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Abstract: Some sufficient conditions are established for the oscillation of fourth order neutral
differential equations of the form

(
r (t) (z′′′ (t))α)′ + q (t) xβ (σ (t)) = 0, where z (t) := x (t) +

p (t) x (τ (t)). By using the technique of Riccati transformation and integral averaging method,
we get conditions to ensure oscillation of solutions of this equation. Symmetry ideas are often
invisible in these studies, but they help us decide the right way to study them, and to show us the
correct direction for future developments. Moreover, the importance of the obtained conditions is
illustrated via some examples.
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1. Introduction

Differential equations with a neutral argument have interesting applications in problems of real
world life. In the networks containing lossless transmission lines, the neutral differential equations
appear in the modeling of these phenomena as is the case in high-speed computers; see [1]. The theory
of oscillation is an important branch of the qualitative theory of differential equations. In recent years,
there has been a great deal of interest in studying oscillatory behavior of solutions to differential
equations; see [2–28].

In the following, we show some previous results in in the literature which related to this paper:
In 2019, Moaaz et al. [22] studied the oscillation of the even-order equation

(
r (t)

(
z(n−1) (t)

)α)′
+
∫ b

a
q (t, s) f (x (σ (t, s)))ds = 0

and prove that it is oscillatory if

∫ ∞

t0

(
kρ (t) Q (t)− 1

4λ

(
ρ′ (t)
ρ (t)

)2

η (t)

)
ds = ∞,

also they used the technique of comparison with first order delay equations, Xing et al. [25] proved
that the equation (

r (t)
(

z(n−1) (t)
)α)′

++q (t) xα (σ (t)) = 0,

is oscillatory if (
σ−1 (t)

)′
≥ σ0 > 0, τ′ (t) ≥ τ0 > 0, τ−1 (σ (t)) < t
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and

lim inf
t→∞

∫ t

τ−1(σ(t))

q̂ (s)
r (s)

(
sn−1

)α
ds >

(
1
σ0

+
pα

0
σ0τ0

)
>

((n− 1)!)α

e
,

where 0 ≤ p (t) < p0 < ∞ and q̂ (t) := min
{

q
(
σ−1 (t)

)
, q
(
σ−1 (τ (t))

)}
.

Very recently, Chatzarakis et al. [10] established some oscillation criteria for neutral differential
equation (

r (t)
(
z′′′ (t)

)α
)′

+
∫ b

a
q (t, s) f (x (σ (t, s)))ds = 0,

under the assumption ∫ ∞

t0

1
r1/α (s)

ds = ∞, (1)

by using the only Riccati transformations, prove that it is oscillatory if

∫ ∞

t0

(
φ∗ (t)−

(
3

α + 1

)α+1 ( 2
λ0

)α

t2−3αr (t)

)
ds = ∞,

where
φ∗ (t) = kt3Q (t) (1− p)α (g (t, a) /t)3α .

This paper is concerned with the oscillatory behavior of the fourth-order neutral delay
differential equation (

r (t)
(
z′′′ (t)

)α
)′

+ q (t) xβ (σ (t)) = 0, (2)

where t ≥ t0 and z (t) := x (t) + p (t) x (τ (t)). Throughout this paper, we assume the following
conditions to hold:

(S1) α and β are quotient of odd positive integers;
(S2) r, p, q ∈ C[t0, ∞), r (t) > 0, r′ (t) ≥ 0, q (t) > 0, 0 ≤ p (t) < p0 < ∞, τ, σ ∈ C[t0, ∞), τ (t) ≤ t,

limt→∞ τ (t) = limt→∞ σ (t) = ∞;

Moreover, we study (2) under the condition (1).

Definition 1. The function x ∈ C3[tx, ∞), tx ≥ t0, is called a solution of (2), if r (t)
(

z(n−1) (t)
)α
∈

C1[tx, ∞), and x (t) satisfies (2) on [tx, ∞).

Definition 2. A solution of (2) is called oscillatory if it has arbitrarily large zeros on [tx, ∞), and otherwise is
called to be nonoscillatory.

Definition 3. The equations (2) is said to be oscillatory if all its solutions are oscillatory.

Definition 4. A neutral delay differential equation is a differential equation in which the highest-order derivative
of the unknown function appears both with and without delay.

Definition 5. Let

D = {(t, s) ∈ R2 : t ≥ s ≥ t0} and D0 = {(t, s) ∈ R2 : t > s ≥ t0}.

A kernel function Hi ∈ C (D,R) is said to belong to the function class =, written by H ∈ =, if, for i = 1, 2,

(i) Hi (t, s) = 0 for t ≥ t0, Hi (t, s) > 0, (t, s) ∈ D0;
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(ii) Hi (t, s) has a continuous and nonpositive partial derivative ∂Hi/∂s on D0 and there exist functions
ϑ, υ ∈ C1 ([t0, ∞) , (0, ∞)) and hi ∈ C (D0,R) such that

∂

∂s
H1 (t, s) +

δ′ (s)
δ (s)

H (t, s) = h1 (t, s) Hα/(α+1)
1 (t, s) (3)

and
∂

∂s
H2 (t, s) +

ϑ′ (s)
ϑ (s)

H2 (t, s) = h2 (t, s)
√

H2 (t, s). (4)

In this work, by using the Riccati transformations and the integral averaging technique,
we establish a new oscillation criterion for a class of fourth-order neutral delay differential equations
(2). Our results improve and complement the results in [10]. Some examples are provided to illustrate
the main results.

Here, we define the next notations:

Q1 (t) = δ (t) q (t) (1− p0)
β Aβ−α

1

(
σ (t)

t

)3β

,

Φ (t) = (1− p0)
β/α ϑ (t) Aβ/α−1

2 (t)
∫ ∞

t

(
1

r (u)

∫ ∞

u
q (s)

σβ (s)
sβ

ds
)1/α

du

and

Θ (t) = αµ1
t2

2r1/α (t) δ1/α (t)
.

2. Some Auxiliary Lemmas

We shall employ the following lemmas:

Lemma 1 ([3], Lemma 2.2.3). Let x ∈ Cn ([t0, ∞) , (0, ∞)) . Assume that x(n) (t) is of fixed sign and not
identically zero on [t0, ∞) and that there exists a t1 ≥ t0 such that x(n−1) (t) x(n) (t) ≤ 0 for all t ≥ t1.
If limt→∞ x (t) 6= 0, then for every µ ∈ (0, 1) there exists tµ ≥ t1 such that

x (t) ≥ µ

(n− 1)!
tn−1

∣∣∣x(n−1) (t)
∣∣∣ for t ≥ tµ.

Lemma 2 ([18]). If the function x satisfies x(i) (t) > 0, i = 0, 1, ..., n, and x(n+1) (t) < 0, then

x (t)
tn/n!

≥ x′ (t)
tn−1/ (n− 1)!

.

Lemma 3 ([14]). Let α be a ratio of two odd numbers, V > 0 and U are constants. Then

Ux−Vx(α+1)/α ≤ αα

(α + 1)α+1
Uα+1

Vα
.

Lemma 4 ([14], Lemma 1.2). Assume that x is an eventually positive solution of (2). Then, there exist two
possible cases:

Case (N1) : z(j) (t) > 0 for j = 0, 1, 2, 3.
Case (N2) : z(j) (t) > 0 for j = 0, 1, 3 and z′′ (t) < 0.

for t ≥ t1, where t1 ≥ t0 is sufficiently large.
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Lemma 5. Assume that x is an eventually positive solution of (2). then(
r (t)

(
z′′′ (t)

)α
)′
≤ −G (t)

(
z′′′ (σ (t))

)β , (5)

where
G (t) = q (t) (1− p0)

β
(µ

6
σ3 (t)

)β
.

Proof. Let x be an eventually positive solution of (2) on [t0, ∞). From definition of z, we get

x (t) ≥ z (t)− p0x (τ (t))

≥ z (t)− p0z (τ (t))

≥ (1− p0) z (t) ,

which with (2) gives (
r (t)

(
z′′′ (t)

)α
)′

+ q (t) (1− p0)
β zβ (σ (t)) ≤ 0. (6)

Using Lemma 1, we see that

z (t) ≥ µ

6
t3z′′′ (t) . (7)

Combining (6) and (7), we find(
r (t)

(
z′′′ (t)

)α
)′

+ q (t) (1− p0)
β
(µ

6
σ3 (t)

)β (
z′′′ (σ (t))

)β ≤ 0.

Thus, (5) holds. This completes the proof.

Lemma 6. Assume that x is an eventually positive solution of (2) and

ξ ′ (t) ≤ δ′ (t)
δ (t)

ξ (t)−Q1 (t)− αµ1
t2

2r1/α (t) δ1/α (t)
ξ

α+1
α (t) , if z satisfies (N1) (8)

and

ϕ′ (t) ≤ −Φ (t) +
ϑ′ (t)
ϑ (t)

ϕ (t)− 1
ϑ (t)

ϕ2 (t) , if z satisfies (N2) , (9)

where

ξ (t) := δ (t)
r (t) (z′′′ (t))α

zα (t)
(10)

and

ϕ (t) := ϑ (t)
z′ (t)
z (t)

, t ≥ t1. (11)

Proof. Let x be an eventually positive solution of (2) on [t0, ∞). It follows from Lemma 4 that there
exist two possible cases (N1) and (N2).

Assume that Case (N1) holds. From the definition of ξ (t), we see that ξ (t) > 0 for t ≥ t1, and
using (6), we obtain

ξ ′ (t) ≤ δ′ (t)
δ (t)

ξ (t)− δ (t) q (t) (1− p0)
β zβ (σ (t))

zα (t)
− αδ (t)

r (t) (z′′′ (t))α

zα+1 (t)
z′ (t) . (12)

From Lemma 2, we have that z (t) ≥ t
3 z′ (t), and hence,

z (σ (t))
z (t)

≥ σ3 (t)
t3 . (13)
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It follows from Lemma 1 that
z′ (t) ≥ µ1

2
t2z′′′ (t) , (14)

for all µ1 ∈ (0, 1) and every sufficiently large t. Thus, by (12)–(14), we get

ξ ′ (t) ≤ δ′ (t)
δ (t)

ξ (t)− δ (t) q (t) (1− p0)
β zβ−α (t)

(
σ (t)

t

)3β

−αµ1
t2

2r1/α (t) δ1/α (t)
ξ

α+1
α (t) .

Since z′ (t) > 0, there exist a t2 ≥ t1 and a constant A1 > 0 such that

z (t) > A1. (15)

Thus, we obtain

ξ ′ (t) ≤ δ′ (t)
δ (t)

ξ (t)− δ (t) q (t) (1− p0)
β Aβ−α

(
σ (t)

t

)3β

−αµ1
t2

2r1/α (t) δ1/α (t)
ξ

α+1
α (t) ,

which yields

ξ ′ (t) ≤ δ′ (t)
δ (t)

ξ (t)−Q1 (t)− αµ1
t2

2r1/α (t) δ1/α (t)
ξ

α+1
α (t) .

Thus, (8) holds. Assume that Case (N2) holds. Integrating (6) from t to u, we obtain

r (u)
(
z′′′ (u)

)α − r (t)
(
z′′′ (t)

)α ≤ −
∫ u

t
q (s) (1− p0)

β zβ (σ (s))ds. (16)

From Lemma 2, we get that z (t) ≥ tz′ (t), and hence,

z (σ (t)) ≥ σ (t)
t

z (t) . (17)

For (16), letting u→ ∞ and using (17), we get

r (t)
(
z′′′ (t)

)α ≥ (1− p0)
β zβ (t)

∫ ∞

t
q (s)

σβ (s)
sβ

ds.

Integrating this inequality again from t to ∞, we get

z′′ (t) ≤ − (1− p0)
β/α zβ/α (t)

∫ ∞

t

(
1

r (u)

∫ ∞

u
q (s)

σβ (s)
sβ

ds
)1/α

du. (18)

From the definition of ϕ (t), we see that ϕ (t) > 0 for t ≥ t1, and using (15) and (18), we find

ϕ′ (t) =
ϑ′ (t)
ϑ (t)

ϕ (t) + ϑ (t)
z′′ (t)
z (t)

− ϑ (t)
(

z′ (t)
z (t)

)2

≤ ϑ′ (t)
ϑ (t)

ϕ (t)− 1
ϑ (t)

ϕ2 (t)

− (1− p0)
β/α ϑ (t) zβ/α−1 (t)

∫ ∞

t

(
1

r (u)

∫ ∞

u
q (s)

σβ (s)
sβ

ds
)1/α

du.
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Since z′ (t) > 0, there exist a t2 ≥ t1 and a constant A2 > 0 such that

z (t) > A2. (19)

Thus, we obtain

ϕ′ (t) ≤ −Φ (t) +
ϑ′ (t)
ϑ (t)

ϕ (t)− 1
ϑ (t)

ϕ2 (t) ,

Thus, (9) holds. This completes the proof.

3. Philos-Type Oscillation Result

In the section, we employ the integral averaging technique to establish a Philos-type oscillation
criteria for (2)

Theorem 1. Let (24) holds. If there exist positive functions δ, ϑ ∈ C1 ([t0, ∞) ,R) such that

lim sup
t→∞

1
H (t, t1)

∫ t

t1

H (t, s) Q1 (s)−
hα+1

1 (t, s) Hα
1 (t, s)

(α + 1)α+1
2αr (s) δ (s)
(µ1s2)

α ds = ∞ (20)

for all µ2 ∈ (0, 1) , and

lim sup
t→∞

1
H2 (t, t1)

∫ t

t1

(
H2 (t, s)Φ (s)−

ϑ (s) h2
2 (t, s)

4

)
ds = ∞, (21)

then (2) is oscillatory.

Proof. Let x be a non-oscillatory solution of (2) on [t0, ∞). Without loss of generality, we can assume
that x is eventually positive. It follows from Lemma 4 that there exist two possible cases (N1) and (N2).
Assume that (N1) holds. From Lemma 6, we get that (8) holds. Multiplying (8) by H (t, s) and
integrating the resulting inequality from t1 to t; we find that

∫ t

t1

H (t, s) Q1 (s)ds ≤ ξ (t1) H (t, t1) +
∫ t

t1

(
∂

∂s
H (t, s) +

δ′ (s)
δ (s)

H (t, s)
)

ξ (s)ds

−
∫ t

t1

Θ (s) H (t, s) ξ
α+1

α (s)ds.

From (3), we get

∫ t

t1

H (t, s) Q1 (s)ds ≤ ξ (t1) H (t, t1) +
∫ t

t1

h1 (t, s) Hα/(α+1)
1 (t, s) ξ (s)ds

−
∫ t

t1

Θ (s) H (t, s) ξ
α+1

α (s)ds. (22)

Using Lemma 3 with V = Θ (s) H (t, s) , U = h1 (t, s) Hα/(α+1)
1 (t, s) and x = ξ (s), we get

h1 (t, s) Hα/(α+1)
1 (t, s) ξ (s)−Θ (s) H (t, s) ξ

α+1
α (s)

≤
hα+1

1 (t, s) Hα
1 (t, s)

(α + 1)α+1
2αr (t) δ (t)
(µ1t2)

α ,

which, with (22) gives

1
H (t, t1)

∫ t

t1

(
H (t, s) Q1 (s)−

hα+1
1 (t, s) Hα

1 (t, s)

(α + 1)α+1
2αr (s) δ (s)
(µ1s2)

α

)
ds ≤ ξ (t1) ,
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which contradicts (20). Assume that (N2) holds. From Lemma 6, we get that (9) holds. Multiplying (9)
by H2 (t, s) and integrating the resulting inequality from t1 to t, we obtain

∫ t

t1

H2 (t, s)Φ (s)ds ≤ ϕ (t1) H2 (t, t1)

+
∫ t

t1

(
∂

∂s
H2 (t, s) +

ϑ′ (s)
ϑ (s)

H2 (t, s)
)

ϕ (s)ds

−
∫ t

t1

1
ϑ (s)

H2 (t, s) ϕ2 (s)ds.

Thus, ∫ t

t1

H2 (t, s)Φ (s)ds ≤ ϕ (t1) H2 (t, t1) +
∫ t

t1

h2 (t, s)
√

H2 (t, s)ϕ (s)ds

−
∫ t

t1

1
ϑ (s)

H2 (t, s) ϕ2 (s)ds

≤ ϕ (t1) H2 (t, t1) +
∫ t

t1

ϑ (s) h2
2 (t, s)

4
ds

and so
1

H2 (t, t1)

∫ t

t1

(
H2 (t, s)Φ (s)−

ϑ (s) h2
2 (t, s)

4

)
ds ≤ ϕ (t1) ,

which contradicts (21). This completes the proof.

Corollary 1. Assume that (24) holds. If there exist positive functions δ, ϑ ∈ C1 ([t0, ∞) ,R) such that

∫ ∞

t0

(
Q1 (s)−

2α

(α + 1)α+1
r (s) (δ′ (s))α+1

µα
1s2αδα (s)

)
ds = ∞ (23)

and ∫ ∞

t0

(
Φ (s)− (ϑ′ (s))2

4ϑ (s)

)
ds = ∞, (24)

for some µ1 ∈ (0, 1) and every A1, A2 > 0, then (2) is oscillatory.

Example 1. Consider the equation(
t (x + p0x (γt))′′′

)′
+

q0

t3 x (ηt) = 0, t ≥ 1, (25)

where p0 ∈ [0, 1) , γ, η ∈ (0, 1) and q0 > 0. We note that α = β = 1, r (t) = t, p (t) = p0, τ (t) = γt,
σ (t) = ηt and q (t) = q0/t3. Hence, if we set δ (s) := t2 and ϑ (t) := t, then we have

Q1 (t) =
q0 (1− p0) η3

t
, Φ (t) =

q0 (1− p0) η

4t
.

Thus, (23) and (24) become

∫ ∞

t0

(
Q1 (s)−

2α

(α + 1)α+1
r (s) (δ′ (s))α+1

µα
1s2αδα (s)

)
ds

=
∫ ∞

t0

(
q0 (1− p0) η3

s
− 2

µ1s

)
ds
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and

∫ ∞

t0

(
Φ (s)− (ϑ′ (s))2

4ϑ (s)

)
ds

=
∫ ∞

t0

(
q0 (1− p0) η

4s
− 1

4s

)
ds.

So, the conditions become

q0 >
2

(1− p0) η3 (26)

and
q0 >

1
(1− p0) η

.

Thus, by using Corollary 1, Equation (27) is oscillatory if (26) holds.

Example 2. Consider the equation(
x +

1
2

x
(

1
3

t
))(4)

+
q0

t4 x
(

1
2

t
)
= 0, t ≥ 1, (27)

where q0 > 0. We note that α = β = 1, r (t) = 1, p (t) = 1/2, τ (t) = t/3, σ (t) = t/2 and q (t) = q0/t4.
Hence, it is easy to see that ∫ ∞

t0

1
r1/α (s)

ds = ∞.

Now, if we set δ (s) := t3 and ϑ (t) := t2, then we have

∫ ∞

t0

(
Q1 (s)−

2α

(α + 1)α+1
r (s) (δ′ (s))α+1

µα
1s2αδα (s)

)
ds

=
∫ ∞

t0

(
q0

16s
− 9

2µ1s

)
ds

and

∫ ∞

t0

(
Φ (s)− (ϑ′ (s))2

4ϑ (s)

)
ds

=
∫ ∞

t0

( q0

24
− 1
)

ds.

So, the conditions become
q0 > 72 (28)

and
q0 > 24. (29)

Thus, by using Corollary 1, Equation (27) is oscillatory if q0 > 72.

4. Conclusions

In this paper, using technique of Riccati transformation, we will establish A Philos-type criteria
for oscillation of the fourth-order neutral differential. Further, we can consider the case of

z (t) = x (t) + a (t)
k

∑
i=1

xαi (σ (t)) .
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and we can try to get some oscillation criteria of (2) in future work.
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