electrical power systems  Greater complexity/ higher price  
N. Verma et al. (2019)  Technical appraisal of SST in electrical system has been presented  SST will attain a key role to address the drawbacks of conventional transformer    
M.zharuddin et al. (2020)    Main advantages of SSTs have been extensively analyzed and their performance has been compared with the existing ones  Additional developments in SST field will be explored in the nearby future   
Writer/Year  Topology/Configuration  Operational Effects/Results  Observation/Attainments 

Zhong et al. (2013)  Dual Half Bridge (DHB) DCDC converter [1 KW (385–48 V)] 
 Efficiency = 96 + % (light and heavy weight both) 
M. Narimani et al. (2014)  Dual Active Bridge DCDC converter  3level DCDC converters in FB arrangement possess capability for enhancing light load efficiency as compared to 2level DCDC converters  Enhanced efficiency at light load 
Kai Zhang et al. (2015)  Dual Active Bridge DCDC converter (FB)  Two equivalent resistances are added in primary of HF transformer to increase the efficiency  Enhanced power accuracy and efficiency 
Arsalan et al. (2016)  Dual Half Bridge DCDC Converters (Half Bridge)  Better antiimbalance capability in transformer Can function in step up (29 V–380 V) as well as in step down (380 V–29 V) 

Soban et al. (2017)  Threelevel DCDC converter  Maintaining galvanic isolation with high voltage conversion ratio using medium frequency transformer (400 Hz–20 k Hz) 

Srinithi et al. (2017)  1.7 kW isolated DCDC converter (bidirectional) 


SuHan et al. (2017)  3kW experimental and trial DCDC converter prototype 
 Enhanced efficiency 
Mojtaba. et al. (2017)  DCDC converter (Isolated/Non isolated)  In an evaluation concerning isolated and nonisolated DCDC converters, the only isolated converters meet the following parameters as:


Levy Costa et al. (2018)  20 kW quadruple active bridge (QAB) converter  To augment the efficiency in the light of expenditure, a multiobjective enhancement algorithm established which combined these parameters to have prime point for expenses 

Authors/Year  Converter Configuration  Operational Effects/Results  Observation/Attainments 

Haifeng et al. (2011)  Dual Half Bridge DCDC converter (1 KW)  In an appraisal of the performances between DAB and DHB, the DHB being more economical with less number of switches is preferred and supported  Achieving efficiency of 97.2% at 50 KHz operation 
Rishi et al. (2015)  Multilevel PWM inverter (Cascaded H Bridge)  Favored for cascaded H Bridge MLI  Better performance in MLIs than conventional ones 
Harati et al. (2016)  Three phase inverter  Load impedance can be adjusted while matching the source impedance  Improved efficiency in real time 
Venkatesa et al. (2016)  DCDC Converter (with H6 Bridge)  Six level solutions for single phase grid connected converters  5 levels inverter attained efficiency up to 95% 
HyunJun et al. (2016)  Dual Active Bridge (DAB) 
 Improved efficiency 
Harish et al. (2016)  Multilevel inverters  MLI possesses 3 major topologies such as, capacitor clamped, diode camped and cascaded  Improved performance in MLIs 
Charai et al. (2017)  Multilevel inverters  With increased number of levels, the inverter gives better performance in the system  Eleven levels inverter offers more efficient performance in terms of the P.F., THD and its efficiency as compared to 7–9 level MLI 
Akash et al. (2017)  Threephase PWM Inverter  Three phase ac power of 0.8 V, displaced by 120 phase shift provided to the inverter resulted into an almost sinusoidal current wave  The amplitude MI was ≤ 1. 
Kathar et al. (2017)  Multilevel inverters  Topology comparison of DiodeClamp inverter, Capacitor–Clamped inverter, Cascaded and generalized multilevel cells was deliberated  HBridge possesses its easy extensibility to a high number of level as well as implementation 
Tomasz et al. (2017)  Threephase DAB (with 3 LNPC half bridge)  Three level topologies are promising solution for LVC  HB solution is preferred at MV side of DCDC converter 
Ambula.et al (2017)  Singlephase 7 level inverter  Efficient and effective substitute for the conventional one 

Levy et al. (2018)  MultipleActiveBridge DCDC Converter (20 kW prototype)  To meet the set goals (low cost/high efficiency), a development of a multiobjective optimization algorithm initiated 

Tomasz et al. (2017)  Review of MLI (DCDC Converter)  Half bridge produced half the output voltage as compared to fullbridge, resulting in reduction of transformer turn ratio by a factor of two 

Chih et al. (2012)  HalfBridge PV Inverter System  Active switches are reduced to half in comparison to FB topology 

Gavaras et al. (2016)  Half Bridge Inverter (isolated)  Up to 15th harmonics there exists 44.999% THD in a single half bridge inverter  With LC low pass filter, the THD is reduced to 0.0183% 
Sathisha et al. (2017)  Unipolar and Bipolar PWM for single phase VSI  Unipolar modulation has lesser THD as compared to bipolar with better PQ  Unipolar has 0.368% THD lesser than bipolar modulation 
Zhigang Gao et al. (2016)  Half Bridge Inverter (isolated)  It measures the output powers and efficiencies of cascaded HB (CHB) rectifier, isolated DCDC converter and low frequency DCAC inverter  The efficiency of HF inverter approximates to 97.25% 
Soban et al. (2017)  40 V/120 V, 5 KW Threelevel isolated DCDC converter. 
 Efficiency enhanced from 81% to 92% 
Shiladri et al. (2018)  HalfBridge (HB) Inverter (Transformer Isolated)  Operation at optimal point and satisfactory 

Parameter  DHB  DAB 

Transformer Turn Ratio (n)  V_{in}/V_{out}  V_{in}/V_{out} 
Duty Cycle (D)  ½  ½ 
Transformer flux swing (▲B)  (V_{in}/2)D/nAf  V_{in}D/nA_{e}f 
Switching Devices  4  8 
Advantages  Disadvantages 

Use of soft switching for all power switches  Higher number of switches than DHB 
Identical control procedure in both energy flow directions  Soft switching facility does not exist at light loads 
Possibility of modular structure   
Nominal voltage and current stress   
Advantages  Disadvantages 

Incorporates half as many switches than DAB  Bulky capacitors 
Use of soft switching for all switches  Current in switches is twice as high 
Simple structure and control  No soft switches at light loads 
Modulator structure possible   
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.; ImranDaud, M.; Haider, S.K.; Rehman, A.U.; Shafiq, M.; Eldin, E.T. Comprehensive Review of Solid State Transformers in the Distribution System: From High Voltage Power Components to the Field Application. Symmetry 2022, 14, 2027. https://doi.org/10.3390/sym14102027
Rehman A, ImranDaud M, Haider SK, Rehman AU, Shafiq M, Eldin ET. Comprehensive Review of Solid State Transformers in the Distribution System: From High Voltage Power Components to the Field Application. Symmetry. 2022; 14(10):2027. https://doi.org/10.3390/sym14102027
Chicago/Turabian StyleRehman, Abdur, Malik ImranDaud, Syed Kamran Haider, Ateeq Ur Rehman, Muhammad Shafiq, and Elsayed Tag Eldin. 2022. "Comprehensive Review of Solid State Transformers in the Distribution System: From High Voltage Power Components to the Field Application" Symmetry 14, no. 10: 2027. https://doi.org/10.3390/sym14102027