Incorporating Ecosystem Service Trade-Offs and Synergies with Ecological Sensitivity to Delineate Ecological Functional Zones: A Case Study in the Sichuan-Yunnan Ecological Buffer Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Processing
2.3. Methodology
2.3.1. Research Framework
2.3.2. Estimation of Ecosystem Services
2.3.3. Synergy of Spatial Trade-Offs in Ecosystem Services
2.3.4. Selection and Grading of Ecological Sensitivity Evaluation Factors
2.3.5. Functional Partitioning of Ecosystem Services
2.3.6. Driver Identification
3. Results
3.1. Temporal Changes in Ecosystem Services in the Buffer Area
3.2. Changes in Spatial Patterns of Ecosystem Services in Buffer Areas
3.3. Trade-Off and Synergy Analysis of Ecosystem Services in Buffer Areas
3.3.1. Synergy and Trade-Off Analyses of Temporal Variations in Ecosystem Services
3.3.2. Trade-Off and Synergy Analyses of Spatial Changes in Ecosystem Services
3.4. Spatial Patterns in Ecological Sensitivity and Functional Zoning of the Buffer Area
3.4.1. Spatial Patterns in Ecological Sensitivity
3.4.2. Ecosystem Service Cluster Classification Results
3.4.3. Functional Partitioning of Ecosystem Services
3.5. Identification of Factors Driving the Functional Areas within the Ecological Buffer Zone
4. Discussion
4.1. Validation of Ecosystem Service, Trade-Offs, Synergies, and Ecological Sensitivity Results in the Buffer Zone Area
4.2. Ecological Functional Zoning of the Ecological Buffer Area
4.3. Driving Factors of the Ecological Buffer Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaplin-Kramer, R.; Sharp, R.P.; Weil, C.; Bennett, E.M.; Pascual, U.; Arkema, K.K.; Brauman, K.A.; Bryant, B.P.; Guerry, A.D.; Haddad, N.M.; et al. Global modeling of nature’s contributions to people. Science 2019, 366, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Costanza, R.; Kubiszewski, I. Land use trade-offs in China’s protected areas from the perspective of accounting values of ecosystem services. J. Environ. Manag. 2022, 315, 115178. [Google Scholar] [CrossRef] [PubMed]
- Kok, M.T.J.; Kok, K.; Peterson, G.D.; Hill, R.; Agard, J.; Carpenter, S.R. Biodiversity and ecosystem services require IPBES to take novel approach to scenarios. Sustain. Sci. 2017, 12, 177–181. [Google Scholar] [CrossRef]
- Albert, C.; Schröter-Schlaack, C.; Hansjürgens, B.; Dehnhardt, A.; Döring, R.; Job, H.; Köppel, J.; Krätzig, S.; Matzdorf, B.; Reutter, M.; et al. An economic perspective on land use decisions in agricultural landscapes: Insights from the TEEB Germany Study. Ecosyst. Serv. 2017, 25, 69–78. [Google Scholar] [CrossRef]
- Kaya, E.; Agca, M.; Adiguzel, F.; Cetin, M. Spatial data analysis with R programming for environment. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1521–1530. [Google Scholar] [CrossRef]
- Fu, B.J.; Lv, Y.H.; Gao, G.Y.; Liu, Y.; He, C.; Zhou, H.; Zhang, R.; Zhang, H. Important progress in the study of major terrestrial ecosystem services and ecological security in China. Nature 2012, 34, 261–272. [Google Scholar]
- Costanza, R.; de Groot, D.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28 Pt A, 1–16. [Google Scholar] [CrossRef]
- Bailey, S.C.; Zoltai, S.C.; Wiken, E.B. Ecological regionalization in Canada and the United States. Geoforum 1985, 16, 265–275. [Google Scholar] [CrossRef]
- Omernik, J.M. Ecoregions: A spatial framework for environmental management. In Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 49–62. [Google Scholar]
- de Groot, R. What Are Ecosystem Services? In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 15–34. ISBN 9780080878850. [Google Scholar]
- Peng, J.; Hu, X.X.; Liu, Y.X.; Liu, Y.; Wu, J.S. Multifunctional landscapes identification and associated development zoning in a mountainous area. Sci. Total Environ. 2019, 660, 765–775. [Google Scholar] [CrossRef]
- Mo, W.B.; Zhao, Y.L.; Yang, N.; Xu, Z.G. Ecological function zoning based on ecosystem service bundles and trade-offs: A study of Dongjiang Lake basin, China. Environ. Sci. Pollut. Res. 2023, 30, 40388–40404. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Mayor, J.R.; Sanders, N.J.; Classen, A.T.; Bardgett, R.D.; Clement, J.C.; Fajardo, A.; Lavorel, S.; Sundqvist, M.K.; Bahn, M.; Chisholm, C.; et al. Elevation alters ecosystem properties across temperate treelines globally. Nature 2017, 542, 91. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.K.; Vuorinen, K.E.M.; Bendiksby, M.; Speed, J.D.M. Climate and land use drive the functional composition of vascular plant assemblages across Norway. Nord. J. Bot. 2022, 2022, e03470. [Google Scholar] [CrossRef]
- Fu, B.J.; Chen, L.D.; Liu, G.H.; Liu, S.L.; Lu, Y.H.; Qiu, Y.; Wang, Y.F.; Li, S.G.; Zhou, H.F. Purpose, task, and characteristics of ecological zoning in China. Ecol. J. 1999, 19, 3–7. [Google Scholar]
- Fu, B.J.; Liu, Y.; Liu, Y.; Hu, X. Assessment of Land Use in National Ecological Barrier Zones; Science Publishing House: Beijing, China, 2017. [Google Scholar]
- Liu, J.; Xi, P.; Zhang, Q.; Liu, S.; Tang, Y. Scenario modeling of ecosystem service trade-offs and bundles in a semi-arid valley basin. Sci. Total Environ. 2023, 896, 166413. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier. China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Duan, P.; Jim, C.Y.; Chan, N.W.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X. Vegetation cover changes in China induced by ecological restoration-protection projects and land-use changes from 2000 to 2020. CATENA 2022, 217, 106530. [Google Scholar] [CrossRef]
- Wang, B.Y.; Wang, L.; Chen, J.C.; Wang, X.; Hu, Y.; Liu, Y. Identification of ecological functional zoning and its influencing factors in the Sihu Lake Basin, China. Chin. J. Appl. Ecol. 2023, 34, 2757–2766. [Google Scholar]
- Liu, Y.; Wang, L.; Wang, X.; Xiao, Y. Identification and optimization methods for delineating ecological red lines in Sichuan Province of southwest China. Ecol. Indic. 2022, 146, 2023. [Google Scholar] [CrossRef]
- Fang, J.; Liu, Y.; Wu, M.; Liu, Q.; Xu, M. New practices of land-sea coordination in coastal zone ecological security integration: A case study of Nantong. Ecol. Eng. 2024, 202, 107238. [Google Scholar] [CrossRef]
- Zhang, F.; Jia, Y.; Liu, X.; Yan, L.; Liu, S.; Gao, B. Application of MSPA-MCR models to construct ecological security pattern in the basin: A case study of Dawen River basin. Ecol. Indic. 2024, 160, 111887. [Google Scholar] [CrossRef]
- Gong, J.; Jin, T.T.; Liu, D.Q.; Lin, Z.; Xie, X.; Zhong, R.; Wang, H. Are ecosystem service bundles useful for mountainous landscape function zoning and management? A case study of Bailongjiang watershed in western China. Ecol. Indic. 2022, 134, 108495. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, X.; Li, Y.; Hu, Y.; Liu, S.; Wang, Z. Spatiotemporal pattern and functional zoning of ecosystem services in the karst mountainous areas of southeastern Yunnan. Acta Geogr. Sin. 2022, 77, 736–756. [Google Scholar]
- Zou, Y.; Meng, J.J.; Wu, Y.D.; Wei, C.J.; Cheng, H.R. Ecological security regionalization of natural resources in China based on Self-organizing Feature Map neural network. Acta Ecol. Sin. 2024, 44, 171–182. [Google Scholar]
- Cui, X.F.; Deng, W.; Yang, J.X.; Huang, W.; de Vries, W.T. Construction and optimization of ecological security patterns based on a social equity perspective: A case study in Wuhan, China. Ecol. Indic. 2022, 136, 108714. [Google Scholar] [CrossRef]
- Gong, Z.; Yuan, Y.; Qie, L.; Huang, S.; Xie, X.; Zhong, R.; Pu, L. Spatiotemporal Differentiation and Coupling Coordination Relationship of the Production–Living–Ecological Function at County Scale: A Case Study of Jiangsu Province. Land 2023, 12, 2027. [Google Scholar] [CrossRef]
- Li, C.; Qiao, W.; Gao, B.; Chen, Y. Unveiling spatial heterogeneity of ecosystem services and their drivers in varied landform types: Insights from the Sichuan-Yunnan ecological barrier area. J. Clean. Prod. 2024, 442, 141158. [Google Scholar] [CrossRef]
- Fan, S.; Yan, M.; Yu, L.; Chen, B.; Zhang, L. Integrating ecosystem service supply–demand and ecological risk assessment for urban planning: A case study in Beijing, China. Ecol. Indic. 2024, 161, 111950. [Google Scholar] [CrossRef]
- Gao, C.; Pan, H. Identifying priority areas for ecological conservation and restoration based on circuit theory and dynamic weighted complex network: A case study of the Sichuan Basin. Ecol. Indic. 2023, 155, 111064. [Google Scholar] [CrossRef]
- Kim, J.; Song, Y. Integrating ecosystem services and ecological connectivity to prioritize spatial conservation on Jeju Island, South Korea. Landsc. Urban Plan. 2023, 239, 104865. [Google Scholar] [CrossRef]
- Luo, M.; Jia, X.; Zhao, Y. Ecological vulnerability assessment and its driving force based on ecological zoning in the Loess Plateau, China. Ecol. Indic. 2024, 159, 111658. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, Y.; Sang, W. Significance of ecosystem service changes indicative of territorial spatial planning in southern hilly areas. J. Ecol. 2022, 42, 8702–8712. [Google Scholar]
- Wang, L.; Li, Q.; Qiu, Q.; Hou, L.; Ouyang, J.; Zeng, R.; Huang, S.; Li, J.; Tang, L.; Liu, Y. Assessing the ecological risk induced by PM2.5 pollution in a fast developing urban agglomeration of southeastern China. J. Environ. Manag. 2022, 324, 116284. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Hu, M.; Shi, J.; Bai, Q.; Li, X. Construction and optimization of ecological network in inland river basin based on circuit theory, complex network and ecological sensitivity: A case study of Gansu section of Heihe River Basin. Ecol. Model. 2024, 488, 110578. [Google Scholar] [CrossRef]
- Gao, M.; Hu, Y.; Liu, X.; Liang, M.; Kong, F.; Bai, Y. Delimiting Water Ecological Restoration Zones from a Multidimensional Perspective: A Case Study of Hechi City in a Typical Karst Region. J. Appl. Ecol. 2024, 35, 1661–1670. [Google Scholar]
- Wang, W.; Zhang, F.; Zhao, Q.; Liu, C.; Jim, C.Y.; Johnson, V.C.; Tan, M.L. Determining the main contributing factors to nutrient concentration in rivers in arid northwest China using partial least squares structural equation modeling. J. Environ. Manag. 2023, 343, 118249. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, X.; Bian, D.; Chen, Y.; Li, Y.; Yuan, Z.; Wang, K. A novel approach for quantifying water resource spatial equilibrium based on the regional evaluation, spatiotemporal heterogeneity and geodetector analysis integrated model. J. Clean. Prod. 2023, 424, 138791. [Google Scholar] [CrossRef]
- Shi, H.; Wang, P.; Zheng, J.; Deng, Y.; Zhuang, C.; Huang, F.; Xiao, R. A comprehensive framework for identifying contributing factors of soil trace metal pollution using Geodetector and spatial bivariate analysis. Sci. Total Environ. 2023, 857, 159636. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Gong, W.; Yang, C.; Guo, Z.; Wang, D.; Wang, J.; Yang, H.; Xue, G.; Yang, S. Evaluating gross primary productivity over 9 ChinaFlux sites based on random forest regression models, remote sensing, and eddy covariance data. Sci. Total Environ. 2023, 875, 162601. [Google Scholar] [CrossRef]
- Ali, S.; Ran, J.; Luan, Y. The GWR model-based regional downscaling of GRACE/GRACE-FO derived groundwater storage to investigate local-scale variations in the North China Plain. Sci. Total Environ. 2024, 908, 168239. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Zhao, H. Identifying spatial influence of urban elements on road-deposited sediment and the associated phosphorus by coupling Geodetector and Bayesian Networks. J. Environ. Manag. 2022, 315, 115170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.Y.; Peng, J.; Liu, Y.X.; Liu, Y.; Wang, Y.L.; Zhang, L.; Hu, L.H.; Xie, C.D.; Zhao, Y. Mapping watershed-level ecosystem service bundles in the Pearl River Delta, China. Ecol. Econ. 2018, 152, 106–117. [Google Scholar] [CrossRef]
- Huang, X.; Yang, Y.; Wu, Y.; Bai, L.; Tang, S. Land use change and its impact on habitat quality in Karst Nature Reserve from 1990 to 2017. Bull. Soil Water Conserv. 2018, 38, 345–351. [Google Scholar]
- Wang, X.; Zhang, M.; Zhang, M. Changes in the ecosystem pattern of “two screens and three belts” and their influencing factors. J. Ecol. 2019, 38, 2138–2148. [Google Scholar]
- Deng, Z.Y.; Cao, J.S. Incorporating ecosystem services into functional zoning and adaptive management of natural protected areas as case study of the Shennongjia region in China. Sci. Rep. 2023, 13, 18870. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.; Zhang, J.; Huang, Y. Investigating the trade-offs between the supply and demand for ecosystem services for regional spatial management. J. Environ. Manag. 2023, 325 (Pt A), 116591. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, Y.; Han, S. Ecological function zoning of Nansi Lake Basin in China based on ecosystem service bundles. Environ. Sci. Pollut. Res. 2023, 30, 77343–77357. [Google Scholar] [CrossRef]
- Malinga, R.; Gordon, L.J.; Jewitt, G.; Lindborg, R. Mapping ecosystem services across scales and continents: A review. Chang. Ecosyst. Serv. 2015, 13, 57–63. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, Y.; Yan, M.; Chiaka, J.C. Impact of cross-border transportation corridors on changes of land use and landscape pattern: A case study of the China-Laos railway. Landsc. Urban Plan. 2024, 241, 104924. [Google Scholar] [CrossRef]
- Yue, Z.; Xiao, C.; Feng, Z.; Wang, Y.; Yan, H. Accelerating decline of habitat quality in Chinese border areas. Resour. Conserv. Recycl. 2024, 206, 107665. [Google Scholar] [CrossRef]
- Li, J.; Peng, X.; Tang, R.; Geng, J.; Zhang, Z.; Xu, D.; Bai, T. Spatial and Temporal Variation Characteristics of Ecological Environment Quality in China from 2002 to 2019 and Influencing Factors. Land 2024, 13, 110. [Google Scholar] [CrossRef]
- Deafalla, T.H.; Csaplovics, E.; El Abbas, M.M.; Deifalla, M.H. Spatial distribution and simulation of non-timber forest products for food security in conflict areas. In The Climate-Conflict-Displacement Nexus from a Human Security Perspective; Springer: Cham, Switzerland, 2022; pp. 225–250. [Google Scholar]
- Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multifunctionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Chen, N. A GIS-based approach for mapping direct use value of ecosystem services at a county scale: Management implications. Ecol. Econ. 2009, 68, 2768–2776. [Google Scholar] [CrossRef]
- Xu, G.; Xiong, K.; Shu, T.; Chen, L.; Li, J. Evaluating changes in ecosystem service under karst rocky desertification restoration projects: A case study of Huajiang-Guanling, Guizhou province, Southwest China. Environ. Earth Sci. 2022, 81, 302. [Google Scholar] [CrossRef]
- Gou, M.; Li, L.; Ouyang, S.; Zhang, L.; Wang, L.; Zhao, Y. Identifying and analyzing ecosystem service bundles and their socioecological drivers in the Three Gorges Reservoir Area. J. Clean. Prod. 2021, 307, 127208. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, Y.; Wu, J. Evaluating the spatiotemporal dynamics of ecosystem service supply-demand risk from the perspective of service flow to support regional ecosystem management: A case study of yangtze river delta urban agglomeration. J. Clean. Prod. 2024, 460, 142598. [Google Scholar] [CrossRef]
- Huang, Z.; Li, S.; Peng, J.; Ma, X.; Ding, H.; Cheng, F.; Bi, R. Assessing ecosystem service dynamics and drivers for sustainable management in the Agro-pastoral ecotone of northern China: A spatiotemporal analysis. Ecol. Indic. 2024, 165, 112213. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, Z.R.; Wu, J.X. Spatial differences of the supply of multiple ecosystem services and the environmental and land use factors affecting them. Ecosyst. Serv. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Long, Y.; Zhang, Y.; Liang, W.; Hong, M.; Yu, X. Spatial- temporal changes and influencing factors of ecosystem services in Shaoguan city based on improved InVEST. Res. Soil Water Conserv. 2020, 27, 381–388. [Google Scholar]
- Yin, L.; Wang, X.; Zhang, K.; Xiao, F.; Cheng, C.; Zhang, X. Ecosystem service trade-offs and synergies in national barrier areas. Geogr. Res. 2019, 38, 2162–2172. [Google Scholar]
- Yin, Y.; Li, H.; Zhang, M.; Wang, L.; Jiang, J. Spatial heterogeneity of ecosystem service trade-offs and their drivers in different climatic zones—A case study of the ecological barrier zone on the Loess Plateau in Sichuan and Yunnan. J. Ecol. 2024, 44, 107–116. [Google Scholar]
- Lu, Y.; Liu, Z.; Ye, B. Evaluation of refined ecological sensitivity on the western Sichuan Plateau. Res. Soil Water Conserv. 2016, 23, 272–277. [Google Scholar]
- Yao, K.; Yu, L.; Liu, G.; Liu, H. Evaluation of ecological environment vulnerability in Sichuan province based on SRP model. Comput. Technol. Phys. Chem. Explor. 2017, 39, 291–295. [Google Scholar]
- Sun, R.; Hu, J.; Yang, Y.; Chen, Y.; Yan, W.; Dai, X. Research on Ecological Sensitivity in Northwestern Sichuan. In Proceedings of the 5th International Conference on Resources and Environmental Research-ICRER 2023—ICRER 2023, Hong Kong, China, 2–4 December 2023; Environmental Science and Engineering. Yuan, C., Ed.; Springer: Cham, Switzerland, 2024. [Google Scholar]
Influencing Factors | Data Name | Data Format | Resolution | Data Source |
---|---|---|---|---|
X1 | NDVI | tif | 30 m | National Ecosystem Science Data Center (http://www.nesdc.org.cn/) (accessed on 20 March 2023) |
X2 | Land cover data | tif | 30 m | Website of USGS (http://glovis.usgs.gov/) (accessed on 10 February 2023) |
X3 | Nightlight | tif | 1 km | Chinese Academy of Sciences Resource and Environment Science and Data Center (http://www.resdc.cn) (accessed on 10 February 2023) |
X4 | Population | tif | 1 km | WorldPop Global Population Data. (https://www.worldpop.org/) (accessed on 10 February 2023) |
X5 | HAI | tif | 1 km | China Meteorological Data Net (http://data.cma.cn) (accessed on 12 February 2023) |
X6 | Annual precipitation | tif | 30 m | China Meteorological Data Net (http://data.cma.cn) (accessed on 10 February 2023) |
X7 | Average annual temperature data | tif | 30 m | China Meteorological Data Net (http://data.cma.cn) (accessed on 12 February 2023) |
X8 | Digital Elevation Model (DEM) | tif | 30 m | Chinese Academy of Sciences Geospatial Data Cloud (http://www.gscloud.cn) (accessed on 15 February 2023) |
Ecological Sensitivity Level | Evaluation Factor | ||||
---|---|---|---|---|---|
Elevation (m) | Slope (°) | Slope Direction | Normalized Difference Vegetation Index | Water Area Buffer Zone (m) | |
Low sensitivity | <800 | 0–25 | Southeast, Southwest South, Flatland | 0–0.3 | >800 |
Medium sensitivity | 800–1000 | 25–45 | East, West | 0.3–0.5 | 300–800 |
High sensitivity | 1000–1300 | 45–60 | Northeast, Northwest | ≤0 | 0–300 |
Very high sensitivity | >1300 | >60 | North | ≥0.5 | 0 |
Weight | 0.09 | 0.12 | 0.05 | 0.42 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, P.; Li, C.; Xia, B.; Zhao, X.; Wu, Y.; Zhang, C.; Wu, J.; Cheng, F.; Pu, J.; Huang, P.; et al. Incorporating Ecosystem Service Trade-Offs and Synergies with Ecological Sensitivity to Delineate Ecological Functional Zones: A Case Study in the Sichuan-Yunnan Ecological Buffer Area, China. Land 2024, 13, 1503. https://doi.org/10.3390/land13091503
Miao P, Li C, Xia B, Zhao X, Wu Y, Zhang C, Wu J, Cheng F, Pu J, Huang P, et al. Incorporating Ecosystem Service Trade-Offs and Synergies with Ecological Sensitivity to Delineate Ecological Functional Zones: A Case Study in the Sichuan-Yunnan Ecological Buffer Area, China. Land. 2024; 13(9):1503. https://doi.org/10.3390/land13091503
Chicago/Turabian StyleMiao, Peipei, Cansong Li, Baichuan Xia, Xiaoqing Zhao, Yingmei Wu, Chao Zhang, Junen Wu, Feng Cheng, Junwei Pu, Pei Huang, and et al. 2024. "Incorporating Ecosystem Service Trade-Offs and Synergies with Ecological Sensitivity to Delineate Ecological Functional Zones: A Case Study in the Sichuan-Yunnan Ecological Buffer Area, China" Land 13, no. 9: 1503. https://doi.org/10.3390/land13091503
APA StyleMiao, P., Li, C., Xia, B., Zhao, X., Wu, Y., Zhang, C., Wu, J., Cheng, F., Pu, J., Huang, P., Zhang, X., & Chai, Y. (2024). Incorporating Ecosystem Service Trade-Offs and Synergies with Ecological Sensitivity to Delineate Ecological Functional Zones: A Case Study in the Sichuan-Yunnan Ecological Buffer Area, China. Land, 13(9), 1503. https://doi.org/10.3390/land13091503