A Newton-Modified Weighted Arithmetic Mean Solution of Nonlinear Porous Medium Type Equations
Abstract
1. Introduction
2. Preliminary
3. Materials and Methods
3.1. Porous Medium Type Equation
3.2. Finite Difference Approximation to Porous Medium Type Equation
3.3. Newton Method
3.4. Newton-Modified Weighted Arithmetic Mean
3.5. Weighted Optimal Value Identification
3.6. Matrix Splitting
4. Numerical Results
4.1. Porous Medium Type Equation Selected Problems
4.2. C Program Implementation and Algorithm
Algorithm 1 Newton-MOWAM iterative method |
Define and ; |
Define the initial and boundary conditions; |
while do |
Construct ; |
; |
while do |
while do |
; |
; |
; |
; |
; |
end while |
; |
; |
end while |
; |
end while |
Display the numerical outputs |
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vázquez, J.L. The Porous Medium Equation: Mathematical Theory; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Promislow, K.; Stockie, J.M. Adiabatic relaxation of convective-diffusive gas transport in a porous fuel cell electrode. SIAM J. Appl. Math. 2001, 62, 180–205. [Google Scholar] [CrossRef]
- Borana, R.; Pradhan, V.; Mehta, M. Numerical solution of instability phenomenon arising in double phase flow through inclined homogeneous porous media. Perspect. Sci. 2016, 8, 225–227. [Google Scholar] [CrossRef][Green Version]
- Afsar Ali, M.; Eberl, H.J.; Sudarsan, R. Numerical solution of a degenerate, diffusion reaction based biofilm growth model on structured non-orthogonal grids. Commun. Comput. Phys. 2018, 24, 695–741. [Google Scholar]
- Ducrot, A.; Le Foll, F.; Magal, P.; Murakawa, H.; Pasquier, J.; Webb, G.F. An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition. Math. Model. Methods Appl. Sci. 2011, 21 (Suppl. S1), 871–892. [Google Scholar] [CrossRef]
- Murakawa, H.; Togashi, H. Continuous models for cell–cell adhesion. J. Theor. Biol. 2015, 374, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations; Chapman & Hall: Boca Raton, FL, USA, 2004. [Google Scholar]
- Vázquez, J.L. The mathematical theories of diffusion: Nonlinear and fractional diffusion. In Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Lecture Notes in Mathematics; Bonforte, M., Grillo, G., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ascher, U.M.; Greif, C. A First Course in Numerical Methods; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2011. [Google Scholar]
- Evans, D.J. The alternating group explicit (AGE) matrix iterative method. Appl. Math. Model. 1987, 11, 256–263. [Google Scholar] [CrossRef]
- Evans, D.J.; Yousif, W.S. The modified alternating group explicit (M.A.G.E.) method. Appl. Math. Model. 1988, 12, 262–267. [Google Scholar] [CrossRef]
- Sahimi, M.S.; Ahmad, A.; Bakar, A.A. The iterative alternating decomposition explicit (IADE) method to solve the heat conduction equation. Int. J. Comput. Math. 1993, 47, 219–229. [Google Scholar] [CrossRef]
- Cai, F.; Xiao, J.; Xiang, Z.H. Block SOR two-stage iterative methods for solution of symmetric positive definite linear systems. In Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering, Chengdu, China, 20–22 August 2010. [Google Scholar]
- Ruggiero, V.; Galligani, E. An iterative method for large sparse systems on a vector computer. Comput. Math. Appl. 1990, 20, 25–28. [Google Scholar] [CrossRef]
- Sulaiman, J.; Othman, M.; Yaacob, N.; Hasan, M.K. Half-sweep geometric mean (HSGM) method using fourth-order finite difference scheme for two-point boundary problems. In Proceedings of the 1st International Conference on Mathematics and Statistics, Bandung, Indonesia, 19–21 June 2006. [Google Scholar]
- Ruggiero, V.; Galligani, E. The arithmetic mean preconditioner for multivector computer. Int. J. Comput. Math. 1992, 44, 207–222. [Google Scholar]
- Benzi, M.; Dayar, T. The arithmetic mean method for finding the stationary vector of Markov chains. Parallel Algorithms Appl. 1995, 6, 25–37. [Google Scholar] [CrossRef]
- Galligani, E. The arithmetic mean method for solving systems of nonlinear equations in finite differences. Appl. Math. Comput. 2006, 181, 579–597. [Google Scholar] [CrossRef]
- Sulaiman, J.; Othman, M.; Hasan, M.K. A new quarter sweep arithmetic mean (QSAM) method to solve diffusion equations. Chamchuri J. Math. 2009, 1, 93–103. [Google Scholar]
- Hasan, M.K.; Sulaiman, J.; Karim, S.A.A.; Othman, M. Development of some numerical methods applying complexity reduction approach for solving scientific problem. J. Appl. Sci. 2011, 11, 1255–1260. [Google Scholar] [CrossRef][Green Version]
- Muthuvalu, M.S.; Asirvadam, V.S.; Mashadov, G. Performance analysis of arithmetic mean method in determining peak junction temperature of semiconductor device. Ain Shams Eng. J. 2015, 6, 1203–1210. [Google Scholar] [CrossRef][Green Version]
- Zainal, N.F.A.; Sulaiman, J.; Alibubin, M.U. Application of half-sweep SOR iteration with nonlocal arithmetic disretization scheme for solving Burger’s equation. ARPN J. Eng. Appl. Sci. 2019, 14, 616–621. [Google Scholar]
- Aruchunan, E.; Wu, Y.; Wiwatanapataphee, B.; Jitsangiam, P. A new variant of arithmetic mean iterative method for fourth order integro-differential equations solution. In Proceedings of the 3rd IEEE International Conference on Artificial Intelligence, Modelling and Simulation, Kota Kinabalu, Malaysia, 2–4 December 2015. [Google Scholar]
- Hadjidimos, A. Successive overrelaxation (SOR) and related methods. J. Comput. Appl. Math. 2000, 123, 177–199. [Google Scholar] [CrossRef]
- Lanzkron, P.J.; Rose, D.J.; Szyld, D.B. Convergence of nested classical iterative methods for linear systems. Numer. Math. 1990, 58, 685–702. [Google Scholar] [CrossRef]
- Ortega, J.M. Numerical Analysis: A Second Course; Society for Industrial and Applied Mathematics: New York, NY, USA, 1990. [Google Scholar]
- Lung, J.V.L.; Sulaiman, J.; Sunarto, A. The application of successive overrelaxation method for the solution of linearized half-sweep finite difference approximation to two-dimensional porous medium equation. In Proceedings of the Annual Conference on Computer Science and Engineering Technology, Medan, Indonesia, 23 September 2020. [Google Scholar]
- Sommeijer, B.P.; van der Houwen, P. Algorithm 621: Software with low storage requirements for two-dimensional, nonlinear, parabolic differential equations. ACM Trans. Math. Softw. 1984, 10, 378–396. [Google Scholar] [CrossRef]
m | Iterative Method | s | Maximum Error | |
---|---|---|---|---|
64 | Newton-WAM | 10,605 | 5.09 | |
Newton-MOWAM | 9208 | 4.74 | ||
128 | Newton-WAM | 36,859 | 35.57 | |
Newton-MOWAM | 31,123 | 33.09 | ||
256 | Newton-WAM | 126,489 | 254.59 | |
Newton-MOWAM | 105,046 | 238.01 | ||
512 | Newton-WAM | 428,365 | 1788.66 | |
Newton-MOWAM | 358,022 | 1663.95 | ||
1024 | Newton-WAM | 1,339,097 | 12,668.48 | |
Newton-MOWAM | 1,116,806 | 11,794.36 |
m | Iterative Method | s | Maximum Error | |
---|---|---|---|---|
64 | Newton-WAM | 113 | 0.05 | |
Newton-MOWAM | 89 | 0.04 | ||
128 | Newton-WAM | 342 | 0.22 | |
Newton-MOWAM | 172 | 0.12 | ||
256 | Newton-WAM | 1165 | 1.25 | |
Newton-MOWAM | 337 | 0.40 | ||
512 | Newton-WAM | 4117 | 8.45 | |
Newton-MWAM | 661 | 1.55 | ||
1024 | Newton-WAM | 14,584 | 59.01 | |
Newton-MOWAM | 1310 | 5.60 |
Iterative Method | s | Maximum Error | ||
---|---|---|---|---|
16 × 16 | Newton-WAM | 875 | 1.04 | |
Newton-MOWAM | 243 | 0.52 | ||
32 × 32 | Newton-WAM | 3145 | 13.11 | |
Newton-MOWAM | 483 | 3.32 | ||
64 × 64 | Newton-WAM | 11,267 | 188.94 | |
Newton-MOWAM | 939 | 23.05 | ||
128 × 128 | Newton-WAM | 40,013 | 2934.48 | |
Newton-MWAM | 1847 | 168.96 | ||
256 × 256 | Newton-WAM | 140,551 | 56,148.36 | |
Newton-MOWAM | 3843 | 2043.62 |
Problem 1 | m | Reduction in (%) | Reduction in s (%) |
---|---|---|---|
64 | 13.17 | 6.88 | |
128 | 15.56 | 6.97 | |
256 | 16.95 | 6.51 | |
512 | 16.42 | 6.97 | |
1024 | 16.60 | 6.90 | |
Problem 2 | m | Reduction in (%) | Reduction in s (%) |
64 | 21.24 | 20.00 | |
128 | 49.71 | 45.45 | |
256 | 71.07 | 68.00 | |
512 | 83.94 | 81.66 | |
1024 | 91.02 | 90.51 | |
Problem 3 | Reduction in (%) | Reduction in s (%) | |
16 × 16 | 72.23 | 50.00 | |
32 × 32 | 84.64 | 74.68 | |
64 × 64 | 91.67 | 87.80 | |
128 × 128 | 95.38 | 94.24 | |
256 × 256 | 97.27 | 96.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aruchunan, E.; Chew, J.V.L.; Muthuvalu, M.S.; Sunarto, A.; Sulaiman, J. A Newton-Modified Weighted Arithmetic Mean Solution of Nonlinear Porous Medium Type Equations. Symmetry 2021, 13, 1511. https://doi.org/10.3390/sym13081511
Aruchunan E, Chew JVL, Muthuvalu MS, Sunarto A, Sulaiman J. A Newton-Modified Weighted Arithmetic Mean Solution of Nonlinear Porous Medium Type Equations. Symmetry. 2021; 13(8):1511. https://doi.org/10.3390/sym13081511
Chicago/Turabian StyleAruchunan, Elayaraja, Jackel Vui Lung Chew, Mohana Sundaram Muthuvalu, Andang Sunarto, and Jumat Sulaiman. 2021. "A Newton-Modified Weighted Arithmetic Mean Solution of Nonlinear Porous Medium Type Equations" Symmetry 13, no. 8: 1511. https://doi.org/10.3390/sym13081511
APA StyleAruchunan, E., Chew, J. V. L., Muthuvalu, M. S., Sunarto, A., & Sulaiman, J. (2021). A Newton-Modified Weighted Arithmetic Mean Solution of Nonlinear Porous Medium Type Equations. Symmetry, 13(8), 1511. https://doi.org/10.3390/sym13081511