Multiple Techniques for Studying Asymptotic Properties of a Class of Differential Equations with Variable Coefficients
Abstract
:1. Introduction
- (a)
- The comparison method.
- (b)
- Riccati technique.
- (c)
- Integral averaging technique.
- K1:
- is a real number.
- K2:
- and under the condition
- K3:
- K4:
- K5:
- such that for and m is a constant.
2. Some Auxiliary Lemmas
3. Main Results
- (i)
- for
- (ii)
- has a continuous and nonpositive partial derivative on and there exist functions and such that
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Aronsson, G.; Janfalk, U. On Hele-Shaw flow of power-law fluids. Eur. J. Appl. Math. 1992, 3, 343–366. [Google Scholar] [CrossRef]
- Walcher, S. Symmetries of Ordinary Differential Equations: A Short Introduction. arXiv 2019, arXiv:1911.01053. [Google Scholar]
- Bazighifan, O.; Abdeljawad, T. Improved Approach for Studying Oscillatory Properties of Fourth-Order Advanced Differential Equations with p-Laplacian Like Operator. Mathematics 2020, 8, 656. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ahmed, H.; Yao, S. New Oscillation Criteria for Advanced Differential Equations of Fourth Order. Mathematics 2020, 8, 728. [Google Scholar] [CrossRef]
- Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retarde ddifferential equations. Math. Comput. Model. 1997, 26, 1–11. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Bazighifan, O.; Minhos, F.; Moaaz, O. Sufficient Conditions for Oscillation of Fourth-Order Neutral Differential Equations with Distributed Deviating Arguments. Axioms 2020, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Postolache, M. An improved conditions for oscillation of functional nonlinear differential equations. Mathematics 2020, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential Equations. Symmetry 2020, 12, 379. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O. An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations. Symmetry 2020, 12, 555. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Ramos, H. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. Appl. Math. Lett. 2020, 107, 106431. [Google Scholar] [CrossRef]
- Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations. Symmetry 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Dassios, I. On the Asymptotic Behavior of Advanced Differential Equations with a Non-Canonical Operator. Appl. Sci. 2020, 10, 3130. [Google Scholar] [CrossRef]
- Bazighifan, O.; Kumam, P. Oscillation Theorems for Advanced Differential Equations with p-Laplacian Like Operators. Mathematics 2020, 8, 821. [Google Scholar] [CrossRef]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. Mathematics 2020, 8, 590. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. [Google Scholar] [CrossRef]
- Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Eq. 2019, 1, 297. [Google Scholar] [CrossRef] [Green Version]
- Nehari, Z. Oscillation criteria for second order linear differential equations. Trans. Amer. Math. Soc. 1957, 85, 428–445. [Google Scholar] [CrossRef]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Bazighifan, O. Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations. Adv. Differ. Eq. 2020, 201, 1–12. [Google Scholar] [CrossRef]
- Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Agarwal, R.P.; Li, T. Oscillation and asymptotic behavior of higher-order delay differential equations with p -Laplacian like operators. J. Math. Anal. Appl. 2014, 409, 1093–1106. [Google Scholar] [CrossRef]
- Grace, S.R.; Lalli, B.S. Oscillation theorems for nth-order differential equations with deviating arguments. Proc. Am. Math. Soc. 1984, 90, 65–70. [Google Scholar]
- Karpuz, B.; Ocalan, O.; Ozturk, S. Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations. Glasg. Math. J. 2010, 52, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Zafer, A. Oscillation criteria for even order neutral differential equations. Appl. Math. Lett. 1998, 11, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; El-Nabulsi, R.A.; Bazighifan, O.; Muhib, A. New Comparison Theorems for the Even-Order Neutral Delay Differential Equation. Symmetry 2020, 12, 764. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazighifan, O.; Postolache, M. Multiple Techniques for Studying Asymptotic Properties of a Class of Differential Equations with Variable Coefficients. Symmetry 2020, 12, 1112. https://doi.org/10.3390/sym12071112
Bazighifan O, Postolache M. Multiple Techniques for Studying Asymptotic Properties of a Class of Differential Equations with Variable Coefficients. Symmetry. 2020; 12(7):1112. https://doi.org/10.3390/sym12071112
Chicago/Turabian StyleBazighifan, Omar, and Mihai Postolache. 2020. "Multiple Techniques for Studying Asymptotic Properties of a Class of Differential Equations with Variable Coefficients" Symmetry 12, no. 7: 1112. https://doi.org/10.3390/sym12071112