Using Social Media to Determine the Global Distribution of Plastics in Birds’ Nests: The Role of Riverine Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Metadata
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef] [Green Version]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Blettler, M.C.M.; Abrial, E.; Khan, F.R.; Sivri, N.; Espinola, L.A. Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps. Water Res. 2018, 143, 416–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cera, A.; Cesarini, G.; Scalici, M. Microplastics in Freshwater: What Is the News from the World? Diversity 2020, 12, 276. [Google Scholar] [CrossRef]
- Schell, T.; Rico, A.; Vighi, M. Occurrence, fate and fluxes of plastics and microplastics in terrestrial and freshwater ecosystems. Rev. Environ. Contam. Toxicol. 2020, 250, 1–43. [Google Scholar]
- Clause, A.G.; Celestian, A.J.; Pauly, G.B. Plastic ingestion by freshwater turtles: A review and call to action. Sci. Rep. 2021, 11, 5672. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, M.; Chen, H.; Sarsaiya, S.; Qin, S.; Liu, H.; Awasthi, M.K.; Kumar, S.; Singh, L.; Zhang, Z.; et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review. J. Hazard. Mat. 2021, 409, 124967. [Google Scholar] [CrossRef]
- Santos, R.G.; Machovsky-Capuska, G.E.; Andrades, R. Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science 2021, 373, 56–60. [Google Scholar] [CrossRef]
- van Emmerik, T.; Mellink, Y.; Hauk, R.; Waldschläger, K.; Schreyers, L. Rivers as plastic reservoirs. Front. Water 2022, 3, 212. [Google Scholar] [CrossRef]
- Gallitelli, L.; Cesarini, G.; Cera, A.; Sighicelli, M.; Lecce, F.; Menegoni, P.; Scalici, M. Transport and Deposition of Microplastics and Mesoplastics along the River Course: A Case Study of a Small River in Central Italy. Hydrology 2020, 7, 90. [Google Scholar] [CrossRef]
- González-Fernández, D.; Cózar, A.; Hanke, G.; Viejo, J.; Morales-Caselles, C.; Bakiu, R.; Barceló, D.; Bessa, F.; Bruge, A.; Cabrera, M.; et al. Floating macrolitter leaked from Europe into the ocean. Nat. Sustain. 2021, 4, 474–483. [Google Scholar] [CrossRef]
- Gallitelli, L.; Scalici, M. Riverine macroplastic gradient along watercourses: A global overview. Front. Environ. Sci. 2022, 10, 937944. [Google Scholar] [CrossRef]
- Liro, M.; van Emmerik, T.H.; Zielonka, A.; Gallitelli, L.; Mihai, F.C. The unknown fate of macroplastic in mountain rivers. Sci. Total Environ. 2022, 865, 161224. [Google Scholar] [CrossRef]
- Cesarini, G.; Crosti, R.; Secco, S.; Gallitelli, L.; Scalici, M. From city to sea: Spatiotemporal dynamics of floating macrolitter in the Tiber River. Sci. Total Environ. 2023, 857, 159713. [Google Scholar] [CrossRef]
- Depledge, M.H.; Galgani, F.; Panti, C.; Caliani, I.; Casini, S.; Fossi, M.C. Plastic litter in the sea. Mar. Environ. Res. 2013, 92, 279–281. [Google Scholar] [CrossRef] [Green Version]
- Foekema, E.M.; De Gruijter, C.; Mergia, M.T.; van Franeker, J.A.; Murk, A.J.; Koelmans, A.A. Plastic in north sea fish. Environ. Sci. Technol. 2013, 47, 8818–8824. [Google Scholar] [CrossRef]
- Cózar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.Á.; Irigoien, X.; Duarte, C.M. Plastic accumulation in the Mediterranean Sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.L.; Gwinnett, C.; Robinson, L.F.; Woodall, L.C. Plastic microfibre ingestion by deep-sea organisms. Sci. Rep. 2016, 6, 33997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 0116. [Google Scholar] [CrossRef]
- Lehtiniemi, M.; Hartikainen, S.; Näkki, P.; Engström-Öst, J.; Koistinen, A.; Setälä, O. Size matters more than shape: Ingestion of primary and secondary microplastics by small predators. Food Webs 2018, 17, e00097. [Google Scholar] [CrossRef]
- Battisti, C.; Gallitelli, L.; Vanadia, S.; Scalici, M. General macro-litter as a proxy for fishing lines, hooks and nets entrapping beach-nesting birds: Implications for clean-ups. Mar. Pollut. Bull. 2023, 186, 114502. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasseron, P.; Zinsmeister, H.; Rambonnet, L.; Hiemstra, A.F.; Siepman, D.; van Emmerik, T. Plastic Hotspot Mapping in Urban Water Systems. Geosciences 2020, 10, 342. [Google Scholar] [CrossRef]
- Blettler, M.C.M.; Mitchell, C. Dangerous traps: Macroplastic encounters affecting freshwater and terrestrial wildlife. Sci. Total Environ. 2021, 798, 149317. [Google Scholar] [CrossRef]
- Gallitelli, L.; Cera, A.; Cesarini, G.; Pietrelli, L.; Scalici, M. Preliminary indoor evidences of microplastic effects on freshwater benthic macroinvertebrates. Sci. Rep. 2021, 11, 720. [Google Scholar] [CrossRef] [PubMed]
- Cera, A.; Gallitelli, L.; Scalici, M. Macroplastics in Lakes: An Underrepresented Ecological Problem? Water 2023, 15, 60. [Google Scholar] [CrossRef]
- Blettler, M.C.M.; Wantzen, K.M. Threats Underestimated in Freshwater Plastic Pollution: Mini-Review. Water Air Soil Pollut. 2019, 230, 174. [Google Scholar] [CrossRef]
- Azevedo-Santos, V.M.; Brito, M.F.G.; Manoel, P.S.; Perroca, J.F.; Rodrigues-Filho, J.L.; Paschoal, L.R.P.; Gonçalves, G.R.; Wolf, M.R.; Blettler, M.C.; Andrade, M.C.; et al. Plastic pollution: A focus on freshwater biodiversity. Ambio 2021, 50, 1313–1324. [Google Scholar] [CrossRef]
- Montevecchi, W.A. Incidence and types of plastic in gannets’ nests in the northwest Atlantic. Can. J. Zool. 1991, 69, 295–297. [Google Scholar] [CrossRef]
- Clemens, T.; Hartwig, E. Müll als Nistmaterial von Dreizehenmöwen (Rissa tridactyla)-Untersuchung einer Brutkolonie an der Jammerbucht, Dänemark. Seevögel 1993, 14, 6–7. [Google Scholar]
- Hartwig, E.; Clemens, T.; Heckroth, M. Plastic debris as nesting material in a Kittiwake (Rissa tridactyla) colony at the Jammerbugt, Northwest Denmark. Mar. Pollut. Bull. 2007, 54, 595–597. [Google Scholar] [CrossRef]
- Battisti, C.; Poeta, G.; Staffieri, E.; Sorace, A.; Luiselli, L.; Amori, G. Interactions between anthropogenic litter and birds: A global review with a ‘black-list’ of species. Mar. Pollut. Bull. 2019, 138, 93–114. [Google Scholar] [CrossRef]
- O’Hanlon, N.J.; Bond, A.L.; Lavers, J.L.; Masden, E.A.; James, N.A. Monitoring nest incorporation of anthropogenic debris by Northern Gannets across their range. Environ. Pollut. 2019, 255, 113152. [Google Scholar] [CrossRef]
- Jagiello, Z.; Dylewski, Ł.; Tobolka, M.; Aguirre, J.I. Life in a polluted world: A global review of anthropogenic materials in bird nests. Environ. Pollut. 2019, 251, 717–722. [Google Scholar] [CrossRef]
- Tavares, D.C.; Moura, J.F.; Acevedo-Trejos, E.; Crawford, R.J.; Makhado, A.; Lavers, J.L.; Witteveen, M.; Ryan, P.G.; Merico, A. Confidence intervals and sample size for estimating the prevalence of plastic debris in seabird nests. Environ. Pollut. 2020, 263, 114394. [Google Scholar] [CrossRef] [PubMed]
- Townsend, A.K.; Barker, C.M. Plastic and the nest entanglement of urban and agricultural crows. PLoS ONE 2014, 9, e88006. [Google Scholar] [CrossRef]
- Jagiello, Z.A.; Dylewski, Ł.; Winiarska, D.; Zolnierowicz, K.M.; Tobolka, M. Factors determining the occurrence of anthropogenic materials in nests of the white stork Ciconia ciconia. Environ. Sci. Pollut. Res. 2018, 25, 14726–14733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, D.L.; Ovenden, T.S.; Pennycott, T.; Nager, R.G. The prevalence and source of plastic incorporated into nests of five seabird species on a small offshore island. Mar. Pollut. Bull. 2020, 154, 111076. [Google Scholar] [CrossRef]
- Potvin, D.A.; Opitz, F.; Townsend, K.A.; Knutie, S.A. Use of anthropogenic-related nest material and nest parasite prevalence have increased over the past two centuries in Australian birds. Oecologia 2021, 196, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, M.P.; Rylander, R.J.; Tleimat, J.M.; Fritts, S.R. Use of Anthropogenic Nest Materials by Black-Crested Titmice Along an Urban Gradient. J. Fish Wildl. Manag. 2022, 13, 236–242. [Google Scholar] [CrossRef]
- Radhamany, D.; Das, K.S.A.; Azeez, P.A.; Wen, L.; Sreekala, L.K. Usage of nest materials by house sparrow (Passer domesticus) along an urban to rural gradient in Coimbatore, India. Trop. Life Sci. Res. 2016, 27, 127. [Google Scholar] [CrossRef]
- Suárez-Rodríguez, M.; López-Rull, I.; Macías Garcia, C. Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: New ingredients for an old recipe? Biol. Lett. 2013, 9, 20120931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobori, H.; Dickinson, J.L.; Washitani, I.; Sakurai, R.; Amano, T.; Komatsu, N.; Kitamura, W.; Takagawa, S.; Koyama, K.; Ogawara, T.; et al. Citizen science: A new approach to advance ecology, education, and conservation. Ecol. Res. 2016, 31, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Faraone, F.P.; Giacalone, G.; Canale, D.E.; D’Angelo, S.; Favaccio, G.; Garozzo, V.; Giancontieri, G.L.; Isgrò, C.; Melfi, R.; Morello, B.; et al. Tracking the invasion of the red swamp crayfish Procambarus clarkii (Girard, 1852) (Decapoda Cambaridae) in Sicily: A “citizen science” approach. Biogeographia 2017, 32, 25–29. [Google Scholar] [CrossRef]
- Brown, E.D.; Williams, B.K. The potential for citizen science to produce reliable and useful information in ecology. Conserv. Biol. 2019, 33, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battisti, C.; Cerfolli, F. From Citizen Science to Citizen Management: Suggestions for a pervasive fine-grained and operational approach to biodiversity conservation. Isr. J. Ecol. Evol. 2021, 68, 8–12. [Google Scholar] [CrossRef]
- Carpaneto, G.M.; Campanaro, A.; Hardersen, S.; Audisio, P.; Bologna, M.A.; Roversi, P.F.; Peverieri, G.S.; Mason, F. The LIFE Project “Monitoring of insects with public participation” (MIPP): Aims, methods and conclusions. Nat. Conserv. 2017, 20, 1–35. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): A study supported by a citizen science project. Mar. Environ. Res. 2013, 87–88, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Syberg, K.; Palmqvist, A.; Khan, F.R.; Strand, J.; Vollertsen, J.; Clausen, L.P.W.; Feld, L.; Hartmann, N.B.; Oturai, N.; Møller, S.; et al. A nationwide assessment of plastic pollution in the Danish realm using citizen science. Sci. Rep. 2020, 10, 17773. [Google Scholar] [CrossRef]
- Kiessling, T.; Knickmeier, K.; Kruse, K.; Gatta-Rosemary, M.; Nauendorf, A.; Brennecke, D.; Thiel, L.; Wichels, A.; Parchmann, I.; Körtzinger, A.; et al. Schoolchildren discover hotspots of floating plastic litter in rivers using a large-scale collaborative approach. Sci. Total Environ. 2021, 789, 147849. [Google Scholar] [CrossRef]
- Nelms, S.E.; Easman, E.; Anderson, N.; Berg, M.; Coates, S.; Crosby, A.; Eisfeld-Pierantonio, S.; Eyles, L.; Flux, T.; Gilford, E.; et al. The role of citizen science in addressing plastic pollution: Challenges and opportunities. Environ. Sci. Policy 2022, 128, 14–23. [Google Scholar] [CrossRef]
- Battisti, C.; Poeta, G.; Romiti, F.; Picciolo, L. Small environmental actions need of problem-solving approach: Applying project management tools to beach litter clean-ups. Environments 2020, 7, 87. [Google Scholar] [CrossRef]
- Battisti, C.; Frank, B.; Fanelli, G. Children as drivers of change: The operational support of young generations to conservation practices. Environ. Pract. 2018, 20, 129–135. [Google Scholar] [CrossRef]
- Setälä, O.; Tirroniemi, J.; Lehtiniemi, M. Testing citizen science as a tool for monitoring surface water microplastics. Environ. Monit. Assess. 2022, 194, 851. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.G. Using photographs to record plastic in seabird nests. Mar. Pollut. Bull. 2020, 156, 111262. [Google Scholar] [CrossRef]
- Statista. Global Social Networks. 2022. Available online: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ (accessed on 1 July 2022).
- Lorenzetti, E.; Battisti, C. Area as component of habitat fragmentation: Corroborating its role in breeding bird communities and guilds of oak wood fragments in Central Italy. Rev. Ecol. Terre Vie 2006, 61, 53–68. [Google Scholar] [CrossRef]
- Battisti, C.; Fanelli, G. Applying indicators of disturbance from plant ecology to vertebrates: The hemeroby of bird species. Ecol. Indic. 2016, 61, 799–805. [Google Scholar] [CrossRef]
- Dytham, C. Choosing and Using Statistics: A Biologist’s Guide; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Battisti, C.; Bazzichetto, M.; Poeta, G.; Pietrelli, L.; Acosta, A.T.R. Measuring non-biological diversity using commonly used metrics: Strengths, weaknesses and caveats for their application in beach litter management. J. Coast. Conserv. 2017, 21, 303–310. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Entsminger, G.L. EcoSim: Null Models Software for Ecology; Version 5.0; Acquired Intelligence Inc. & Kesey-Bear: Burlington, VT, USA, 1999; Available online: http://homepages.together.net/~gentsmin/ecosim (accessed on 1 June 2022).
- Gotelli, N.J. Null model analysis of species co-occurrence patterns. Ecology 2000, 81, 2606–2621. [Google Scholar] [CrossRef]
- Schluter, D. A variance test for detecting species associations, with some example applications. Ecology 1984, 65, 998–1005. [Google Scholar] [CrossRef]
- Grant, M.L.; O’Hanlon, N.J.; Lavers, J.L.; Masden, E.A.; James, N.A.; Bond, A.L. A standardised method for estimating the level of visible debris in bird nests. Mar. Pollut. Bull. 2021, 172, 112889. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Sorace, A.; Gustin, M. Bird species of conservation concern along urban gradients in Italy. Biodivers. Conserv. 2010, 19, 205–221. [Google Scholar] [CrossRef]
- Hiemstra, A.-F.; Rambonnet, L.; Gravendeel, B.; Schilthuizen, M. The effects of COVID-19 litter on animal life. Anim. Biol. 2021, 71, 215–231. [Google Scholar] [CrossRef]
- Briggs, K.B.; Deeming, D.C.; Mainwaring, M. Plastic Is a Widely Used and Preferentially Chosen Nest Material for Birds in Rural Woodland Habitats. 2022. Available online: https://ssrn.com/abstract=4122959 (accessed on 7 February 2023). [CrossRef]
- Blettler, M.C.M.; Gauna, L.; Andréault, A.; Abrial, E.; Lorenzón, R.E.; Espinola, L.A.; Wantzen, K.M. The use of anthropogenic debris as nesting material by the greater thornbird, an inland–wetland-associated bird of South America. Environ. Sci. Pollut. Res. 2020, 27, 41647–41655. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe. An Analysis of European Plastics Production, Demand and Waste Data. 2021. Available online: https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf (accessed on 1 July 2022).
- Kolenda, K.; Pawlik, M.; Kuśmierek, N.; Smolis, A.; Kadej, M. Online media reveals a global problem of discarded containers as deadly traps for animals. Sci. Rep. 2021, 11, 267. [Google Scholar] [CrossRef]
- Besseling, E.; Quik, J.T.K.; Sun, M.; Koelmans, A.A. Fate of nano- and microplastic in freshwater systems: A modeling study. Environ. Pollut. 2017, 220, 540–548. [Google Scholar] [CrossRef]
- Campanale, C.; Stock, F.; Massarelli, C.; Kochleus, C.; Bagnuolo, G.; Reifferscheid, G.; Uricchio, V.F. Microplastics and their possible sources: The example of Ofanto river in southeast Italy. Environ. Pollut. 2020, 258, 113284. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallitelli, L.; Battisti, C.; Scalici, M. Using Social Media to Determine the Global Distribution of Plastics in Birds’ Nests: The Role of Riverine Habitats. Land 2023, 12, 670. https://doi.org/10.3390/land12030670
Gallitelli L, Battisti C, Scalici M. Using Social Media to Determine the Global Distribution of Plastics in Birds’ Nests: The Role of Riverine Habitats. Land. 2023; 12(3):670. https://doi.org/10.3390/land12030670
Chicago/Turabian StyleGallitelli, Luca, Corrado Battisti, and Massimiliano Scalici. 2023. "Using Social Media to Determine the Global Distribution of Plastics in Birds’ Nests: The Role of Riverine Habitats" Land 12, no. 3: 670. https://doi.org/10.3390/land12030670
APA StyleGallitelli, L., Battisti, C., & Scalici, M. (2023). Using Social Media to Determine the Global Distribution of Plastics in Birds’ Nests: The Role of Riverine Habitats. Land, 12(3), 670. https://doi.org/10.3390/land12030670