Quantum Dynamical Simulation of a Transversal Stern–Gerlach Interferometer
Abstract
:1. Introduction
We note that in Bohm’s proposal the atom is deflected in regions of “uniform magnetic fields”—but there are no such Lorentz-type forces acting on electrically neutral atoms. All subsequent works, including ours, consider magnetic gradients to achieve the restoring deflection, with three more SGAs completing the interferometer sketched in Figure 1. There is also Wigner’s scheme, in which the inhomogeneous magnetic field from an electric current recombines the beams that emerge from the SGA [19]; it has not been used for a quantitative model.If the uniform magnetic fields (...) are set up in exactly the right way, and if the second inhomogeneous field is an exact duplicate of the first one, the two wave packets can be brought together into a single coherent packet. Although the precision required to achieve this result would be fantastic, it is, in principle, attainable.
2. Modeling the Transversal SGI
2.1. Quantum Dynamics of the Apparatus
2.2. Magnetic Field in the Apparatus
2.3. Beam Recombination in the Calibrated Magnetic Field
3. Quantum Dynamical Simulation of the SGI
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SG | Stern–Gerlach |
SGA | Stern–Gerlach Apparatus |
SGI | Stern–Gerlach Interferometer |
Appendix A. Particle Properties and Initial Wave Function
Variable | Value | First Occurrence | Description |
---|---|---|---|
m | in Equation (1) | mass of a silver atom (: dalton) | |
in Equation (3) | magnetic moment (: Bohr magneton) | ||
L | after Equation (1) | length of the SGI | |
T | after Equation (2) | time to traverse the SGI | |
in Equation (1) | initial position | ||
in Equation (1) | initial velocity | ||
in Equation (1) | width of the initial wave function |
Appendix B. Magnetic Field
f | ||
---|---|---|
5 | 0.00011 | 0.71919 |
10 | 0.00030 | 0.04353 |
20 | 0.00081 | 1.61404 |
30 | 0.00147 | 2.19168 |
40 | 0.00226 | 2.85283 |
References
- Stern, O. Ein Weg zur experimentellen Prüfung der Richtungsquantelung im Magnetfeld. Z. Phys. 1921, 7, 249–253. [Google Scholar] [CrossRef]
- Gerlach, W.; Stern, O. Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Z. Phys. 1922, 8, 110–111. [Google Scholar] [CrossRef] [Green Version]
- Bloom, M.; Erdman, K. The transverse Stern–Gerlach experiment. Can. J. Phys. 1962, 40, 179–193. [Google Scholar] [CrossRef]
- França, H.M.; Marshall, T.W.; Santos, E.; Watson, E.J. Possible interference effect in the Stern–Gerlach phenomenon. Phys. Rev. A 1992, 46, 2265–2270. [Google Scholar] [CrossRef] [PubMed]
- Gorceix, O.; Robert, J.; Nic Chormaic, S.; Miniatura, C.; Baudon, J. Dispersive and nondispersive phase shifts in atomic Stern–Gerlach interferometry. Phys. Rev. A 1994, 50, 5007. [Google Scholar] [CrossRef]
- de Oliveira, T.R.; Caldeira, A.O. Dissipative Stern–Gerlach recombination experiment. Phys. Rev. A 2006, 73, 042502. [Google Scholar] [CrossRef] [Green Version]
- McGregor, S.; Bach, R.; Batelaan, H. Transverse quantum Stern–Gerlach magnets for electrons. New J. Phys. 2011, 13, 065018. [Google Scholar] [CrossRef]
- Hatifi, M.; Durt, T. Revealing self-gravity in a Stern–Gerlach Humpty-Dumpty experiment. arXiv 2020, arXiv:2006.07420. [Google Scholar]
- Impens, F.; Guéry-Odelin, D. Shortcut to adiabaticity in a Stern–Gerlach apparatus. Phys. Rev. A 2017, 96, 043609. [Google Scholar] [CrossRef] [Green Version]
- Mathevet, R.; Brodsky, K.; Perales, F.; Boustimi, M.; de Lesegno, B.V.; Reinhardt, J.; Robert, J.; Baudon, J. Some new effects in atom Stern–Gerlach interferometry. In Atomic and Molecular Beams; Springer: Berlin/Heidelberg, Germany, 2001; pp. 81–94. [Google Scholar]
- Xu, X.; Xiao-Ji, Z. Phase-dependent effects in Stern–Gerlach experiments. Chin. Phys. Lett. 2010, 27, 010309. [Google Scholar] [CrossRef]
- de Carvalho, C.R.; Jalbert, G.; Impens, F.; Robert, J.; Medina, A.; Zappa, F.; de Castro Faria, N.V. Toward a test of angular-momentum coherence in a twin-atom interferometer. Europhys. Lett. (EPL) 2015, 110, 50001. [Google Scholar] [CrossRef] [Green Version]
- Robert, J.; Gorceix, O.; Lawson-Daku, J.; Nic Chormaic, S.; Miniatura, C.; Baudon, J.; Perales, F.; Eminyan, M.; Rubin, K. Stern–Gerlach atomic interferometry with space- and time-dependent magnetic fields. Ann. N. Y. Acad. Sci. 1995, 755, 173–181. [Google Scholar] [CrossRef]
- Rubin, K.; Eminyan, M.; Perales, F.; Mathevet, R.; Brodsky, K.; Viaris de Lesegno, B.; Reinhardt, J.; Boustimi, M.; Baudon, J.; Karam, J.C. Atom interferometer using two Stern–Gerlach magnets. Laser Phys. Lett. 2004, 1, 184–193. [Google Scholar] [CrossRef]
- Perales, F.; Robert, J.; Baudon, J.; Ducloy, M. Ultra thin coherent atom beam by Stern–Gerlach interferometry. Europhys. Lett. (EPL) 2007, 78, 60003. [Google Scholar] [CrossRef]
- Amit, O.; Margalit, Y.; Dobkowski, O.; Zhou, Z.; Japha, Y.; Zimmermann, M.; Efremov, M.A.; Narducci, F.A.; Rasel, E.M.; Schleich, W.P. T3 Stern–Gerlach matter-wave interferometer. Phys. Rev. Lett. 2019, 123, 083601. [Google Scholar] [CrossRef] [Green Version]
- Margalit, Y.; Zhou, Z.; Dobkowski, O.; Japha, Y.; Rohrlich, D.; Moukouri, S.; Folman, R. Realization of a complete Stern–Gerlach interferometer. arXiv 2018, arXiv:1801.02708. [Google Scholar]
- Bohm, D. Quantum Theory; Prentice-Hall: New York, NY, USA, 1951. [Google Scholar]
- Wigner, E.P. The Problem of Measurement. Am. J. Phys. 1963, 31, 6–15. [Google Scholar] [CrossRef]
- Englert, B.-G.; Schwinger, J.; Scully, M.O. Is spin coherence like Humpty-Dumpty? I. Simplified treatment. Found. Phys. 1988, 18, 1045–1056. [Google Scholar] [CrossRef]
- Schwinger, J.; Scully, M.O.; Englert, B.-G. Is spin coherence like Humpty-Dumpty? II. General theory. Z. Phys. D Atoms. Mol. Clust. 1988, 10, 135–144. [Google Scholar] [CrossRef]
- Schwinger, J.; Scully, M.O.; Englert, B.-G. Spin coherence and Humpty-Dumpty. III. The effects of observation. Phys. Rev. A Gen. Phys. 1989, 40, 1775–1784. [Google Scholar] [CrossRef]
- Miniatura, C.; Perales, F.; Vassilev, G.; Reinhardt, J.; Robert, J.; Baudon, J. A longitudinal Stern–Gerlach interferometer: The “beaded” atom. J. Phys. II 1991, 1, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Miniatura, C.; Robert, J.; Le Boiteux, S.; Reinhardt, J.; Baudon, J. A longitudinal Stern–Gerlach atomic interferometer. Appl. Phys. B 1992, 54, 347–350. [Google Scholar] [CrossRef]
- Baudon, J.; Mathevet, R.; Robert, J. Atomic interferometry. J. Phys. B At. Mol. Opt. Phys. 1999, 32, R173–R195. [Google Scholar] [CrossRef]
- Machluf, S.; Japha, Y.; Folman, R. Coherent Stern–Gerlach momentum splitting on an atom chip. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Englert, B.-G. Time Reversal Symmetry and Humpty-Dumpty. Z. Naturforschung A 1997, 52, 13–14. [Google Scholar] [CrossRef]
- Ding, R. Higher-Order Split-Operator Approximations. In UROPS Project; National University of Singapore: Singapore, 2018. [Google Scholar]
- Yang, T.H. Stern–Gerlach Interferometer with Realistic Magnetic Field. In UROPS Project; National University of Singapore: Singapore, 2009. [Google Scholar]
- Suzuki, M. Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun. Math. Phys. 1976, 51, 183–190. [Google Scholar] [CrossRef]
- Hatano, N.; Suzuki, M. Finding exponential product formulas of higher orders. arXiv 2005, arXiv:0506007, doi:10.1007/11526216_2. [Google Scholar]
- Chin, S.A. Symplectic integrators from composite operator factorizations. Phys. Lett. A 1997, 226, 344–348. [Google Scholar] [CrossRef]
- Hue, J.H.; Eren, E.; Chiew, S.H.; Lau, J.W.Z.; Chang, L.; Chau, T.T.; Trappe, M.I.; Englert, B.-G. Fourth-order leapfrog algorithms for numerical time evolution of classical and quantum systems. arXiv 2020, arXiv:2007.05308. [Google Scholar]
- Chau, T.T.; Hue, J.H.; Trappe, M.-I.; Englert, B.-G. Systematic corrections to the Thomas–Fermi approximation without a gradient expansion. New J. Phys. 2018, 20, 073003. [Google Scholar] [CrossRef]
- Suzuki, M. General decomposition theory of ordered exponentials. Proc. Jpn. Acad. Ser. B 1993, 69, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Japha, Y. A general wave-packet evolution method for studying coherence of matter-wave interferometers. arXiv 2019, arXiv:1902.07759. [Google Scholar]
- Manoukian, E.B.; Rotjanakusol, A. Quantum dynamics of the Stern–Gerlach (SG) effect. Eur. Phys. J. At. Mol. Opt. Plasma Phys. 2003, 25, 253–259. [Google Scholar]
- Hsu, B.C.; Berrondo, M.; Van Huele, J.F.S. Stern–Gerlach dynamics with quantum propagators. Phys. Rev. A 2011, 83, 012109. [Google Scholar] [CrossRef] [Green Version]
- Ambramowitz, M.; Stegun, A.I. Handbook of Mathematical Functions, Published by the National Bureau of Standards; Dover: New York, NY, USA, 1964. [Google Scholar]
- Haag, R. Fundamental irreversibility and the concept of events. Commun. Math. Phys. 1990, 132, 245–251. [Google Scholar] [CrossRef]
- Haag, R. On the sharpness of localization of individual events in space and time. Found. Phys. 2013, 43, 1295–1313. [Google Scholar] [CrossRef] [Green Version]
- Englert, B.-G. On quantum theory. Eur. Phys. J. D 2013, 67, 238. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paraniak, M.M.; Englert, B.-G. Quantum Dynamical Simulation of a Transversal Stern–Gerlach Interferometer. Symmetry 2021, 13, 1660. https://doi.org/10.3390/sym13091660
Paraniak MM, Englert B-G. Quantum Dynamical Simulation of a Transversal Stern–Gerlach Interferometer. Symmetry. 2021; 13(9):1660. https://doi.org/10.3390/sym13091660
Chicago/Turabian StyleParaniak, Mikołaj M., and Berthold-Georg Englert. 2021. "Quantum Dynamical Simulation of a Transversal Stern–Gerlach Interferometer" Symmetry 13, no. 9: 1660. https://doi.org/10.3390/sym13091660
APA StyleParaniak, M. M., & Englert, B.-G. (2021). Quantum Dynamical Simulation of a Transversal Stern–Gerlach Interferometer. Symmetry, 13(9), 1660. https://doi.org/10.3390/sym13091660