The Evaluation of Sustainable Development Projects in Marginal Areas: An A’WOT Approach
Abstract
:1. Introduction
2. Urban Sustainable Development Projects in Marginal Areas
3. Materials and Methods
- Phase I: Problem structuring.
- Phase II: SWOT analysis.
- Phase III: Construction and validation of the hierarchy.
- Phase IV: Pairwise Comparisons and aggregation of experts’ judgments and consistency index calculation.
- Phase V: Final ranking of alternatives and sensitivity analysis.
- S1—Energy Performance: it relates to the capability of the project to improve the energy efficiency of existing buildings.
- S2—Cohesion, Equal Opportunities, and Education: it relates to the capability of the project to increase education, training, and qualified work levels and promote social cohesion or engagement.
- S3—Digitalization: it relates to the capability of the project to raise digital skills or digital connectivity.
- W1—Project Operation and Maintenance Costs: it relates to the operation and maintenance costs of the project.
- W2—Funding Constraints: it relates to the opportunity of applying for public funding to cover initial investment costs.
- W3—Investment Timing: it relates to the project timing and duration.
- O1—Job Creation: it relates to the capability of the project to increase local employment rates throughout the project life cycle.
- O2—Neighborhood Urban Quality: it considers the capability of the project to improve urban quality and quality of life in the surrounding neighborhood.
- O3—Circular Economy: it relates to the capability of the project to use large shares of local or circular products out of the total materials used.
- T1—Demographic Decline: it relates to whether the local demographic decline can affect the project’s successful implementation.
- T2—Absence of Complementary Services: it relates to the lack of public services complementary to the project (e.g., public transport, elderly care services, public spaces, etc.), which can affect the project’s cost-effectiveness.
- T3—Regulatory Risks: it relates to possible changes in regulation, which can affect business or property use in the project area.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN Habitat. World Cities Report 2022. Envisaging the Future of Cities. 2022. Available online: https://unhabitat.org/sites/default/files/2022/06/wcr_2022.pdf (accessed on 27 March 2024).
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/content/documents/21252030 Agenda for Sustainable Development web.pdf (accessed on 3 April 2024).
- UN Habitat. Rescuing SDG 11 for a Resilient Urban Planet. 2023. Available online: https://unhabitat.org/sites/default/files/2023/11/sdg_11_synthesis_report_2023_executive_summary_2023.pdf (accessed on 27 March 2024).
- Zhong, C.; Guo, H.; Swan, I.; Gao, P.; Yao, Q.; Li, H. Evaluating trends, profits, and risks of global cities in recent urban expansion for advancing sustainable development. Habitat. Int. 2023, 138, 102869. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef] [PubMed]
- UN. Report of the World Commission on Environment and Development—Our Common Future. 1987. Available online: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf (accessed on 27 March 2024).
- Lahoz, C.F.; Blasco, J.A. Hamburg at the Forefront of the Active Cities. In Intersecting Health, Livability, and Human Behavior in Urban Environments; IGI Global: Hershey, PA, USA, 2023; pp. 59–82. [Google Scholar]
- Canesi, R.; Marella, G. Towards European Transitions: Indicators for the Development of Marginal Urban Regions. Land 2023, 12, 27. [Google Scholar] [CrossRef]
- Canesi, R. Urban Policy Sustainability through a Value-Added Densification Tool: The Case of the South Boston Area. Sustainability 2022, 14, 8762. [Google Scholar] [CrossRef]
- Trovato, M.R.; Giuffrida, S.; Collesano, G.; Nasca, L.; Gagliano, F. People, Property and Territory: Valuation Perspectives and Economic Prospects for the Trazzera Regional Property Reuse in Sicily. Land 2023, 12, 789. [Google Scholar] [CrossRef]
- Giuffrida, S.; Trovato, M.R.; Falzone, M. The information value for territorial and economic sustainability in the enhancement of the water management process. In Computational Science and Its Applications—ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C.M., Rocha, A.M.A., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Trovato, M.R.; Giuffrida, S. The protection of territory from the perspective of the intergenerational equity. In Integrated Evaluation for the Management of Contemporary Cities; SIEV 2016. Green Energy and Technology; Mondini, G., Fattinnanzi, E., Oppio, A., Bottero, M., Stanghellini, S., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- D’Alpaos, C.; Dosi, C.; Moretto, M. Concession length and investment timing flexibility. Water Resour. Res. 2006, 42, W02404. [Google Scholar] [CrossRef]
- Canesi, R.; Gallo, B. Risk Assessment in Sustainable Infrastructure Development Projects: A Tool for Mitigating Cost Overruns. Land 2023, 13, 41. [Google Scholar] [CrossRef]
- Canesi, R. A multicriteria approach to prioritize urban sustainable development projects | Un approccio multicriteri per il ranking di progetti urbani sostenibili. Valori e Valutazioni 2023, 2023, 117–132. [Google Scholar] [CrossRef]
- Kang, S.; Post, W.M.; Nichols, J.A.; Wang, D.; West, T.O.; Bandaru, V.; Izaurralde, R.C. Marginal Lands: Concept, Assessment and Management. J. Agric. Sci. 2013, 5, 129–139. [Google Scholar] [CrossRef]
- Ali, S.A.; Tallou, A.; Vivaldi, G.A.; Camposeo, S.; Ferrara, G.; Sanesi, G. Revitalization Potential of Marginal Areas for Sustainable Rural Development in the Puglia Region, Southern Italy: Part I: A Review. Agronomy 2024, 14, 431. [Google Scholar] [CrossRef]
- Dagel, K.C. Defining Drought in Marginal Areas: The Role of Perception. Prof. Geogr. 1997, 49, 192–202. [Google Scholar] [CrossRef]
- Noguera, J.; Ortega-Reig, M.; del Alcázar, H. PROFECY—Processes, Features and Cycles of Inner Peripheries in Europe; Final Report; ESPON: Luxembourg, 2017; Available online: https://www.espon.eu/sites/default/files/attachments/D5%20Final%20Report%20PROFECY.pdf (accessed on 1 April 2024).
- SNAI. Strategia Nazionale delle Aree Interne SNAI. Dipartimento Per le Politiche di Coesione—Presidenza del Consiglio dei Ministri. 2013. Available online: https://www.agenziacoesione.gov.it/strategia-nazionale-aree-interne/ (accessed on 20 February 2023).
- Tesitel, J.; Kusová, D.; Bartos, M. Non-marginal parameters of marginal areas. Ecol. J. Ecol. Probl. Biosph. 1999, 18, 39–46. [Google Scholar]
- Agyeman, J.; Bullard, R.D.; Evans, B. Just Sustainabilities: Development in an Unequal World. MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Buck, N.; Gordon, I.R.; Harding, A. Changing Cities: Rethinking Urban Competitiveness, Cohesion and Governance; Bloomsbury Publishing: New York, NY, USA, 2017. [Google Scholar]
- Amin, A. Lively Infrastructure. Theory Cult. Soc. 2014, 31, 137–161. [Google Scholar] [CrossRef]
- Mehretu, A.; Pigozzi, B.W.; Sommers, L.M. Concepts in social and spatial marginality. Geogr. Ann. Ser. B 2000, 82, 89–101. [Google Scholar] [CrossRef]
- NRRP. Piano Nazionale di Ripresa e Resilienza; Presidenza del Consiglio dei Ministri: Rome, Italy, 2021. [Google Scholar]
- Öztürk, M.; Tsoukiàs, A.; Vincke, P. Preference modelling. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: New York, NY, USA, 2005; pp. 27–59. [Google Scholar]
- Tsoukiàs, A. On the concept of decision aiding process: An operational perspective. Ann. Oper. Res. 2007, 154, 3–27. [Google Scholar] [CrossRef]
- Colorni, A.; Tsoukiàs, A. What is a decision problem? Preliminary statements. In Algorithmic Decision Theory, Proceedings of the Third International Conference, ADT, Bruxelles, Belgium, 12–14 November 2013; Perny, P., Pirlot, M., Tsoukiàs, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 139–153. [Google Scholar] [CrossRef]
- Moretti, S.; Öztürk, M.; Tsoukiàs, A. Preference modelling. In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 43–95. [Google Scholar] [CrossRef]
- Bouyssou, D.; Marchant, T.; Pirlot, M.; Tsoukiàs, A.; Vincke, P. Modelling preferences. In Evaluation and Decision Models with Multiple Criteria: Case Studies; Bisdorff, R., Dias, L., Meyer, P., Mousseau, V., Pirlot, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 35–87. [Google Scholar] [CrossRef]
- Bouyssou, D.; Pirlot, M. Preferences for multi-attributed alternatives: Traces, dominance, and numerical representations. J. Math. Psychol. 2004, 48, 167–185. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L.; Kearns, K.P. Analytical Planning: The Organization of System; Pergamon Press Ltd.: Oxford, UK, 1985. [Google Scholar]
- Helms, M.M.; Nixon, J. Exploring SWOT analysis—Where are we now? A review of academic research from the last decade. J. Strategy Manag. 2010, 3, 215–251. [Google Scholar] [CrossRef]
- Hill, T.; Westbrook, R. SWOT analysis: It’s time for a product recall. Long Range Plan. 1997, 30, 46–52. [Google Scholar] [CrossRef]
- Sarcina, A.; Canesi, R. Renewable Energy Community: Opportunities and Threats towards Green Transition. Sustainability 2023, 15, 13860. [Google Scholar] [CrossRef]
- Falcone, P.M.; Tani, A.; Tartiu, V.E.; Imbriani, C. Towards a sustainable forest-based bioeconomy in Italy: Findings from a SWOT analysis. For. Policy Econ. 2020, 110, 101910. [Google Scholar] [CrossRef]
- Kurttila, M.; Pesonen, M.; Kangas, J.; Kajanus, M. Utilizing the analytic hierarchy process (AHP) in SWOT analysis—A hybrid method and its application to a forest-certification case. For. Policy Econ. 2000, 1, 41–52. [Google Scholar] [CrossRef]
- Bottero, M.; D’Alpaos, C.; Marello, A. An application of the A’WOT analysis for the management of cultural heritage assets: The case of the historical farmhouses in the aglie castle (Turin). Sustainability 2020, 12, 1071. [Google Scholar] [CrossRef]
- Kangas, J.; Pesonen, M.; Kurttila, M.; Kajanus, M. A’WOT: Integrating the AHP with SWOT analysis. In Proceedings of the Sixth International Symposium on the Analytic Hierarchy Process (ISAHP), Bern, Switzerland, 2–4 August 2001; pp. 2–4. [Google Scholar]
- Pesonen, M.; Kurttila, M.; Kangas, J.; Kajanus, M.; Heinonen, P. Assessing the priorities using A’WOT among resource management strategies at the Finnish Forest and Park Service. For. Sci. 2001, 47, 534–541. [Google Scholar] [CrossRef]
- De Felice, F.; Petrillo, A. Absolute measurement with analytic hierarchy process: A case study for Italian racecourse. Int. J. Appl. Decis. Sci. 2013, 6, 209–227. [Google Scholar] [CrossRef]
- D’Alpaos, C.; Andreolli, F. Urban quality in the city of the future: A bibliometric multicriteria assessment model. Ecol. Indic. 2020, 117, 106575. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 2006. [Google Scholar]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Xu, Z. On consistency of the weighted geometric mean complex judgement matrix in AHP. Eur. J. Oper. Res. 2000, 126, 683–687. [Google Scholar] [CrossRef]
- Grošelj, P.; Stirn, L.Z. Acceptable consistency of aggregated comparison matrices in analytic hierarchy process. Eur. J. Oper. Res. 2012, 223, 417–420. [Google Scholar] [CrossRef]
- Dong, Q.; Saaty, T.L. An analytic hierarchy process model of group consensus. J. Syst. Sci. Syst. Eng. 2014, 23, 362–374. [Google Scholar] [CrossRef]
- Banzato, D.; Canesi, R.; D’Alpaos, C. Biogas and Biomethane Technologies: An AHP Model to Support the Policy Maker in Incentive Design in Italy. In Smart and Sustainable Planning for Cities and Regions; Bisello, A., Vettorato, D., Laconte, P., Costa, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 319–331. [Google Scholar] [CrossRef]
- Krejčí, J.; Stoklasa, J. Aggregation in the analytic hierarchy process: Why weighted geometric mean should be used instead of weighted arithmetic mean. Expert. Syst. Appl. 2018, 114, 97–106. [Google Scholar] [CrossRef]
Description | Asset | Asset Size | Target Population | Costs | |
---|---|---|---|---|---|
Project#1 | Urban Digital Innovation Center | Former school building requalification | 2000 m2 of gross floor area (GFA) | Youth, young families, young entrepreneurs, youth not in employment, education or training (NEET), adolescents, and young individuals facing challenges | EUR 4,200,000 |
Project#2 | Renewable Energy Community-PV plants | Private and Public buildings requalification | 20,000 m2 of roof area | Private citizens, private enterprises, and municipal public facilities. | EUR 3,500,000 |
Project#3 | Center for Active Ageing | Former school building requalification | 2600 m2 of GFA | Seniors, young families, children, and youth experiencing difficult circumstances. | EUR 4,100,000 |
Marginal area characterization | |||||
Density (inhabitants/km2) | 12.95 | ||||
Population trend 2023/2022, variation over the previous year (%) | −3.34% | ||||
Age index * | 166 | ||||
Average Age (Yrs) | 60.6 | ||||
Foreigners Index ** | 4.40% | ||||
Unemployment rate | 9.2% | ||||
Dependency ratio *** | 110 | ||||
Mortality index | 34 | ||||
Vacant buildings index **** | 11.5 |
Intensity of Importance | Definition | Explanation |
---|---|---|
1 | Equal importance | Two activities contribute equally to the objective |
3 | Moderate importance | Experience and judgment strongly favor one activity over another |
5 | Strong importance | Experience and judgment strongly favor one activity over another |
7 | Very strong or demonstrated importance | An activity is strongly favored, and its dominance demonstrated in practice |
9 | Extreme importance | The evidence favoring one activity over another is of the highest possible order of affirmation |
2, 4, 6, 8 | Intermediate values between the two adjacent judgments | When compromise is needed |
Reciprocals | If activity has one of the above numbers assigned to it, when compared with another activity, then this latter has the reciprocal value when compared with the former | A reasonable assumption |
Criteria | Criteria Priorities | Sub-Criteria | Sub-Criteria Priorities |
---|---|---|---|
Strengths | 0.4515 | S1—Energy Performance | 0.2797 |
S2—Cohesion, Equal Opportunities, and Education | 0.6267 | ||
S3—Digitalization | 0.0936 | ||
Weaknesses | 0.1047 | W1—Project Operation and Maintenance Costs | 0.4054 |
W2—Funding Constraints | 0.4806 | ||
W3—Investment Timing | 0.1140 | ||
Opportunities | 0.1366 | O1—Job Creation | 0.3764 |
O2—Neighborhood Urban Quality | 0.4742 | ||
O3—Circular Economy | 0.1494 | ||
Threats | 0.3072 | T1—Demographic Decline | 0.1998 |
T2—Absence of Complementary Services | 0.6833 | ||
T3—Regulatory Risks | 0.1169 |
Sub-Criteria | Alternatives | ||
---|---|---|---|
Project#1 | Project#2 | Project#3 | |
S1 | 0.1667 | 0.6667 | 0.1667 |
S2 | 0.5278 | 0.1396 | 0.3325 |
S3 | 0.5714 | 0.1429 | 0.2857 |
W1 | 0.2000 | 0.6000 | 0.2000 |
W2 | 0.4444 | 0.1111 | 0.4444 |
W3 | 0.5584 | 0.1220 | 0.3196 |
O1 | 0.5584 | 0.1220 | 0.3196 |
O2 | 0.6250 | 0.1365 | 0.2385 |
O3 | 0.2000 | 0.6000 | 0.2000 |
T1 | 0.1692 | 0.4434 | 0.3874 |
T2 | 0.4721 | 0.4443 | 0.0836 |
T3 | 0.2000 | 0.6000 | 0.2000 |
Overall Priority (Normals) | 0.4220 | 0.3316 | 0.2464 |
Overall Priority (Ideals) | 1.0000 | 0.4220 | 0.1407 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canesi, R.; D’Alpaos, C. The Evaluation of Sustainable Development Projects in Marginal Areas: An A’WOT Approach. Land 2024, 13, 601. https://doi.org/10.3390/land13050601
Canesi R, D’Alpaos C. The Evaluation of Sustainable Development Projects in Marginal Areas: An A’WOT Approach. Land. 2024; 13(5):601. https://doi.org/10.3390/land13050601
Chicago/Turabian StyleCanesi, Rubina, and Chiara D’Alpaos. 2024. "The Evaluation of Sustainable Development Projects in Marginal Areas: An A’WOT Approach" Land 13, no. 5: 601. https://doi.org/10.3390/land13050601
APA StyleCanesi, R., & D’Alpaos, C. (2024). The Evaluation of Sustainable Development Projects in Marginal Areas: An A’WOT Approach. Land, 13(5), 601. https://doi.org/10.3390/land13050601