How Do Digitalization and Scale Influence Agricultural Carbon Emission Reduction: Evidence from Jiangsu, China
Abstract
1. Introduction
2. Theoretical Framework and Research Assumptions
2.1. Theoretical Framework Analysis
2.2. Research Hypothesis
3. Methods and Data
3.1. Research Methods
3.1.1. SBM-DEA Model of Unexpected Output
3.1.2. Calculation and Analysis of Agriculture Scale Management Level
3.1.3. Measurement Model
3.2. Selection and Treatment of Variables
3.2.1. Agricultural Green Production Efficiency as Explained Variable
- (1)
- Calculation of agricultural carbon emissions
- (2)
- Calculation of agricultural green production efficiency
- (3)
- Calculation of agricultural carbon emission intensity
3.2.2. Digital Empowerment Taken as Core Explanatory Variables
3.2.3. Internal Scale Management Taken as Intermediate Variable
3.2.4. External Scale Management Taken as Moderator Variables
3.2.5. Environmental and Control Variables
3.3. Regional Selection and Data Sources
4. Results and Discussion
4.1. The Relationship Between Land Management Scale, Scale Management Level, and Agricultural Green Production Efficiency
4.2. Agricultural Digital Emission Reduction Mechanism in a Scale Environment
4.2.1. Impacts of Digital Empowerment to Agricultural Green Production Efficiency
4.2.2. Impacts of Digital Empowerment to Agricultural Carbon Emission Intensity
4.2.3. The Role of Management Level in Boosting Agricultural Digital Emission Reduction
4.3. Intermediary Mechanism of Internal Scale Management in Agricultural Digital Emission Reduction
4.4. Moderator Mechanism of External SCALE Management in Agricultural Digital Emission Reduction
4.5. Heterogeneity Analysis of Moderate Scale Management Level of Different Land
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Suggestion
5.3. Limitations and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Main Parts of the Questionnaire
Appendix B
References
- Wen, S.; Hu, Y.; Liu, H. Measurement and Spatial–Temporal Characteristics of Agricultural Carbon Emission in China: An Internal Structural Perspective. Agriculture 2022, 12, 1749. [Google Scholar] [CrossRef]
- Yang, G.; Shang, P.; He, L.; Zhang, Y.; Wang, Y.; Zhang, F.; Zhu, L.; Wang, Y. Interregional Carbon Compensation Cost Forecast and Priority Index Calculation Based on the Theoretical Carbon Deficit: China as a Case. Sci. Total Environ. 2019, 654, 786–800. [Google Scholar] [CrossRef] [PubMed]
- GSMA. The Enablement Effect: The Impact of Mobile Communications Technologies on Carbon Emission Reductions; GSMA: London, UK, 2020. [Google Scholar]
- Balyan, S.; Jangir, H.; Tripathi, N.S.; Tripathi, A.; Jhang, T.; Pandey, P. Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture. Sustainability 2024, 16, 502. [Google Scholar] [CrossRef]
- Guo, Z.; Ho, S.C.; Ling, T.H.G.; Rashid, M.F. Spatial Spillover Heterogeneity and Moderated Effects of the Digital Economy on Agricultural Carbon Emissions: Evidence from 30 Chinese Provinces. Environ. Dev. Sustain. 2025, 1–31. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Zheng, Z.; Gao, Y.; Huo, X. Re-exploration of the Relationship between Farm Management Scale and Land Productivity: Evidence from Large-Scale Farmers in the Third National Agricultural Census. Manag. World 2024, 40, 89–108. [Google Scholar] [CrossRef]
- Li, J.; Wu, W.; Liu, M.; Li, Q.; Liu, Z.; Chen, W.; Wang, Y. Impact of Land Management Scale on the Carbon Emissions of the Planting Industry in China. Land 2022, 11, 816. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, X.; Wei, W.; Zeng, G. Research on the Impact of Yangtze River Delta Regional Integration on Urban Carbon Emissions. Geogr. Res. 2022, 41, 181–192. [Google Scholar] [CrossRef]
- Ma, S.L.; Liu, J.F.; Wang, W.T. The Carbon Emission Reduction Effect of Digital Agriculture in China. Environ. Sci. Pollut. Res. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Huang, J.; Li, Y.; Maneejuk, P.; Liu, J. A Non-Linear Exploration of the Digital Economy’s Impact on Agricultural Carbon Emission Efficiency in China. Agriculture 2024, 14, 2245. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, X.; Zheng, G. Blessing or Curse? The Impact of Digital Technologies on Carbon Efficiency in the Agricultural Sector of China. Sustainability 2023, 15, 15482. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y. Impact and Transmission Mechanism of Digital Economy on Agricultural Energy Carbon Emission Reduction. Int. Rev. Econ. Financ. 2024, 95, 103457. [Google Scholar] [CrossRef]
- Feng, M.; Li, X. Technological Innovation Threshold Characteristic of the Impact of Environmental Regulation on Carbon Emission Based on Chinese Provincial Panel Data. J. Sci. Ind. Res. 2019, 78, 273–277. [Google Scholar]
- Deng, Q.; Zhang, Y.; Lin, Z.; Gao, X.; Weng, Z. The Impact of Digital Technology Application on Agricultural Low-Carbon Transformation—A Case Study of the Pesticide Reduction Effect of Plant Protection Unmanned Aerial Vehicles (UAVs). Sustainability 2024, 16, 10920. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Y.; Li, Y.; Liu, S.; Liu, G. Effect of Farmland Scale on Agricultural Green Production Technology Adoption: Evidence from Rice Farmers in Jiangsu Province, China. Land Use Policy 2024, 147, 107381. [Google Scholar] [CrossRef]
- Chen, Z.; Tan, C.; Liu, B.; Liu, P.; Zhang, X. Can Socialized Services Reduce Agricultural Carbon Emissions in the CoNPExt of Appropriate Scale Land Management? Front. Environ. Sci. 2022, 10, 984687. [Google Scholar] [CrossRef]
- Li, Y.; Yi, F.; Yang, C. Influences of Large-Scale Farming on Carbon Emissions from Cropping: Evidence from China. J. Integr. Agric. 2023, 22, 3209–3219. [Google Scholar] [CrossRef]
- Wu, W.; Yu, Q.; Chen, Y.; Guan, J.; Gu, Y.; Guo, A.; Wang, H. Land Management Scale and Net Carbon Effect of Farming in China: Spatial Spillover Effects and Threshold Characteristics. Sustainability 2024, 16, 6392. [Google Scholar] [CrossRef]
- Yu, P.; Fadnavis, S.; Chen, Y.; Liu, H.; Xu, L.; Pan, J.; Bai, S.; Gu, S. Positive Impacts of Farmland Fragmentation on Agricultural Production Efficiency in Qilu Lake Watershed: Implications for Appropriate Scale Management. Land Use Policy 2022, 117, 106118. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, S.; Li, X.; Xia, X. Adoption of Green Production Technologies by Farmers through Traditional and Digital Agro-Technology Promotion–An Example of Physical versus Biological Control Technologies. J. Environ. Manag. 2024, 370, 122813. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, Y.; Sun, Y.; Ruan, J. Study on the Influence of Agricultural Scale Management Mode on Production Efficiency Based on Meta-Analysis. Land 2024, 13, 968. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J. An Empirical Study on the Impact of Agricultural Digitalization on Fertilizer Use Efficiency. Chin. J. Eco Agric. 2024, 32, 1857–1868. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Sun, J. The Environmental Performance of Agricultural Production Trusteeship from the Perspective of Planting Carbon Emissions. China Agric. Econ. Rev. 2023, 15, 853–870. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, X. Towards a Low-Carbon and Beautiful World: Assessing the Impact of Digital Technology on the Common Benefits of Pollution Reduction and Carbon Reduction. Environ. Monit. Assess. 2024, 196, 695. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, Q.; Zhang, L.; Shi, S. Can Moderate Agricultural Scale managements Be Developed against the Background of Plot Fragmentation and Land Dispersion? Evidence from the Suburbs of Shanghai. Sustainability 2022, 14, 8697. [Google Scholar] [CrossRef]
- Song, H.; Jiang, H.; Zhang, S.; Luan, J. Land circulation, scale management, and agricultural carbon reduction efficiency: Evidence from China. Discret. Dyn. Nat. Soc. 2021, 2021, 9288895. [Google Scholar] [CrossRef]
- Zhao, S.; Li, M.; Cao, X. Empowering rural development: Evidence from China on the impact of digital village construction on farmland scale management. Land 2024, 13, 903. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Huang, L.; Xiao, H.; Liu, X. Impact of digital infrastructure on farm households’ scale management. Sustainability 2025, 17, 6788. [Google Scholar] [CrossRef]
- Cheng, Z.; Xu, B.; Liu, Z.; Yang, W.; Li, Z.; Zhang, W.; Liang, C. Decoupling characteristics, driving factors and prediction of carbon emissions from agricultural input in Yunnan Province’s planting industry. Chin. J. Agrometeorol. 2025. [Google Scholar]
- Li, Y.L.; Lu, S.; Yi, F.J. Does agricultural mechanization restrict China’s agricultural carbon peaking? An investigation of nonlinear relationships. Chin. J. Eco Agric. 2025, 33, 1–13. [Google Scholar] [CrossRef]
- Zheng, W.W.; Yi, Z.Y. Study on regional layout of agricultural industry based on environmental carrying capacity in Jiangsu Province. Jiangsu J. Agric. Sci. 2016, 32, 1182–1188. [Google Scholar]
- Hong, H.; Sun, L.; Zhao, L. Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emissions: Evidence from the Mediation Effect of Capital Deepening. Sustainability 2024, 16, 3071. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, K.; Liu, Z.; Ji, Z.; Yu, J. How Has the Rural Digital Economy Influenced Agricultural Carbon Emissions? Agricultural Green Technology Change as a Mediated Variable. Front. Environ. Sci. 2024, 12, 1344567. [Google Scholar] [CrossRef]
- Ning, X.; Zhang, D.; Zhang, W.; Liu, M.; Zhang, H. Does Digital Transformation Promote Agricultural Carbon Productivity in China? Land 2022, 11, 1966. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Y. The Promotion Mechanism of Digital Phantomization of Enterprises for “Double Carbon” Goal: A Chinese Case Study. Environ. Sci. Pollut. Res. 2023, 30, 80741–80757. [Google Scholar] [CrossRef]
- Li, J.; Sheng, X.; Zhang, S.; Wang, Y. Research on the Impact of the Digital Economy and Technological Innovation on Agricultural Carbon Emissions. Land 2024, 13, 821. [Google Scholar] [CrossRef]
- Sun, K.; Tang, Y.; Zhang, D.; Guo, H.; Kong, W. Does Digital Finance Increase Relatively Large-Scale Farmers’ Agricultural Income through the Allocation of Production Factors? Evidence from China. Agriculture 2022, 12, 1915. [Google Scholar] [CrossRef]
- Xu, D.; Guo, W. Low-Carbon Transformation of China’s Smallholder Agriculture: Exploring the Role of Farmland Size Expansion and Green Technology Adoption. Environ. Sci. Pollut. Res. 2023, 30, 105522–105537. [Google Scholar] [CrossRef]
- Jiang, X. Digital Economy, Factor Allocation, and Sustainable Agricultural Development: The Perspective of Labor and Capital Misallocation. Sustainability 2023, 15, 4418. [Google Scholar] [CrossRef]
- Yang, T.; Hu, X.; Wang, Y.; Li, H.; Guo, L. Dynamic Linkages among Climate Change, Mechanization and Agricultural Carbon Emissions in Rural China. Int. J. Environ. Res. Public Health 2022, 19, 14508. [Google Scholar] [CrossRef]
- Zhuang, M.; Wang, X.; Yang, Y.; Wu, Y.; Wang, L.; Lu, X. Agricultural Machinery Could Contribute 20% of Total Carbon and Air Pollutant Emissions by 2050 and Compromise Carbon Neutrality Targets in China. Nat. Food 2025, 6, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Ran, G.; Wang, G.; Du, H.; Lv, M. Relationship of Cooperative Management and Green and Low-Carbon Transition of Agriculture and Its Impacts: A Case Study of the Western Tarim River Basin. Sustainability 2023, 15, 9024. [Google Scholar] [CrossRef]
- Wang, L.; Lyu, J.; Zhang, J. Explicating the Role of Agricultural Socialized Services on Chemical Fertilizer Use Reduction: Evidence from China Using a Double Machine Learning Model. Agriculture 2024, 14, 2148. [Google Scholar] [CrossRef]
- Yao, W.; Zhu, Y.; Liu, S.; Zhang, Y. Can Agricultural Socialized Services Promote Agricultural Green Total Factor Productivity? From the Perspective of Production Factor Allocation. Sustainability 2024, 16, 8425. [Google Scholar] [CrossRef]
- Li, P.; He, L.; Zhang, J.; Han, H.; Song, Y. Research on the Impact of Agricultural Socialization Services on the Ecological Efficiency of Agricultural Land Use. Land 2024, 13, 853. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, D.; Wang, X. Agricultural Total Factor Productivity Based on Farmers’ Perspective: An Example of CCR, BCC, SBM and Technology Optimization Malmquist-Leuenberger Index. J. Resour. Ecol. 2024, 15, 267–279. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Wang, Z.; Ye, Q.; Cao, X. Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA. Sustainability 2023, 15, 3361. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, E.; He, L.; Ke, X.; Lu, D.; Lin, A.; Lai, X. The Carbon Emission Reduction Benefits of the Transformation of the Intensive Use of Cultivated Land in China. J. Environ. Manag. 2024, 370, 122978. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, S.; Liang, Y.; Liu, X. A Comprehensive Accounting of Carbon Emissions and Carbon Sinks of China’s Agricultural Sector. Land 2024, 13, 1452. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Zhao, J.; Bian, X. Carbon Footprint Analysis of Farmland Ecosystems in China. J. Soil Water Conserv. 2011, 25, 203–208. [Google Scholar] [CrossRef]
- Zhu, T.; Cao, J. Analysis of Agricultural Ecological Efficiency in the Yellow River Basin from the Perspective of Carbon Source and Carbon Sink. Ecol. Econ. 2024, 40, 129–135. [Google Scholar]
- Huang, T.Y.; Xie, L.Y.; Deng, T.L.; Zu, T.; Zhao, H.; Guo, L.; Wang, X. Analysis of agricultural carbon emission efficiency and driving factors in Liaoning Province based on LMDI model. Chin. J. Eco Agric. 2025, 33, 424. [Google Scholar]
- Liu, Y.; Zhang, J.B.; Zhang, L. Analysis of Carbon Emission Efficiency of Rice Production under Different Rice Farming Systems in China Based on DEA-SBM Model. J. China Agric. Univ. 2018, 23, 177–186. [Google Scholar]
- Peng, W.B.; Cao, X.T.; Su, C.G.; Kuang, C. Spatiotemporal evolution characteristics of carbon efficiency in urban agglomerations in the middle reaches of the Yangtze River: Based on three-stage SBM-DEA model. Acta Ecol. Sin. 2023, 43, 3532–3545. [Google Scholar]
- Jiang, T.; Zhong, M.; Ma, G. The Impact of Digital Economy on Agricultural Green Total Factor Productivity: Analysis Based on the Mediating Role of Land Management Efficiency. J. China Agric. Univ. 2024, 29, 27–39. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, S. Research on the Impact of Digital Economy Development on Agricultural Carbon Emissions in China. Chin. J. Agric. Resour. Reg. Plan. 2025, 1–11. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, X.; Sun, Y.; Xiong, Y. Impact of Agricultural Product Brands and Agricultural Industry Agglomeration on Agricultural Carbon Emissions. J. Environ. Manag. 2024, 369, 122238. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Li, X.; Lu, Q. Does Participation in Digital Supply and Marketing Promote Smallholder Farmers’ Adoption of Green Agricultural Production Technologies? Land 2024, 14, 54. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, R.; Yao, Y.; Wang, Y.; Shi, Y.; Hua, X.; Ji, G. Research on the Willingness of Large-Scale Farmers to Produce Green and High-Quality Agricultural Products under the TPB-NAM Framework: Based on Survey Data from Jiangsu Province. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 184–194. [Google Scholar]
Carbon Emission Source | Corresponding Index Name | Carbon Emission Coefficient | Reference Source |
---|---|---|---|
Chemical fertilizer | Fertilizer application rate | 0.8956 kgC/kg | T.O.West, Oak Ridge National Laboratory, USA |
Pesticide | Pesticide consumption | 4.934 kgC/kg | T.O.West, Oak Ridge National Laboratory, USA |
Agricultural plastic sheeting | Usage of agricultural plastic film | 5.18 kgC/kg | IREEA Nanjing Agricultural University Institute of Resources and Ecological Environment |
Diesel | Consumption of agricultural diesel oil | 0.5927 kgC/kg | IPCC United Nations INPErgovernmental Panel of Experts on Climate Change |
Turn over | Sowing area of grain crops | 3.126 kgC/hm2 | CABCAU College of Agriculture and Biotechnology, China Agricultural University |
Irrigate | effective irrigation area | 266.48 kgC/hm2 | Duan, H. et al. [51] |
Indicator Name | Indicator Division | Specific Indicators | Measured Indicator Variable | |
---|---|---|---|---|
Agricultural green production efficiency | Input index | Land input | Scale of land management | |
Agricultural input | Sum of inputs of agricultural production materials (pesticides, fertilizers, films) | |||
Mechanical input | The sum of input costs for agricultural owned machinery and leased machinery | |||
Output index | Expected output [53,54] | Grain yield | The total amount produced by rice and wheat cultivation in that year | |
Grain output value | The economic benefits obtained from rice and wheat cultivation in the past | |||
Unexpected output [55] | Carbon emissions | Calculated from each indicator variable in Table 1 |
Primary Index | Secondary Index | Three-Level Index | Indicator Description |
---|---|---|---|
Digital empowerment | Data resource empowerment | Resource integration ability | Product online sales ability, agricultural online purchase ability, and access to business information. |
Data sharing level | Order channel push effect, expert resource push effect and four new technologies push effect. | ||
Digital technology empowerment | Online perception level | Perception of production environment, monitoring of agricultural productivity, and visualization of production process. | |
Fine management level | Grid management level, refined management level, remote control level, automatic execution level, etc. | ||
Intelligent decision-making level | Ambient intelligence’s early warning ability, process intelligent diagnosis ability and production intelligent decision-making ability. | ||
Network platform empowerment | Application of digital platform for industrial chain | Digitization of enterprise-driven model, cooperative comanagement model and broker-driven model. | |
Business Support Digital Platform Services | Service level of financial digital platform, insurance digital platform and training digital platform. | ||
Application of agricultural machinery service digital platform | Agricultural machinery dispatching service level, technical guidance service level, and technical achievement display level. | ||
Supervise the application of digital platform | Agricultural input management ability, product quality traceability management ability |
Primary Index | Secondary Index | Three-Level Index | Indicator Description |
---|---|---|---|
Internal scale management | Employment of labor | Labor input | Labor quantity of new business entities |
educational level of workers | Overall quality education of new business entities | ||
Labor cost | Average daily wage and employment days of employed workers | ||
Agricultural mechanization level | Mechanical management level | Proportion of investment in leased equipment such as cultivated land and sowing to all inputs |
Primary Index | Secondary Index | Three-Level Index | Indicator Description |
---|---|---|---|
External scale management | Organized management level | Value co-creation | Are you willing to cooperate with other farmers and join cooperatives |
Pooling-of-interest | Agricultural insurance premium income, order contract | ||
Risk sharing | Whether to obtain a stable sales channel, whether to provide safety monitoring of agricultural products, whether to unify the postpartum quality satisfaction of agricultural materials, and whether to use chemical fertilizers and pesticides in accordance with regulations. | ||
Socialized service system | Land trusteeship | The actual number of links to obtain land custody services | |
Position condition | Kilometers between land and farm | ||
Commercialized service | Whether technical guidance, field guidance and frequency of technical guidance are provided by cooperatives, and whether centralized training is provided and the frequency of training is provided. |
Variable Type | Variable Names and Symbols | Minimum Value | Maximum Value | Average Value | Standard Deviation | Median |
---|---|---|---|---|---|---|
Explained variable | Agricultural carbon emission efficiency (AGPE) | 0.004 | 1.046 | 0.780 | 0.309 | 0.913 |
Core explanatory variable | Data resources empowerment (DRE) | 0.000 | 0.833 | 0.324 | 0.191 | 0.321 |
Digital technology empowerment (DTE) | 0.000 | 0.893 | 0.385 | 0.298 | 0.500 | |
Network platform empowerment (NPE) | 0.000 | 0.825 | 0.389 | 0.160 | 0.395 | |
Moderator variable | Employment of labor (EOL) | 0.037 | 0.750 | 0.382 | 0.104 | 0.375 |
Agricultural mechanization level (AML) | 0.000 | 1.046 | 0.180 | 0.221 | 0.108 | |
Regulatory variable | Organized management level (OML) | 0.400 | 1.000 | 0.835 | 0.098 | 0.841 |
Socialized service system (SSS) | 0.400 | 1.000 | 0.914 | 0.082 | 0.935 | |
Environment variable | Scale management level (SML) | 0.223 | 1.000 | 0.827 | 0.174 | 0.861 |
Control variable | Willingness to adopt digital technology (DTA) | 0.200 | 0.600 | 0.379 | 0.126 | 0.400 |
Willingness to expand land scale (LSE) | 0.500 | 1.000 | 0.572 | 0.176 | 0.500 | |
Annual agricultural income (AAI) | 0.000 | 1.000 | 0.485 | 0.235 | 0.400 |
Coefficient | Std. Err. | t | [95% Conf. Interval] | ||
---|---|---|---|---|---|
_cons | 1.136 *** | 0.117 | 9.730 | 0.906 | 1.366 |
DRE | −0.567 | 0.354 | −1.600 | −1.265 | 0.131 |
DTE | −0.344 | 0.240 | −1.440 | −0.816 | 0.128 |
NPE | 2.035 *** | 0.519 | 3.920 | 1.012 | 3.058 |
DRE2 | 0.683 | 0.478 | 1.430 | −0.258 | 1.623 |
DTE2 | 0.281 | 0.325 | 0.860 | −0.360 | 0.921 |
NPE2 | −2.870 *** | 0.629 | −4.560 | −4.110 | −1.630 |
DTA | −0.326 ** | 0.143 | −2.280 | −0.606 | −0.045 |
LSE | −0.658 *** | 0.106 | −6.220 | −0.866 | −0.450 |
AAI | 0.050 | 0.068 | 0.740 | −0.084 | 0.185 |
var(e.c1) | 0.063 | 0.006 | 0.052 | 0.075 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
---|---|---|---|---|---|
_cons | 1.129 *** (t = 8.820) | 1.128 *** (t = 9.660) | 1.135 *** (t = 9.720) | 1.418 *** (t = 14.700) | 1.126 *** (t = 7.510) |
DRE | −0.517 (t = −1.400) | −0.462 (t = −1.390) | −0.579 (t = −1.640) | −0.438 (t = −1.100) | −0.270 (t = −0.720) |
DTE | −0.403 (t = −1.600) | −0.318 (t = −1.300) | −0.296 (t = −1.590) | −0.354 (t = −1.430) | −0.242 (t = −0.990) |
NPE | 2.043 *** (t = 3.660) | 1.836 *** (t = 3.580) | 2.014 *** (t = 3.890) | 0.784 (t = 2.390) | 1.878 ** (t = 3.230) |
DRE2 | 0.595 (t = 1.200) | 0.302 (t = 0.690) | 0.712 (t = 1.510) | 0.146 (t = 0.300) | 0.109 (t = 0.210) |
DTE2 | 0.390 (t = 1.130) | 0.309 (t = 0.940) | 0.204 (t = 0.980) | 0.187 (t = 0.560) | 0.201 (t = 0.620) |
NPE2 | −2.911 *** (t = −4.310) | −2.531 *** (t = −3.960) | −2.831 *** (t = −4.530) | −0.823 ** (t = −2.470) | −2.766 *** (t = −3.930) |
DTA | −0.332 ** (t = −2.180) | −0.321 ** (t = −2.250) | −0.344 ** (t = −2.410) | −0.329 ** (t = −2.360) | −0.305 ** (t = −2.080) |
LSE | −0.648 *** (t = −5.890) | −0.630 *** (t = −5.820) | −0.653 *** (t = −6.200) | −0.780 *** (t = −7.500) | −0.602 *** (t = −4.890) |
AAI | 0.050 (t = 0.680) | 0.057 (t = 0.830) | 0.054 (t = 0.780) | 0.079 (t = 1.120) | −0.012 (t = −0.170) |
var(e.c1) | 0.070 | 0.062 | 0.063 | 0.066 | 0.056 |
Coefficient | Std. Err. | t | [95% Conf. Interval] | ||
---|---|---|---|---|---|
_cons | −0.005 | 0.040 | −0.130 | −0.085 | 0.074 |
DRE | −0.290 ** | 0.121 | −2.400 | −0.528 | −0.052 |
DTE | 0.051 | 0.083 | 0.610 | −0.112 | 0.214 |
NPE | −0.345 * | 0.179 | 1.930 | −0.007 | 0.697 |
DRE2 | 0.291 * | 0.163 | 1.780 | −0.030 | 0.612 |
DTE2 | −0.059 | 0.113 | −0.530 | −0.281 | 0.163 |
NPE2 | −0.269 | 0.217 | −1.240 | −0.697 | 0.158 |
DTA | 0.071 | 0.049 | 1.450 | −0.025 | 0.168 |
LSE | −0.086 ** | 0.037 | −2.310 | −0.159 | −0.013 |
AAI | 0.107 *** | 0.024 | 4.570 | 0.061 | 0.154 |
var(e.c1) | 0.008 | 0.001 | −0.085 | 0.074 |
Model 1 | Model 2 | Model 3 | Model 4 | |
---|---|---|---|---|
_cons | 1.258 *** (t = 9.930) | 1.581 *** (t = 14.510) | 1.645 *** (t = 15.830) | 1.291 *** (t = 10.160) |
SML | −0.263 ** (t = −2.380) | −0.253 ** (t = −2.430) | −0.226 ** (t = −2.170) | −0.270 ** (t = −2.730) |
DRE | −0.471 (t = −1.330) | −0.032 (t = 0.120) | ||
DRE2 | 0.547 (t = 1.150) | −0.598 (t = −1.520) | ||
DTE | −0.281 (t = −1.180) | −0.131 (t = −0.550) | ||
DTE2 | 0.198 (t = 0.610) | −0.154 (t = −0.470) | ||
NPE | 2.004 *** (z = 3.890) | 1.311 ** (t = 3.330) | ||
NPE2 | −2.841 *** (t = −4.550) | −2.337 *** (t = −4.670) | ||
DTA | −0.276 * (t = −1.930) | −0.341 ** (t = −2.420) | −0.363 ** (t = −2.620) | −0.239 * (t = −1.670) |
LSE | −0.620 *** (t = −5.850) | −0.752 *** (t = −7.340) | −0.852 *** (t = −8.620) | −0566 *** (t = −5.420) |
AAI | 0.098 (t = 1.390) | 0.113 (t = 1.520) | 0.096 (t = 1.300) | 0.088 (t = 1.240) |
var(e.c1) | 0.061 | 0.068 | 0.068 | 0.063 |
DRE | DTE | NPE | ||||
---|---|---|---|---|---|---|
EOL | AML | EOL | AML | EOL | AML | |
Sobel | −0.059 ** (z = −2.296) | −0.043 ** (z = −1.685) | −0.038 ** (z = −2.338) | −0.046 ** (z = −2.602) | −0.055 ** (z = −1.804) | −0.072 ** (z = −2.142) |
Goodman-1 (Aroian) | −0.059 ** (z = −2.245) | −0.043 ** (z = −1.648) | −0.038 ** (z = −2.288) | −0.046 ** (z = −2.556) | −0.055 ** (z = −1.758) | −0.072 ** (z = −2.097) |
Goodman-2 | −0.059 ** (z = −2.350) | −0.043 ** (z = −1.726) | −0.038 ** (z = −2.393) | −0.046 ** (z = −2.651) | −0.055 ** (z = −1.855) | −0.072 ** (z = −2.190) |
Indirect effect | −0.059 ** (z = −2.296) | −0.043 ** (z = −1.685) | −0.038 ** (z = −2.338) | −0.046 ** (z = −2.602) | −0.055 ** (z = −1.804) | −0.072 ** (z = −2.142) |
Direct effect | −0.297 *** (z = −3.342) | −0.313 *** (z = −3.599) | −0.194 *** (z = −3.509) | −0.186 *** (z = −3.352) | −0.402 *** (z = −3.588) | −0.385 *** (z = −3.436) |
Total effect | −0.356 *** (z = −3.982) | −0.356 *** (z = −3.982) | −0.232 *** (z = −4.175) | −0.232 *** (z = −4.175) | −0.457 *** (z = −4.003) | −0.457 *** (z = −4.003) |
Proportion of total effect that is mediated | 0.166 | 0.120 | 0.162 | 0.199 | 0.119 | 0.157 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
_cons | 1.261 *** (t = 7.080) | 0.941 *** (t = 4.010) | ||||
DRE | −0.392 *** (t = −4.180) | −0.343 *** (t = −3.870) | ||||
OML | 0.173 (t = 1.020) | |||||
SSS | 0.482 ** (t = 2.280) | |||||
DRE*OML | 2.061 ** (t = 2.120) | |||||
DRE*SSS | 1.069 (t = 1.120) | |||||
_cons | 1.412 *** (t = 7.360) | 1.039 *** (t = 4.380) | ||||
DTE | −0.224 *** (t = −3.680) | −0.220 *** (t = −3.980) | ||||
OML | 0.072 (t = 0.400) | |||||
SSS | 0.402 * (t = 1.890) | |||||
DTE*OML | 0.154 (t = 0.270) | |||||
DTE*SSS | 1.100 * (t = 1.760) | |||||
_cons | 1.319 *** (t = 7.210) | 1.110 *** (t = 4.450) | ||||
NPE | −0.446 *** (t = −3.770) | −0.425 *** (t = −3.730) | ||||
OML | 0.156 (t = 0.900) | |||||
SSS | 0.330 (t = 1.430) | |||||
NPE*OML | 1.299 (t = 1.210) | |||||
NPE*SSS | 1.706 (t = 1.550) |
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
_cons | 1.811 *** (t = 13.860) | 0.814 *** (t = 4.780) | 0.992 *** (t = 4.980) |
DRE | −0.448 * (t = −1.670) | 0.016 (t = 0.070) | 0.154 (t = 0.500) |
DTE | 0.017 (t = 0.120) | −0.198 (t = −1.490) | −0.082 (t = −0.520) |
NPE | −0.214 (t = −0.670) | 0.168 (t = 0.610) | −0.160 (t = −0.420) |
DTA | −0.449 * (t = −1.860) | −0.117 (t = −0.550) | 0.057 (t = 0.190) |
LSE | −1.106 *** (t = −7.540) | 0.047 (t = 0.220) | −0.264 (t = −1.060) |
AAI | 0.078 (t = 0.770) | 0.150 (t = 1.290) | −0.006 (t = −0.040) |
var(e.c1) | 0.055 | 0.050 | 0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Cao, Y.; Tian, S.; Cai, J.; Fang, X. How Do Digitalization and Scale Influence Agricultural Carbon Emission Reduction: Evidence from Jiangsu, China. Land 2025, 14, 2080. https://doi.org/10.3390/land14102080
Yu D, Cao Y, Tian S, Cai J, Fang X. How Do Digitalization and Scale Influence Agricultural Carbon Emission Reduction: Evidence from Jiangsu, China. Land. 2025; 14(10):2080. https://doi.org/10.3390/land14102080
Chicago/Turabian StyleYu, Degui, Ying Cao, Suyan Tian, Jiahao Cai, and Xinzhuo Fang. 2025. "How Do Digitalization and Scale Influence Agricultural Carbon Emission Reduction: Evidence from Jiangsu, China" Land 14, no. 10: 2080. https://doi.org/10.3390/land14102080
APA StyleYu, D., Cao, Y., Tian, S., Cai, J., & Fang, X. (2025). How Do Digitalization and Scale Influence Agricultural Carbon Emission Reduction: Evidence from Jiangsu, China. Land, 14(10), 2080. https://doi.org/10.3390/land14102080