# Topological Monopoles in Quantum Antiferromagnets

## Abstract

**:**

## 1. introduction

## 2. Two-Leg Ladders

## 3. The Heisenberg Rectangular Tube

#### 3.1. Tube without Shear Strain

#### 3.2. The Heisenberg Tube with Shear Strain

## 4. Conclusions

## Funding

## Conflicts of Interest

## References

- Dirac, P.A.M. Quantized singularities in the electromagnetic field. Proc. R. Soc.
**1931**, 133. [Google Scholar] [CrossRef] - Rajantie, A. Magnetic monopoles from gauge theory phase transitions. Phys. Rev. D
**2003**, 68. [Google Scholar] [CrossRef] [Green Version] - Pati, J.; Salam, A. Lepton number as the fourth “color”. Phys. Rev. D
**1974**, 10, 275–289. [Google Scholar] [CrossRef] - Baez, J.C.; Huerta, J. The algebra of grand unified theories. Bull. Am. Math. Soc.
**2010**, 47, 483–552. [Google Scholar] [CrossRef] [Green Version] - Goddard, P.; Olive, D.I. Magnetic monopoles in gauge field theories. Rep. Prog. Phys.
**1978**, 41, 1357–1437. [Google Scholar] [CrossRef] [Green Version] - Gould, O.; Rajantie, A. Magnetic monopole mass bounds from heavy-ion collisions and neutron stars. Phys. Rev. Lett.
**2017**, 119. [Google Scholar] [CrossRef] [PubMed] - Ray, M.W.; Ruokokoski, E.; Tiurev, K.; Möttönen, M.; Hall, D.S. Observation of isolated monopoles in a quantum field. Science
**2015**, 348, 544–547. [Google Scholar] [CrossRef] [PubMed] - Giamarchi, T.; Rüegg, C.; Tchernyshyov, O. Bose–Einstein condensation in magnetic insulators. Nat. Phys.
**2008**, 4, 198–204. [Google Scholar] [CrossRef] [Green Version] - Ollikainen, T.; Tiurev, K.; Blinova, A.; Lee, W.; Hall, D.S.; Möttönen, M. Experimental realization of a dirac monopole through the decay of an isolated monopole. Phys. Rev. X
**2017**, 7. [Google Scholar] [CrossRef] - Castelnovo, C.; Moessner, R.; Sondhi, S.L. Magnetic monopoles in spin ice. Nature
**2008**, 451, 42–45. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fennell, T.; Deen, P.P.; Wildes, A.R.; Schmalzl, K.; Prabhakaran, D.; Boothroyd, A.T.; Aldus, R.J.; McMorrow, D.F.; Bramwell, S.T. Magnetic coulomb phase in the spin ice Ho
_{2}Ti_{2}O_{7}. Science**2009**, 326, 415–417. [Google Scholar] [CrossRef] [PubMed] - Morris, D.J.P.; Tennant, D.A.; Grigera, S.A.; Klemke, B.; Castelnovo, C.; Moessner, R.; Czternasty, C.; Meissner, M.; Rule, K.C.; Hoffmann, J.-U.; et al. Dirac strings and magnetic Mmonopoles in the spin ice Dy
_{2}Ti_{2}O_{7}. Science**2009**, 326, 411–414. [Google Scholar] [CrossRef] [PubMed] - Azzouz, M. Interchain-coupling effect on the one-dimensional spin-1/2 antiferromagnetic Heisenberg model. Phys. Rev. B
**1993**, 48, 6136–6140. [Google Scholar] [CrossRef] - Bock, B.; Azzouz, M. Generalization of the Jordan-Wigner transformation in three dimensions and its application to the Heisenberg bilayer antiferromagnet. Phys. Rev. B
**2001**, 64. [Google Scholar] [CrossRef] - Widrow, L.M. Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys.
**2002**, 74. [Google Scholar] [CrossRef] - Azzouz, M.; Chen, L.; Moukouri, S. Calculation of the singlet-triplet gap of the antiferromagnetic Heisenberg model on a ladder. Phys. Rev. B
**1994**, 50, 6233–6237. [Google Scholar] [CrossRef] [Green Version] - Koteswararao, B.; Salunke, S.; Mahajan, A.V.; Dasgupta, I.; Bobroff, J. Spin-gap behavior in the two-leg spin-ladder BiCu
_{2}PO_{6}. Phys. Rev. B**2007**, 76. [Google Scholar] [CrossRef] - Kohama, Y.; Wang, S.; Uchida, A.; Prsa, K.; Zvyagin, S.; Skourski, Y.; McDonald, R.D.; Balicas, L.; Ronnow, H.M.; Rüegg, C.; et al. Anisotropic cascade of field-induced phase transitions in the frustrated spin-ladder system BiCu
_{2}PO_{6}. Phys. Rev. Lett.**2012**, 109. [Google Scholar] [CrossRef] [PubMed]

**Figure 2.**The two-leg ladder in the presence of transverse ${q}_{x}=\pi $ phonons. The view of the $xz$-plane is shown.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Azzouz, M.
Topological Monopoles in Quantum Antiferromagnets. *Symmetry* **2019**, *11*, 323.
https://doi.org/10.3390/sym11030323

**AMA Style**

Azzouz M.
Topological Monopoles in Quantum Antiferromagnets. *Symmetry*. 2019; 11(3):323.
https://doi.org/10.3390/sym11030323

**Chicago/Turabian Style**

Azzouz, Mohamed.
2019. "Topological Monopoles in Quantum Antiferromagnets" *Symmetry* 11, no. 3: 323.
https://doi.org/10.3390/sym11030323