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Abstract: The aim of this work is to study oscillatory properties of a class of fourth-order
delay differential equations. New oscillation criteria are obtained by using generalized Riccati
transformations. This new theorem complements and improves a number of results reported in the
literature. Some examples are provided to illustrate the main results.
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1. Introduction

In this article, we investigate the asymptotic behavior of solutions of the fourth-order
differential equation

(
b (x)

(
w′′′ (x)

)κ
)′

+
j

∑
i=1

qi (x) f (w (ϑi (x))) = 0, x ≥ x0. (1)

Throughout this paper, we assume the following conditions hold:

(Z1) κ are quotient of odd positive integers;
(Z2) b ∈ C1 ([x0, ∞),R) , b (x) > 0, b′ (x) ≥ 0 and under the condition∫ ∞

x0

1
b1/κ (x)

dx = ∞. (2)

(Z3) qi ∈ C[x0, ∞), q (x) > 0, i = 1, 2, . . . , j,
(Z4) ϑi ∈ C[x0, ∞), ϑi (x) ≤ x, limx→∞ ϑi (x) = ∞; i = 1, 2, .., j,
(Z5) f ∈ C (R,R) such that

f (x) /xκ ≥ ` > 0, for x 6= 0. (3)

Definition 1. The function y ∈ C3[νy, ∞), νy ≥ ν0, is called a solution of equation (1), if b (x) (w′′′ (x))κ ∈
C1[xw, ∞), and w (x) satisfies (1) on [xw, ∞).
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Definition 2. A solution of (1) is called oscillatory if it has arbitrarily large zeros on [xw, ∞), and otherwise is
called to be nonoscillatory.

Definition 3. Equation (1) is said to be oscillatory if all its solutions are oscillatory.

Differential equations arise in modeling situations to describe population growth, biology,
economics, chemical reactions, neural networks, and in aeromechanical systems, etc.; see [1].

More and more scholars pay attention to the oscillatory solution of functional differential
equations, see [2–5], especially for the second/third-order, see [6–8], or higher-order equations
see [9–17]. With the development of the oscillation for the second-order equations, researchers began
to study the oscillation for the fourth-order equations, see [18–25].

In the following, we show some previous results in the literature which related to this paper:
Moaaz et al. [21] studied the fourth-order nonlinear differential equations with a continuously
distributed delay (

b (x)
(
(w (x))′′′

)α)′
+
∫ c

a
q (x, ξ) f (w (g (x, ξ))) dξ = 0, (4)

by means of the theory of comparison with second-order delay equations, the authors established
some oscillation criteria of (4) under the condition∫ ∞

x0

1
b1/κ (x)

dx < ∞. (5)

Cesarano and Bazighifan [22] considered Equation (4), and established some new oscillation
criteria by means of Riccati transformation technique.

Agarwal et al. [9] and Baculikova et al. [10] studied the equation((
w(n−1) (x)

)κ)′
+ q (x) f (w (ϑ (x))) = 0 (6)

and established some new sufficient conditions for oscillation.

Theorem 1 (See [9]). If there exists a positive function g ∈ C1 ([x0, ∞) , (0, ∞)) , and θ > 1 is a constant
such that

lim sup
x→∞

∫ x

x0

(
g (s) q (s)− λθ

(g′ (s))κ+1

(g (s) ϑn−2 (s) ϑ′ (s))κ

)
ds = ∞, (7)

where λ := (1/ (κ + 1))κ+1 (2 (n− 1)!)κ , then every solution of (6) is oscillatory.

Theorem 2 (See [10]). Let f
(

x1/κ
)

/x ≥ 1 for 0 < x ≤ 1 such that

lim inf
x→∞

∫ x

ϑi(x)
q (s) f

(
ς

(n− 1)!
ϑn−1 (s)

b1/κ (ϑ (s))

)
ds >

1
e

(8)

for some ς ∈ (0, 1), then every solution of (6) is oscillatory.

To prove this, we apply the previous results to the equation

w(4) (x) +
c0

x4 w
(

9
10

x
)
= 0, x ≥ 1, (9)
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then we get that (9) is oscillatory if

The condition (7) (8)

The criterion c0 > 60 c0 > 28.7

From above, we see that [10] improved the results in [9].
The motivation in studying this paper is complementary and improves the results in [9,10].
The paper is organized as follows. In Section 2, we state some lemmas, which will be useful in

the proof of our results. In Section 3, by using generalized Riccati transformations, we obtain a new
oscillation criteria for (1). Finally, some examples are considered to illustrate the main results.

For convenience, we denote

δ (x) :=
∫ ∞

x

1
b1/κ (s)

ds, F+ (x) := max {0, F (x)} ,

ψ (x) := g (x)

(
`

j

∑
i=1

qi (x)

(
ϑ3

i (x)
x3

)κ

+
εβ

(1+κ)/κ
1 x2 − 2β1κ

2b
1
κ (x) δκ+1(x)

)
,

φ (x) :=
g′+ (x)
g (x)

+
(κ + 1) β1/κ

1 εx2

2b
1
κ (x) δ(x)

, φ∗ (x) :=
ξ ′+ (x)
ξ (x)

+
2β2

δ(x)
,

and

ψ∗ (x) := ξ (x)

∫ ∞

x

(
`

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv +
β2

2 − β2b
−1
κ (x)

δ2(x)

 ,

where β1, β2 are constants and g, ξ ∈ C1 ([x0, ∞) , (0, ∞)).

Remark 1. We define the generalized Riccati substitutions

π (x) := g (x)
(

b (x) (w′′′)κ (x)
wκ (x)

+
β1

δκ(x)

)
, (10)

and

v (x) := ξ (x)
(

w′ (x)
w (x)

+
β2

δ(x)

)
. (11)

2. Some Auxiliary Lemmas

Next, we begin with the following lemmas.

Lemma 1 ([8]). Let β be a ratio of two odd numbers, V > 0 and U are constants. Then,

P(β+1)/β − (P−Q)(β+1)/β ≤ 1
β

Q1/β [(1 + β) P−Q] , PQ ≥ 0, β ≥ 1

and

Uw−Vw(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
.

Lemma 2 ([15]). Suppose that h ∈ Cn ([x0, ∞) , (0, ∞)) , h(n) is of a fixed sign on [x0, ∞) , h(n) not identically
zero, and there exists a x1 ≥ x0 such that

h(n−1) (x) h(n) (x) ≤ 0,
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for all x ≥ x1. If we have limx→∞ h (x) 6= 0, then there exists xβ ≥ x1 such that

h (x) ≥ β

(n− 1)!
xn−1

∣∣∣h(n−1) (x)
∣∣∣ ,

for every β ∈ (0, 1) and x ≥ xβ.

Lemma 3 ([19]). If the function u satisfies u(j) > 0 for all j = 0, 1, ..., n, and u(n+1) < 0, then

n!
xn u (x)− (n− 1)!

xn−1
d

dx
u (x) ≥ 0.

3. Oscillation Criteria

In this section, we shall establish some oscillation criteria for Equation (1).
Upon studying the asymptotic behavior of the positive solutions of (1), there are only two cases:

Case (1) : w(r) (x) > 0 for r = 0, 1, 2, 3.
Case (2) : w(r) (x) > 0 for r = 0, 1, 3 and w′′ (x) < 0.

Moreover, from Equation (1) and condition (3), we have that
(
b (x) (w′′′ (x))κ)′. In the following,

we will first study each case separately.

Lemma 4. Assume that w be an eventually positive solution of (1) and w(r) (x) > 0 for all r = 1, 2, 3. If we
have the function π ∈ C1[x, ∞) defined as (10), where g ∈ C1 ([x0, ∞) , (0, ∞)) , then

π′ (x) ≤ −ψ (x) + φ (x)π (x)− κεx2

2 (b (x) g (x))1/κ
π

κ+1
κ (x) , (12)

for all x > x1, where x1 is large enough.

Proof. Let w be an eventually positive solution of (1) and w(r) (x) > 0 for all r = 1, 2, 3. Thus,
from Lemma 2, we get

w′ (x) ≥ ε

2
x2w′′′ (x) , (13)

for every ε ∈ (0, 1) and for all large x. From (10), we see that π (x) > 0 for x ≥ x1, and

π′ (x) = g′ (x)
(

b (x) (w′′′)κ (x)
wκ (x)

+
β1

δκ(x)

)
+ g (x)

(
b (w′′′)κ)′ (x)

wκ (x)

−κg (x)
wκ−1 (x)w′ (x) b (x) (w′′′)κ (x)

w2κ (x)
+

κβ1g (x)

b
1
κ (x) δκ+1(x)

.

Using (13) and (10), we obtain

π′ (x) ≤
g′+ (x)
g (x)

π (x) + g (x)

(
b (x) (w′′′ (x))κ)′

wκ (x)

−κg (x)
ε

2
x2 b (x) (w′′′ (x))κ+1

wκ+1 (x)
+

κβ1g (x)

b
1
κ (x) δκ+1(x)

≤ g′ (x)
g (x)

π (x) + g (x)

(
b (x) (w′′′ (x))κ)′

wκ (x)

−κg (x)
ε

2
x2b (x)

(
π (x)

g (x) b (x)
− β1

b (x) δκ(x)

) κ+1
κ

+
κβ1g (x)

b
1
κ (x) δκ+1(x)

. (14)
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Using Lemma 1 with P = π (x) / (g (x) b (x)) , Q = β1/ (b (x) δκ(x)) and β = κ, we get

(
π (x)

g (x) b (x)
− β1

b (x) δκ(x)

) κ+1
κ

≥
(

π (x)
g (x) b (x)

) κ+1
κ

−
β1/κ

1

κb
1
κ (x) δ(x)

(
(κ + 1)

π (x)
g (x) b (x)

− β1

b (x) δκ(x)

)
. (15)

From Lemma 3, we have that w (x) ≥ x
3 w′ (x) and hence

w (ϑi (x))
w (x)

≥
ϑ3

i (x)
x3 . (16)

From (1), (14), and (15), we obtain

π′ (x) ≤
g′+ (x)
g (x)

π (x)− `g (x)
j

∑
i=1

qi (x)

(
ϑ3

i (x)
x3

)κ

− κg (x)
ε

2
x2b (x)

(
π (x)

g (x) b (x)

) κ+1
κ

−κg (x)
ε

2
x2b (x)

(
−β1/κ

1

κb
1
κ (x) δ(x)

(
(κ + 1)

π (x)
g (x) b (x)

− β1

b (x) δκ(x)

))
+

κβ1g (x)

b
1
κ (x) δκ+1(x)

.

This implies that

π′ (x) ≤
(

g′+ (x)
g (x)

+
(κ + 1) β1/κ

1 εx2

2b
1
κ (x) δ(x)

)
π (x)− κεx2

2b1/κ (x) g1/κ (x)
π

κ+1
κ (x)

−g (x)

(
`

j

∑
i=1

qi (x)

(
ϑ3

i (x)
x3

)κ

+
εβ

(1+κ)/κ
1 x2 − 2β1κ

2b
1
κ (x) δκ+1(x)

)
.

Thus,

π′ (x) ≤ −ψ (x) + φ (x)π (x)− κεx2

2 (b (x) g (x))1/κ
π

κ+1
κ (x) .

The proof is complete.

Lemma 5. Assume that w is an eventually positive solution of (1), w(r) (x) > 0 for r = 1, 3 and w′′ (x) < 0.
If we have the function v ∈ C1[x, ∞) defined as (11), where ξ ∈ C1 ([x0, ∞) , (0, ∞)) , then

v′ (x) ≤ −ψ∗ (x) + φ∗ (x)v (x)− 1
ξ (x)

v2 (x) , (17)

for all x > x1, where x1 is large enough.

Proof. Let w be an eventually positive solution of (1), w(r) > 0 for r = 1, 3 and w′′ (x) < 0.
From Lemma 3, we get that w (x) ≥ xw′ (x). By integrating this inequality from ϑi (x) to x, we get

w (ϑi (x)) ≥ ϑi (x)
x

w (x) .

Hence, from (3), we have

f (w (ϑi (x))) ≥ `
ϑκ

i (x)
xκ

wκ (x) . (18)
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Integrating (1) from x to u and using w′ (x) > 0, we obtain

b (u)
(
w′′′ (u)

)κ − b (x)
(
w′′′ (x)

)κ
= −

∫ u

x

j

∑
i=1

qi (s) f (w (ϑi (s))) ds

≤ −`wκ (x)
∫ u

x

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds.

Letting u→ ∞ , we see that

b (x)
(
w′′′ (x)

)κ ≥ `wκ (x)
∫ ∞

x

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

and so

w′′′ (x) ≥ w (x)

(
`

b (x)

∫ ∞

x

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

.

Integrating again from x to ∞, we get

w′′ (x) ≤ −w (x)
∫ ∞

x

(
`

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv. (19)

From the definition of v (x), we see that v (x) > 0 for x ≥ x1. By differentiating, we find

v′ (x) =
ξ ′ (x)
ξ (x)

v (x) + ξ (x)
w′′ (x)
w (x)

− ξ (x)
(

v (x)
ξ (x)

− β2

δ(x)

)2
+

ξ (x) β2

b1/κ (x) δ2(x)
. (20)

Using Lemma 1 with P = v (x) /ξ (x) , Q = β2/δ(x) and β = 1, we get(
v (x)
ξ (x)

− β2

δ(x)

)2
≥
(

v (x)
ξ (x)

)2
− β2

δ(x)

(
2v (x)
ξ (x)

− β2

δ(x)

)
. (21)

From (1), (20), and (21), we obtain

v′ (x) ≤ ξ ′ (x)
ξ (x)

v (x)− ξ (x)
∫ ∞

x

(
`

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv

−ξ (x)

((
v (x)
ξ (x)

)2
− β2

δ(x)

(
2v (x)
ξ (x)

− β2

δ(x)

))
+

β2ξ (x)

b
1
κ (x) δ2(x)

.

This implies that

v′ (x) ≤
(

ξ ′+ (x)
ξ (x)

+
2β2

δ(x)

)
v (x)− 1

ξ (x)
v2 (x)

−ξ (x)

∫ ∞

x

(
`

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv +
β2

2 − β2b
−1
κ (x)

δ2(x)

 .

Thus,

v′ (x) ≤ −ψ∗ (x) + φ∗ (x)v (x)− 1
ξ (x)

v2 (x) .

The proof is complete.
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Lemma 6. Assume that w is an eventually positive solution of (1). If there exists a positive function g ∈
C ([x0, ∞)) such that

∫ ∞

x0

(
ψ (s)−

(
2

εs2

)κ b (s) g (s) (φ (s))κ+1

(κ + 1)κ+1

)
ds = ∞, (22)

for some ε ∈ (0, 1), then w does not fulfill Case (1).

Proof. Assume that w is an eventually positive solution of (1). From Lemma 4, we get that (12) holds.
Using Lemma 1 with

U = φ (x) , V = κεx2/
(

2 (b (x) g (x))1/κ
)

and x = π,

we get

π′ (x) ≤ −ψ (x) +
(

2
εx2

)κ b (x) g (x) (φ (x))κ+1

(κ + 1)κ+1 . (23)

Integrating from x1 to x, we get

∫ x

x1

(
ψ (s)−

(
2

εs2

)κ b (s) g (s) (φ (s))κ+1

(κ + 1)κ+1

)
ds ≤ π (x1) ,

for every ε ∈ (0, 1) , which contradicts (22). The proof is complete.

Lemma 7. Assume that w is an eventually positive solution of (1), w(r) (x) > 0 for r = 1, 3 and w′′ (x) < 0.
If there exists a positive function ξ ∈ C ([x0, ∞)) such that

∫ ∞

x0

(
ψ∗ (s)− 1

4
ξ (s) (φ∗ (s))2

)
ds = ∞, (24)

then w does not fulfill Case (2).

Proof. Assume that w is an eventually positive solution of (1). From Lemma 5, we get that (17) holds.
Using Lemma 1 with

U = φ∗ (x) , V = 1/ξ (x) , κ = 1 and x = v,

we get

π′ (x) ≤ −ψ∗ (x) +
1
4

ξ (x) (φ∗ (x))2 . (25)

Integrating from x1 to x, we get

∫ x

x1

(
ψ∗ (s)− 1

4
ξ (s) (φ∗ (s))2

)
ds ≤ π (x1) ,

which contradicts (24). The proof is complete.

Theorem 3. Assume that there exist positive functions g, ξ ∈ C ([x0, ∞)) such that (22) and (24) hold, for some
ε ∈ (0, 1). Then, every solution of (1) is oscillatory.

When putting g (x) = x3 and ξ (x) = x into Theorem 3, we get the following oscillation criteria:
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Corollary 1. Let (2) hold. Assume that

lim sup
x→∞

∫ x

x1

(
ϕ (s)−

(
2

εs2

)κ b (s) g (s) (ϕ̃ (s))κ+1

(κ + 1)κ+1

)
ds = ∞, (26)

for some ε ∈ (0, 1) . If

lim sup
x→∞

∫ x

x1

(
ϕ1 (s)−

1
4

ξ (s) (ϕ̃1 (s))
2
)

ds = ∞, (27)

where

ϕ (x) : = x3

(
`

j

∑
i=1

qi (x)

(
ϑ3

i (x)
x3

)κ

+
εβ

(1+κ)/κ
1 x2 − 2β1κ

2b
1
κ (x) δκ+1(x)

)

ϕ̃ (x) : =
3
x
+

(κ + 1) β1/κ
1 εx2

2b
1
κ (x) δ(x)

, ϕ̃1 (x) :=
1
x
+

2β2

δ(x)

and

ϕ1 (x) := x

∫ ∞

x

(
`

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv +
β2

2 − β2b
−1
κ (x)

δ2(x)

 ,

then every solution of (1) is oscillatory.

Example 1. Consider a differential equation

w(4) (x) +
c0

x4 w
(

1
2

x
)
= 0, x ≥ 1, (28)

where c0 > 0 is a constant. Note that κ = b (x) = 1, q (x) = c0/x4 and ϑ (x) = x/2. Hence, we have

δ (x0) = ∞, ϕ (s) =
c0

8s
.

If we set ` = β1 = 1, then condition (26) becomes

lim sup
x→∞

∫ x

x1

(
ϕ (s)−

(
2

εs2

)κ b (s) g (s) (ϕ̃ (s))κ+1

(κ + 1)κ+1

)
ds = lim sup

x→∞

∫ x

x1

(
c0

8s
− 9

2s

)
ds

= ∞ if c0 > 36.

Therefore, from Corollary 1, the solutions of Equation (28) are all oscillatory if c0 > 36.

Remark 2. We compare our result with the known related criteria for oscillations of this equation as follows:

1. By applying Condition (7) in [9] on Equation (28) where θ = 2, we get

c0 > 432.

2. By applying Condition (8) in [10] on Equation (28) where ς = 1/2, we get

c0 > 51.

Therefore, our result improves results [9,10].
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Remark 3. By applying Condition (26) in Equation (9), we find

c0 > 6.17.

Therefore, our result improves results [9,10].

4. Conclusions

In this article, we study the oscillatory behavior of a class of nonlinear fourth-order differential
equations and establish sufficient conditions for oscillation of a fourth-order differential equation by
using Riccati transformation. Furthermore, in future work, we get some Hille and Nehari type and
Philos type oscillation criteria of (1).

Author Contributions: O.B.: Writing original draft, and writing review and editing. M.P.: Formal analysis,
writing review and editing, funding and supervision. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors received no direct funding for this work.

Acknowledgments: The authors thank the reviewers for for their useful comments, which led to the improvement
of the content of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977.
2. Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer

Academic Publishers: Dordrecht, The Netherlands, 2000.
3. Alzabut, J.; Tunc, C. Existence of Periodic solutions for a type of Rayleigh equation with state-dependent

delay. Electron. J. Differ. Equ. 2012, 2012, 1–8. [CrossRef]
4. Philos, C.G. A new criterion for the oscillatory and asymptotic behavior of delay differential equations.

Bull. Acad. Pol. Sci. Sér. Sci. Math. 1981, 39, 61–64.
5. Philos, C.G. On the existence of non-oscillatory solutions tending to zero at ∞ for differential equations with

positive delays. Arch. Math. 1981, 36, 168–178. [CrossRef]
6. Bazighifan, O.; Cesarano, C. Some New Oscillation Criteria for Second-Order Neutral Differential Equations

with Delayed Arguments. Mathematics 2019, 7, 619. [CrossRef]
7. Cesarano, C.; Bazighifan, O. Qualitative behavior of solutions of second order differential equations. Symmetry

2019, 11, 777. [CrossRef]
8. Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations.

Appl. Math. Compt. 2016, 274, 178–181. [CrossRef]
9. Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation criteria for certain nth order differential equations with

deviating arguments. J. Math. Appl. Anal. 2001, 262, 601–622. [CrossRef]
10. Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. J. Math.

2012, 187, 387–400. [CrossRef]
11. Grace, S.R. Oscillation theorems for nth-order differential equations with deviating arguments. J. Math.

Appl. Anal. 1984, 101, 268–296. [CrossRef]
12. Xu, Z.; Xia, Y. Integral averaging technique and oscillation of certain even order delay differential equations.

J. Math. Appl. Anal. 2004, 292, 238–246. [CrossRef]
13. Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed

delay. J. Inequal. Appl. 2019, 55, 1–9. [CrossRef]
14. Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear

delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [CrossRef]
15. Zhang, C.; Li, T.; Sun, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential

equations. Appl. Math. Lett. 2011, 24, 1618–1621. [CrossRef]
16. Moaaz, O.; Park, C.; Muhib, A.; Bazighifan, O. Oscillation criteria for a class of even-order neutral delay

differential equations. J. Appl. Math. Comput. 2020, 2020, 1–11. [CrossRef]

http://dx.doi.org/10.1186/1687-1847-2012-53
http://dx.doi.org/10.1007/BF01223686
http://dx.doi.org/10.3390/math7070619
http://dx.doi.org/10.3390/sym11060777
http://dx.doi.org/10.1016/j.amc.2015.10.089
http://dx.doi.org/10.1006/jmaa.2001.7571
http://dx.doi.org/10.1007/s10958-012-1071-1
http://dx.doi.org/10.1016/0022-247X(84)90066-0
http://dx.doi.org/10.1016/j.jmaa.2003.11.054
http://dx.doi.org/10.1186/s13660-019-2003-0
http://dx.doi.org/10.1016/j.aml.2012.08.004
http://dx.doi.org/10.1016/j.aml.2011.04.015
http://dx.doi.org/10.1007/s12190-020-01331-w


Mathematics 2020, 8, 552 10 of 10

17. Moaaz, O.; Jan, A.; Omar, B. A New Approach in the Study of Oscillation Criteria of Even-Order Neutral
Differential Equations. Mathematics 2020, 8, 197. [CrossRef]

18. Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential
Equations. Symmetry 2020, 12, 379. [CrossRef]

19. Chatzarakis, G.E.; Elabbasy, E.M.; Bazighifan, O. An oscillation criterion in 4th-order neutral differential
equations with a continuously distributed delay. Adv. Differ. Equ. 2019, 336, 1–9.

20. Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic Properties of Solutions of Fourth-Order
Delay Differential Equations. Symmetry 2019, 11, 628. [CrossRef]

21. Moaaz, O.; Elabbasy, E.M.; Bazighifan, O. On the asymptotic behavior of fourth-order functional differential
equations. Adv. Differ. Equ. 2017, 2017, 261. [CrossRef]

22. Cesarano, C.; Bazighifan, O. Oscillation of fourth-order functional differential equations with distributed
delay. Axioms 2019, 8, 61. [CrossRef]

23. Moaaz, O.; El-Nabulsi, R.; Bazighifan, O. Oscillatory behavior of fourth-order differential equations with
neutral delay. Symmetry 2020, 12, 371. [CrossRef]

24. Parhi, N.; Tripathy, A. On oscillatory fourth order linear neutral differential equations-I. Math. Slovaca 2004,
54, 389–410.

25. Zhang, C.; Li, T.; Saker, S. Oscillation of fourth-order delay differential equations. J. Math. Sci. 2014, 201,
296–308. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/math8020197
http://dx.doi.org/10.3390/sym12030379
http://dx.doi.org/10.3390/sym11050628
http://dx.doi.org/10.1186/s13662-017-1312-1
http://dx.doi.org/10.3390/axioms8020061
http://dx.doi.org/10.3390/sym12030371
http://dx.doi.org/10.1007/s10958-014-1990-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Some Auxiliary Lemmas
	Oscillation Criteria
	Conclusions
	References

