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Abstract: In this work, we study the oscillatory behavior of a class of fourth-order differential equations.
New oscillation criteria were obtained by employing a refinement of the Riccati transformations. The new
theorems complement and improve a number of results reported in the literature. An example is
provided to illustrate the main results.
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1. Introduction

In this paper, we are concerned with the oscillation and the asymptotic behavior of solutions of
the fourth-order nonlinear differential equation(

r (t)
(

x′′′ (t)
)α
)′

+ q (t) xβ (σ (t)) = 0, (1)

where α and β are quotient of odd positive integers, r ∈ C1 ([t0, ∞)) , q ∈ C ([t0, ∞)) , r (t) > 0,
q (t) > 0, r′ (t) ≥ 0, σ (t) ∈ C ([t0, ∞),R) , σ (t) ≤ t, limt→∞ σ (t) = ∞. Moreover, we study (1) under
the condition ∫ ∞

t0

1
r1/α (s)

ds = ∞. (2)

We intend to a solution of (1) a function x(t) : [tx, ∞)→ R, tx ≥ t0 such that x(t) and r (t) (x′′′ (t))α

are continuously differentiable for all t ∈ [tx, ∞) and sup{|x(t)| : t ≥ T} > 0 for any T ≥ tx. We assume
that (1) possesses such a solution. A solution y is said to be non-oscillatory if it is eventually positive or
eventually negative; otherwise, it is said to be oscillatory. (1) is said to be oscillatory if all its solutions
are oscillatory. The equation itself is called oscillatory if all of its solutions are oscillatory.

The reliance on the past shows up normally in various applications in biology, electrical
engineering or physiology. A basic model in nature is reforestation. A cut timberland, in the wake of
replanting, will take in any event 20 years before arriving at any sort of development. Consequently,
any scientific model of backwoods gathering and recovery plainly should have time defers incorporated
with it. Another model happens because of the way that creatures must set aside some effort to process
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their nourishment before further exercises and reactions occur. Consequently, any model of species
dynamics without delays is an approximation at best, see [1].

For several decades, an growing interest in studying the oscillation and non-oscillation criteria
of different classes and different orders of differential equations with delay has been observed;
see, for instance, the monographs [2,3], the papers [4–26], and the references cited therein.

The purpose of this paper is to give new sufficient conditions for the oscillatory behavior of (1).
In Section 2, we will provide some auxiliary lemmas that will help us to prove our oscillation criteria.
In Section 3, by employing a refinement of the Riccati transformations, we establish new oscillation
criteria of (1).

2. Auxiliary Lemmas

Notation 1. Here, we introduce Riccati substitutions

ω1 (t) :=
r (t) (x′′′ (t))α

xα (t)

and

ω2 (t) :=
x′ (t)
x (t)

.

Moreover, for convenience, we denote that

Q (t) := Mβ−α
1 q (t)

σ3α (t)
t3α

, R1 (t) :=
αµ

2
t2

r1/α (t)
,

and

R̃ (t) := λβ/α Mβ−α
2

∫ ∞

t

(
1

r (u)

∫ ∞

u
q (s)

(
σ (s)

s

)β

ds

)1/α

du,

where µ, λ ∈ (0, 1) and M1, M2 are positive constants.

All functional inequalities are assumed to hold eventually, that is, they are assumed to be satisfied
for all t sufficiently large. We begin with the following lemmas that can be found in [2,8,16,18],
respectively.

Lemma 1. Let h ∈ Cn ([t0, ∞)) and h (t) > 0. Suppose that h(n) (t) is of a fixed sign, on [t0, ∞), h(n) (t) not
identically zero and that there exists a t1 ≥ t0 such that, for all t ≥ t1,

h(n−1) (t) h(n) (t) ≤ 0.

If we have limt→∞ h (t) 6= 0, then there exists tλ ≥ t0 such that

h (t) ≥ λ

(n− 1)!
tn−1

∣∣∣h(n−1) (t)
∣∣∣ ,

for every λ ∈ (0, 1) and t ≥ tλ.

Lemma 2. If the function x satisfies x(i) (t) > 0, i = 0, 1, ..., n, and x(n+1) (t) < 0, then

x (t)
tn/n!

≥ x′ (t)
tn−1/ (n− 1)!

.
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Lemma 3. Assume that α is a quotient of odd positive integers. Then

Uy−Vy(α+1)/α ≤ αα

(α + 1)α+1 Uα+1V−α, V > 0. (3)

Lemma 4. Assume that (2) is satisfied and let x (t) be an eventually positive solution of (1). Then, there exists
a sufficiently large t1 ≥ t0 such that for all t ≥ t1, either

(S1) x(κ) (t) > 0 for κ = 0, 1, 2, 3;

or
(S2) x(κ) (t) > 0 for κ = 0, 1, 3, and x′′ (t) < 0,

is holds.

Lemma 5. Let x (t) is an eventually positive solution of Equation (1).

(i1) If x satisfies (S1), then
ω′1 (t) + Q (t) + R1 (t)ω1+1/α

1 (t) ≤ 0; (4)

(i2) If x satisfies (S2), then
ω′2 (t) + ω2

2 (t) + Bβ−αR̃ (t) ≤ 0. (5)

Proof. Let that x (t) is an eventually positive solution of Equation (1). From Lemmas 4, there exist two
possible cases (S1) and (S2) for t ≥ t1 large enough.

Let (S1) holds. Then, taking Lemma 1 and 2 into account, we arrive at

x′ (t) ≥ µ

2
t2x′′′ (t) (6)

and x (t) ≥ 1
3 tx′ (t). Hence,

x (σ (t)) ≥ σ3 (t)
t3 x (t) . (7)

Differentiating ω1 and using (1), (6) and (7), we obtain

ω′1 (t) ≤ −q (t)
σ3α (t)

t3α
xβ−α (σ (t))− αµ

2
t2

r1/α (t)
ω1+1/α

1 (t) .

Since x′ (t) > 0, there exist a t2 ≥ t1 and a constant B > 0 such that x (t) > B, for all t ≥ t2. Thus,
we see that

ω′1 (t) ≤ −q (t)
σ3α (t)

t3α
Bβ−α (σ (t))− αµ

2
t2

r1/α (t)
ω1+1/α

1 (t) ,

Thus, (4) is satisfied.
Let (S2) holds. Integrating (1) from t to l, we have

r (l)
(

x′′′ (l)
)α

= r (t)
(
x′′′ (t)

)α −
∫ l

t
q (s) xβ (σ (s))ds. (8)

Taking Lemma 2 into account, we arrive at

x (t) ≥ tx′ (t) . (9)

Thus, x (σ (t)) ≥ (σ (t) /t) x (t), which with (8) and the fact that x′ (t) > 0 gives

r (l)
(

x′′′ (l)
)α − r (t)

(
x′′′ (t)

)α
+ xβ (t)

∫ l

t
q (s)

(
σ (s)

s

)β

ds ≤ 0.
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Letting l → ∞, we obtain

x′′′ (t) ≥ λβ/α

r1/α (t)
xβ/α (t)

(∫ ∞

t
q (s)

(
σ (s)

s

)β

ds

)1/α

.

Integrating the above inequality from t to ∞, we obtain

x′′ (t) ≤ −λβ/αxβ/α (t)
∫ ∞

t

(
1

r(u)

∫ ∞
u q (s)

(
σ(s)

s

)β
ds
)1/α

du

≤ −R̃ (t) xβ/α (t) .
(10)

Differentiating ω2 and using (10), we get

ω′2 (t) + ω2
2 (t) + Bβ−αR̃ (t) ≤ 0.

Thus, the proof is complete.

3. Oscillation Criteria

Theorem 1. If ∫ ∞

t0

Q (s)ds = ∞ (11)

and ∫ ∞

t0

R̃ (s)ds = ∞, (12)

then (1) is oscillatory.

Proof. Assume to the contrary that (1) has a nonoscillatory solution in [t0, ∞). Without loss of
generality, we can assume that x (t) > 0. From Lemma 4 that there exist two possible cases for
t ≥ t1, where t1 ≥ t0 is sufficiently large.

For case (S1) , from Lemma 5, we see that (4) holds, which yields

ω′1 (t) + Q (t) ≤ 0. (13)

Integrating (13) from t2 to t and using (11),we obtain

ω1 (t) ≤ ω1 (t2)−
∫ t

t2

Q (s) ds→ −∞ as t→ ∞,

which contradicts the fact that ω1 (t) > 0.
Similarly, in the case where (S2) holds, we get a contradicts with (12), which is omitted here for

convenience. Therefore, the proof is complete.

Definition 1. The sequence of functions {yn (t)}∞
n=0 and {zn (t)}∞

n=0 define as

yn (t) = y0 (t) +
∫ ∞

t
R1 (s) y

α+1
α

n−1 (s)ds (14)

and
zn (t) = z0 (t) +

∫ ∞

t
z2

n−1 (s)ds, (15)

where
y0 (t) =

∫ ∞

t
Q (s)ds
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and
z0 (t) =

∫ ∞

t
R̃ (s)ds.

Theorem 2. Assume that

lim inf
t→∞

1
y0 (t)

∫ ∞

t
R1 (s) y

α+1
α

0 (s)ds >
α

(α + 1)
α+1

α

(16)

and
lim inf

t→∞

1
z0 (t)

∫ ∞

t
z2

0 (s)ds >
1
4

. (17)

Then, (1) is oscillatory.

Proof. Assume to the contrary that (1) has a nonoscillatory solution in [t0, ∞). Without loss of generality,
we can assume that x (t) > 0. From Lemma 4 that there exist two possible cases for t ≥ t1, where t1 ≥ t0 is
sufficiently large.

Let case (S1) holds. By using Lemma 5, we obtain (4). Integrating (4) from t to l, we get

ω1 (l)−ω1 (t) +
∫ l

t
Q (s)ds +

∫ l

t
R1 (s)ω

α+1
α

2 (s)ds ≤ 0. (18)

From (18), it is obvious that

ω1 (l)−ω1 (t) +
∫ l

t
R1 (s)ω1 (s)ds ≤ 0. (19)

Then we conclude from (19) that∫ ∞

t
R1 (s)ω1 (s)ds < ∞, for t ≥ T, (20)

otherwise,

ω1 (l) ≤ ω1 (t)−
∫ l

t
R1 (s)ω1 (s)ds→ −∞ as l → ∞,

which contradicts to the fact that ω1 (t) > 0. Since ω1 (t) is positive and decreasing limt→∞ ω1 (t) =
k ≥ 0. By virtue of (20), we have k = 0. Thus, from (18), we have

ω1 (t) ≥ Q̃ (t) +
∫ ∞

t
R1 (s)ω1 (s)ds = y0 (t) +

∫ ∞

t
R1 (s)ω1 (s)ds. (21)

From (21), we have

ω1 (t)
y0 (t)

≥ 1 +
1

y0 (t)

∫ ∞

t
R1 (s) y

α+1
α

0 (s)
(

ω1 (s)
y0 (s)

) α+1
α

ds, t ≥ T. (22)

If we set δ = inft≥T ω1 (t) /y0 (t) , then obviously δ ≥ 1. Hence, from (16) and (22) we see that

δ ≥ 1 + α

(
δ

α + 1

)(α+1)/α

or
δ

α + 1
≥ 1

α + 1
+

α

α + 1

(
δ

α + 1

)(α+1)/α

which contradicts the admissible value of δ and α.
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Similarly, in case (S2), if we set δ1 = inft≥T1 ω (t) /z0 (t) and taking (17) into account, then we
arrive at a contradicts with the admissible value of δ1. Therefore, the proof is complete.

Theorem 3. Assume that there exist some yn and zn such that

lim sup
t→∞

yn (t)
(

µ

2
t2
∫ t

t0

r−1/α (s)ds
)α

> 1 (23)

and
lim sup

t→∞
tzn (t) > 1, (24)

hold. Then (1) is oscillatory.

Proof. Assume to the contrary that (1) has a nonoscillatory solution in [t0, ∞). Without loss of
generality, we can assume that x (t) > 0. From Lemma 4 that there exist two possible cases for
t ≥ t1, where t1 ≥ t0 is sufficiently large.

Let case (S1) holds. Taking Lemma 1 into account, we arrive at

x (t) ≥ µ

6
t3x′′′ (t) . (25)

From the definition of ω and (25), we have

1
ω1 (t)

=
1

r (t)

(
x (t)

x′′′ (t)

)α

≥ 1
r (t)

(µ

6
t3
)α

Thus,

ω1 (t)
1

r (t)

(µ

6
t3
)α
≤ 1 (26)

and

lim sup
t→∞

ω1 (t)
(

µt3

6r1/α (t)

)α

≤ 1,

which contradicts (23).
Similarly, in case (S2), we arrive at a contradicts with (24). Therefore, the proof is complete.

Corollary 1. If there exist yn and zn such that

∫ t

T
Q (s) exp

(∫ s

T
R1 (u) y1/α

n (u)du
)

ds = ∞ (27)

and ∫ t

T
R̃ (s) exp

(∫ s

T
zn (u)du

)
ds = ∞, (28)

hold, then (1) is oscillatory.

Proof. Assume to the contrary that (1) has a nonoscillatory solution in [t0, ∞). Without loss of
generality, we can assume that x (t) > 0. From Lemma 4 that there exist two possible cases for
t ≥ t1, where t1 ≥ t0 is sufficiently large.

Let case (S1) hold. Proceeding as in the proof of Theorem 2, we obtain (21). From (21), we have

ω1 (t) ≥ y0 (t) .
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Moreover, by induction we can also see that ω1 (t) ≥ yn (t) for t ≥ t0, n = 1, 2, 3, .... Thus, since the
sequence {yn (t)}∞

0 monotone increasing and bounded above, it converges to y (t). Letting n → ∞
in (14) and using Lebesgues monotone convergence theorem, we obtain

y (t) = y0 (t) +
∫ ∞

t
R1 (s) y

α+1
α (s)ds. (29)

From (29), we have that
y′ (t) = −R1 (t) y

α+1
α (t)−Q (t) . (30)

Since yn (t) ≤ y (t) , it follows from (30) that

y′ (t) ≤ −R1 (t) y1/α
n (t) y (t)−Q (t) .

Hence, we get

y (t) ≤ exp
(
−
∫ t

T
R1 (s) y1/α

n (s)ds
)(

y (T)−
∫ t

T
Q (s) exp

(∫ s

T
R1 (u) y1/α

n (u)du
)

ds
)

.

The above inequality follows

∫ t

T
Q (s) exp

(∫ s

T
R1 (u) y1/α

n (u)du
)

ds ≤ y (T) < ∞,

which contradicts (27).
Similarly, in case (S2), we arrive at a contradiction with (28). Therefore, the proof is complete.

Example 1. Consider the equation

x(4) (t) +
q0

t4 x
(

1
2

t
)
= 0, (31)

where q0 > 0. We note that α = β = 1, r (t) = 1, σ (t) = t/2 and q (t) = q0/t4. Hence, it is easy to see that

y0 =
q0

24t

and
z0 (t) =

q0

2t
.

Thus, by using Theorem 2, Equation (31) is oscillatory if q0 > 36. However, we note that
∫ ∞ Q (s)ds 6= ∞,

and hence, Theorem 1 fails.

Remark 1. Theorem 1 introduces a criterion in traditional form
∫ ∞

(·)ds = ∞. Howeover, Theorem 2 provides
a better criterion which can be applied to different equations. While, we can use Theorem 3 if Theorem 2 fails.

Remark 2. Agarwal et al. [27] studied the oscillation properties of the higher-order equation(∣∣∣x(n−1) (t)
∣∣∣α−1

x(n−1) (t)
)′

+ q (t) f (x (σ (t))) = 0,

under the condition (2). From Theorem 2.1 in [27], Equation (31) is oscillatory if q0 > 96. Thus, our results
improve the results in [27].

4. Conclusions

New criteria for oscillation of fourth-order delay differential equations are established.
By employing a refinement of the Riccati transformations, we obtain new oscillation criteria that
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improve some related results and can be used in cases where known theorems fail to apply. By applying
our results to an example, we show that our results improved the results in [27]. Furthermore, in future
work, we can try to study the oscillation properties of the neutral case by the same approach as that
used in this work.
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