# Canonical Description for Formulation of Embedding Gravity as a Field Theory in a Flat Spacetime

^{*}

## Abstract

**:**

## 1. Introduction

“In the framework of special relativity (i.e., when the spacetime is pseudo-Euclidean) one can construct quite consistent quantum theory of gravity. However, in the framework of general relativity, where the fluctuations might be arbitrarily large, the situation is drastically different $\u2329\dots \u232a$ It seems hardly possible to generalize the quantum theory of gravity onto this case without the deep reformulation of classical concepts”.

## 2. The Ideas and Results of Embedding Gravity

## 3. The Splitting Gravity: Regge-Teitelboim Approach in the Form of a Field Theory

## 4. The Canonical Formulation of the Splitting Gravity

## 5. The Path Integral With Respect To Canonical Variables

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Fock, V.A. Geometrisierung der Diracschen Theorie des Elektrons. Z. Phys.
**1929**, 57, 261–277. [Google Scholar] [CrossRef] - Weyl, H. Elektron und Gravitation. I. Z. Phys.
**1929**, 56, 330–352. [Google Scholar] [CrossRef] - Bronstein, M.P. Quantization of gravitational waves. JETP
**1936**, 6, 195–236. [Google Scholar] - Penrose, R. On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Found. Phys.
**2014**, 44, 557–575. [Google Scholar] [CrossRef] [Green Version] - Sardanashvily, G. Classical gauge gravitation theory. Int. J. Geom. Methods Mod. Phys.
**2011**, 08, 1869–1895. [Google Scholar] [CrossRef] [Green Version] - Gupta, S.N. Quantization of Einstein’s Gravitational Field: Linear Approximation. Proc. Phys. Soc. Sect. A
**1952**, 65, 161. [Google Scholar] [CrossRef] - Gupta, S.N. Quantization of Einstein’s Gravitational Field: General Treatment. Proc. Phys. Soc. Sect. A
**1952**, 65, 608. [Google Scholar] [CrossRef] - Ogievetsky, V.I.; Polubarinov, I.V. Interacting field of spin 2 and the Einstein equations. Ann. Phys.
**1965**, 35, 167–208. [Google Scholar] [CrossRef] - Ogievetsky, V.I. Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups. Lett. Nuovo C. (1971–1985)
**1973**, 8, 988–990. [Google Scholar] [CrossRef] - Feynman, R.P. Feynman Lectures on Gravitation; Penguin: London, UK, 1999. [Google Scholar]
- Faddeev, L.D.; Popov, V.N. Covariant quantization of the gravitational field. Sov. Phys. Uspekhi
**1974**, 16, 777. [Google Scholar] [CrossRef] - Boulware, D.G.; Deser, S. Can Gravitation Have a Finite Range? Phys. Rev. D
**1972**, 6, 3368–3382. [Google Scholar] [CrossRef] [Green Version] - De Rham, C.; Gabadadze, G.; Tolley, A.J. Resummation of Massive Gravity. Phys. Rev. Lett.
**2011**, 106, 231101. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rickles, D. A Brief History of String Theory; The Frontiers Collection; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef] [Green Version]
- Marshakov, A.V. String theory or field theory? Phys.-Uspekhi
**2002**, 45, 915. [Google Scholar] [CrossRef] [Green Version] - Regge, T.; Teitelboim, C. General relativity à la string: A progress report. In Proceedings of the First Marcel Grossmann Meeting, Trieste, Italy, 7–12 July 1975; Ruffini, R., Ed.; pp. 77–88. [Google Scholar]
- Paston, S.A.; Franke, V.A. Canonical formulation of the embedded theory of gravity equivalent to Einstein’s general relativity. Theor. Math. Phys.
**2007**, 153, 1582–1596. [Google Scholar] [CrossRef] [Green Version] - Capovilla, R.; Escalante, A.; Guven, J.; Rojas, E. Hamiltonian dynamics of extended objects: Regge-Teitelboim model. Int. J. Theor. Phys.
**2009**, 48, 2486. [Google Scholar] [CrossRef] [Green Version] - Estabrook, F.B. The Hilbert Lagrangian and Isometric Embedding: Tetrad Formulation of Regge-Teitelboim Gravity. J. Math. Phys.
**2010**, 51, 042502. [Google Scholar] [CrossRef] [Green Version] - Karasik, D.; Davidson, A. Geodetic Brane Gravity. Phys. Rev. D
**2003**, 67, 064012. [Google Scholar] [CrossRef] [Green Version] - Paston, S.A.; Sheykin, A.A. Embedding theory as new geometrical mimetic gravity. Eur. Phys. J. C
**2018**, 78, 989. [Google Scholar] [CrossRef] - Paston, S.A. Gravity as a field theory in flat space-time. Theor. Math. Phys.
**2011**, 169, 1611–1619. [Google Scholar] [CrossRef] [Green Version] - Deser, S.; Pirani, F.A.E.; Robinson, D.C. New embedding model of general relativity. Phys. Rev. D
**1976**, 14, 3301–3303. [Google Scholar] [CrossRef] [Green Version] - Paston, S.A.; Sheykin, A.A. From the Embedding Theory to General Relativity in a result of inflation. Int. J. Mod. Phys. D
**2012**, 21, 1250043. [Google Scholar] [CrossRef] - Davidson, A.; Karasik, D.; Lederer, Y. Cold Dark Matter from Dark Energy. arXiv
**2011**, arXiv:gr-qc/0111107. [Google Scholar] - Sheykin, A.A.; Paston, S.A. The approach to gravity as a theory of embedded surface. AIP Conf. Proc.
**2014**, 1606, 400. [Google Scholar] [CrossRef] [Green Version] - Pavsic, M. Classical theory of a space-time sheet. Phys. Lett. A
**1985**, 107, 66–70. [Google Scholar] [CrossRef] - Maia, M.D. On the integrability conditions for extended objects. Class. Quant. Gravit.
**1989**, 6, 173–183. [Google Scholar] [CrossRef] - Estabrook, F.B.; Robinson, R.S.; Wahlquist, H.R. Constraint-free theories of gravitation. Class. Quant. Gravit.
**1999**, 16, 911–918. [Google Scholar] [CrossRef] [Green Version] - Faddeev, L.D. New dynamical variables in Einstein’s theory of gravity. Theor. Math. Phys.
**2011**, 166, 279–290. [Google Scholar] [CrossRef] - Pavsic, M.; Tapia, V. Resource Letter on geometrical results for Embeddings and Branes. arXiv
**2000**, arXiv:gr-qc/0010045. [Google Scholar] - Tapia, V. Gravitation a la string. Class. Quant. Gravit.
**1989**, 6, L49. [Google Scholar] [CrossRef] - Franke, V.A.; Tapia, V. The ADM Lagrangian in extrinsic gravity. Il Nuovo Cimento B (1971–1996)
**1992**, 107, 611. [Google Scholar] [CrossRef] - Cordero, R.; Molgado, A.; Rojas, E. Ostrogradski approach for the Regge-Teitelboim type cosmology. Phys. Rev. D
**2009**, 79, 024024. [Google Scholar] [CrossRef] [Green Version] - Paston, S.A.; Semenova, A.N. Constraint algebra for Regge-Teitelboim formulation of gravity. Int. J. Theor. Phys.
**2010**, 49, 2648–2658. [Google Scholar] [CrossRef] [Green Version] - Paston, S.A.; Semenova, E.N. External time canonical formalism for gravity in terms of embedding theory. Gravit. Cosmol.
**2015**, 21, 181–190. [Google Scholar] [CrossRef] [Green Version] - Paston, S.A.; Semenova, E.N.; Franke, V.A.; Sheykin, A.A. Algebra of Implicitly Defined Constraints for Gravity as the General Form of Embedding Theory. Gravit. Cosmol.
**2017**, 23, 1–7. [Google Scholar] [CrossRef] - Aguilar-Salas, A.; Molgado, A.; Rojas, E. Hamilton-Jacobi approach for Regge-Teitelboim cosmology. arXiv
**2004**, arXiv:2004.01650. [Google Scholar] - Davidson, A. Λ = 0 Cosmology of a Brane-like universe. Class. Quant. Gravit.
**1999**, 16, 653. [Google Scholar] [CrossRef] [Green Version] - Paston, S.A. Forms of action for perfect fluid in general relativity and mimetic gravity. Phys. Rev. D
**2017**, 96, 084059. [Google Scholar] [CrossRef] [Green Version] - Chamseddine, A.H.; Mukhanov, V. Mimetic dark matter. J. High Energy Phys.
**2013**, 2013, 135. [Google Scholar] [CrossRef] [Green Version] - Golovnev, A. On the recently proposed mimetic Dark Matter. Phys. Lett. B
**2014**, 728, 39–40. [Google Scholar] [CrossRef] [Green Version] - Sheykin, A.; Solovyev, D.; Sukhanov, V.; Paston, S. Modifications of gravity via differential transformations of field variables. Symmetry
**2020**, 12, 240. [Google Scholar] [CrossRef] [Green Version] - Donnelly, W.; Giddings, S.B. Gravitational splitting at first order: Quantum information localization in gravity. Phys. Rev. D
**2018**, 98, 086006. [Google Scholar] [CrossRef] [Green Version] - Sheykin, A.A.; Paston, S.A. Field-Theoretical Formulation of Regge-Teitelboim Gravity. Phys. At. Nucl.
**2016**, 79, 1494. [Google Scholar] [CrossRef] [Green Version] - Cahill, K. Path integrals for actions that are not quadratic in their time derivatives. arXiv
**2015**, arXiv:1501.00473. [Google Scholar] - Amdahl, D.; Cahill, K. Path integrals for awkward actions. arXiv
**2016**, arXiv:1611.06685. [Google Scholar] - Konopleva, N.P.; Popov, V.N. Gauge Fields; Harwood: New York, NY, USA, 1981. [Google Scholar]
- Sheykin, A.A.; Paston, S.A. Friedmann cosmology in Regge-Teitelboim gravity. Int. J. Mod. Phys. Conf. Ser.
**2016**, 41, 1660128. [Google Scholar] [CrossRef] [Green Version]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Paston, S.; Semenova, E.; Sheykin, A.
Canonical Description for Formulation of Embedding Gravity as a Field Theory in a Flat Spacetime. *Symmetry* **2020**, *12*, 722.
https://doi.org/10.3390/sym12050722

**AMA Style**

Paston S, Semenova E, Sheykin A.
Canonical Description for Formulation of Embedding Gravity as a Field Theory in a Flat Spacetime. *Symmetry*. 2020; 12(5):722.
https://doi.org/10.3390/sym12050722

**Chicago/Turabian Style**

Paston, Sergey, Elizaveta Semenova, and Anton Sheykin.
2020. "Canonical Description for Formulation of Embedding Gravity as a Field Theory in a Flat Spacetime" *Symmetry* 12, no. 5: 722.
https://doi.org/10.3390/sym12050722