Response Characteristics of Soil Erosion to Spatial Conflict in the Production-Living-Ecological Space and Their DrivingMechanism: A Case Study of Dongting Lake Basin in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Conflict Index of PLES
2.3.2. Revised Universal Soil Loss Equation (RUSLE) Model
2.3.3. Bivariate Spatial Autocorrelation Model
2.3.4. Optimal Parameter-based Geographical Detector (OPGD) Model
3. Results
3.1. Spatiotemporal Changes in the PLES Spatial Conflict
3.1.1. Changes in the PLES
3.1.2. Changes in Spatial Conflict Index in the PLES
3.2. Changes in Soil Erosion
3.3. Correlation between Spatial Conflicts and Soil Erosion
3.4. Influencing Factors
4. Discussion
4.1. Impact Mechanisms and Pathways
4.2. Policy Implications
4.3. Future Research Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuang, W. Issues regarding on spatial pattern change of national land space and its overall implementation on beautiful vision in new era. Resour. Sci. 2019, 41, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Li, H.; Liu, Y.; Hu, Y.; Yang, Y. Identification and optimization of ecological security pattern in Xiong’an New Area. Acta Geogr. Sin. 2018, 73, 701–710. [Google Scholar] [CrossRef]
- Fu, B. Several key points in territorial ecological restoration. Bull. Chin. Acad. Sci. 2021, 36, 64–69. [Google Scholar] [CrossRef]
- Chen, M.; Liang, L.; Wang, Z.; Zhang, W.; Yu, J.; Liang, Y. Geographical thinking on the relationship between beautiful China and land spatial planning. Acta Geogr. Sin. 2019, 74, 2467–2481. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, T.; Zhou, P. Theoretical analysis and strategies of natural ecological space use control. Chin. Land Sci. 2017, 31, 17–24. [Google Scholar] [CrossRef]
- Fang, C.; Yang, J.; Fang, J.; Huang, X.; Zhou, Y. Optimization Transmission Theory and Technical Pathways that Describe Multiscale Urban Agglomeration Spaces. Chin. Geogr. Sci. 2018, 28, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, J. Theoretical analysis and technical methods of “multiple planning integration” in the rural to urban transition period in China. Prog. Geogr. 2016, 35, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Willemen, L.; Barger, N.N.; Brink, B.T.; Cantele, M.; Erasmus, B.F.N.; Fisher, J.L.; Gardner, T.; Holland, T.G.; Kohler, F.; Kotiaho, J.S.; et al. How to halt the global decline of lands. Nat. Sustain. 2020, 3, 164–166. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T. Soil erosion dynamics response to landscape pattern. Sci. Total Environ. 2010, 408, 1358–1366. [Google Scholar] [CrossRef]
- Garcia-Ruiz, J.M.; Begueria, S.; Nadal-Romero, E.; Gonzalez-Hidalgo, J.C.; LanaRenault, N.; Sanjuan, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.; Lu, L.; Liu, C.; Zhang, Y.; Hao, J.; Wang, H. Research progress of the identification and optimization of production-living-ecological spaces. Prog. Geogr. 2020, 39, 503–518. [Google Scholar] [CrossRef]
- Huang, J.; Lin, H.; Qi, X. A literature review on optimization of spatial development pattern based on ecological-production-living space. Prog. Geogr. 2017, 36, 378–391. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Jiang, D.; Fu, J.; Lin, G.; Zhang, J. Comprehensive assessment of production-living-ecological space based on the coupling coordination degree model. Sustainability 2020, 12, 2009. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y. An analysis of land use conflict potentials based on ecological-production-living function in the southeast coastal area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Liao, T.; Li, D.; Wan, Q. Tradeoff of exploitation-protection and Suitability evaluation of low-slope hilly from the perspective of “production-living-ecological” optimization. Phys. Chem. Earth Parts A/B/C 2020, 120, 102943. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Q.; Su, K.; Zhang, H.; Lu, D.; Xiang, H.; Zhou, L. Identification and optimization of production-living-ecological space in an ecological foundation area in the upper reaches of the Yangtze River: A case study of Jiangjin District of Chongqing. Chin. Land Sci. 2021, 10, 863. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, H.; Xiao, L.; Guo, Y. Land use change and its driving factors in the rural-urban fringe of Beijing: A production-living-ecological perspective. Land 2022, 11, 314. [Google Scholar] [CrossRef]
- Li, C.; Wu, J. Land use transformation and eco-environmental effects based on production-living-ecological spatial synergy: Evidence from Shaanxi Province, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 41492–41504. [Google Scholar] [CrossRef]
- Yang, Q.; Duan, X.; Wang, L.; Jin, Z. Land use transformation based on ecological-production-living spaces and associated eco-environment effects: A case study in the Yangtze River Delta. Sci. Geogr. Sin. 2018, 38, 97–106. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z. Functional coupling degree and human activity intensity of production-living-ecological space in underdeveloped regions in China: Case study of Guizhou Province. Land 2021, 10, 56. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Ji, Z. Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior—A case study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Bao, H. The logic behind conflicts in land acquisitions in contemporary China: A framework based upon game theory. Land Use Policy 2013, 30, 373–380. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, J.; Zhu, L.; Cheng, H. Spatial-temporal pattern of land use conflict in China and its multilevel driving mechanisms. Sci. Total Environ. 2021, 801, 149697. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, Z.; Lim, S. Spatial characteristics and risk factor identification for land use spatial conflicts in a rapid urbanization region in China. Environ. Monit. Assess. 2019, 191, 677–698. [Google Scholar] [CrossRef]
- Jing, W.; Yu, K.; Wu, L.; Luo, P. Potential land use conflict identification based on improved multi-objective suitability evaluation. Remote Sens. 2021, 13, 2416. [Google Scholar] [CrossRef]
- Fang, Y.; Ai, D.; Yang, Y.; Sun, W.; Zu, J. Multi-objective spatial suitability evaluation and conflict optimization considering productivity, sustainability, and livability in southwestern mountainous areas of China. Sustainability 2021, 14, 371. [Google Scholar] [CrossRef]
- Dong, G.; Ge, Y.; Jia, H.; Sun, C.; Pan, S. Land use multi-suitability, land resource scarcity and diversity of human needs: A new framework for land use conflict identification. Land 2021, 10, 1003. [Google Scholar] [CrossRef]
- Liao, L.; Dai, W.; Chen, J.; Huang, W.; Jiang, F.; Hu, Q. Spatial conflict between ecological-production-living spaces on Pingtan Island during rapid urbanization. Resour. Sci. 2017, 39, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, H. Dynamic simulation and conflict identification analysis of production-living-ecological space in Wuhan, Central China. Integr. Environ. Assess. Manag. 2022. Available online: https://setac.onlinelibrary.wiley.com/doi/full/10.1002/ieam.4574 (accessed on 10 January 2022). [CrossRef]
- Lin, G.; Jiang, D.; Fu, J.; Cao, C.; Zhang, D. Spatial conflict of production-living-ecological space and sustainable-development scenario simulation in Yangtze River Delta Agglomerations. Sustainability 2020, 12, 2175. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Z.; Li, M.; Fu, Y.; Hui, Y. Spatial conflict simulation of land-use based on human-land-landscape elements inter coordination: A case study in Tianjin, China. Environ. Monit. Assess. 2022, 194, 317. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Li, G. Ecological restoration for territorial space: Basic concepts and foundations. Chin. Land Sci. 2019, 33, 1–10. [Google Scholar] [CrossRef]
- Lin, J.; Liu, S.; Liu, S. Region-element coordination: The critical issue concerning the construction of the system for developing and protecting territorial space. Chin. Land Sci. 2018, 32, 1–7. [Google Scholar] [CrossRef]
- Pandey, S.; Kumar, P.; Zlatic, M.; Nautiyal, R.; Panwar, V.P. Recent advances in assessment of soil erosion vulnerability in a watershed. Int. Soil Water Conse. 2021, 9, 305–318. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Comm. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Liu, K.; Ma, L.; Bao, Y.; Wu, L. Evaluation on soil erosion effects driven by land use changes over Danjiang River basin of Qinling Mountain. J. Nat. Resour. 2016, 31, 583–595. [Google Scholar] [CrossRef]
- Wen, X.; Zhen, L. Soil erosion control practices in the Chinese Loess Plateau: A systematic review. Environ. Dev. 2020, 34, 100493. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Kuang, W. Spatiotemporal patterns of soil protection effect of the Grain for Green Project in northern Shaanxi. Acta Geogr. Sin. 2019, 74, 1835–1852. [Google Scholar] [CrossRef]
- Sharma, A.; Tiwari, K.N.; Bhadoria, P.B.S. Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ. Monit. Assess. 2011, 173, 789–801. [Google Scholar] [CrossRef]
- Devátý, J.; Dostál, T.; Hösl, R.; Krása, J.; Strauss, P. Effects of historical land use and land pattern changes on soil erosion—Case studies from Lower Austria and Central Bohemia. Land Use Policy 2019, 82, 674–685. [Google Scholar] [CrossRef]
- Valera, C.A.; Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. The role of environmental land use conflicts in soil fertility: A study on the Uberaba River basin, Brazil. Sci. Total. Environ. 2016, 562, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Environmental land use conflicts: A threat to soil conservation. Land Use Policy 2014, 41, 172–185. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Xiao, H.; Ning, K.; Tang, C. Effects of land use and land cover on soil erosion control in southern China: Implications from a systematic quantitative review. J. Environ. Manag. 2021, 282, 111924. [Google Scholar] [CrossRef]
- Geng, M.; Li, F.; Gao, Y.; Li, Z.; Chen, X.; Deng, Z.; Zou, Y.; Xie, Y.; Wang, Z. Wetland Area Change from 1986–2016 in the Dongting Lake Watershed at the Sub-Watershed Scale. Pol. J. Environ. Stud. 2021, 30, 1611–1620. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M. Assessing the spatial and temporal patterns of seasonal precipitation extremes and the potential influencing factors in Dongting Lake Basin, China. Water 2016, 8, 558. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Z.; Wang, D.; Chen, J.; Liu, Y.; Nie, X.; Zhang, Y.; Ning, K.; Hu, X. Unbalanced social-ecological development within the Dongting Lake basin: Inspiration from evaluation of ecological restoration projects. J. Clean. Prod. 2021, 315, 128161. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Wang, L. Land use spatial conflicts and complexity: A case study of the urban agglomeration around Hangzhou Bay, China. Geogr. Res. 2015, 34, 1630–1642. [Google Scholar] [CrossRef]
- Xiao, J.; Xie, B.; Zhou, K.; Shi, S.; Li, J.; Yang, M.; Liu, C. Assessment of soil erosion in the Dongting Lake Basin, China: Patterns, drivers, and implications. PLoS ONE 2021, 16, e0261842. [Google Scholar] [CrossRef]
- Qian, Q.; Wang, S.; Bai, X.; Zhou, D.; Tian, Y.; Li, Q.; Wu, L.; Xiao, J.; Zhou, C.; Chen, F. Assessment of soil erosion in karst critical zone based on soil loss tolerance and source-sink theory of positive and negative terrains. Acta Geogr. Sin. 2018, 73, 2135–2149. [Google Scholar] [CrossRef]
- Cheng, Z. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, J.; Zhu, L. Spatial and temporal analyses of potential land use conflict under the constraints of water resources in the middle reaches of the Heihe River. Land Use Policy 2020, 97, 104773. [Google Scholar] [CrossRef]
- Zheng, H.; Peng, J.; Qiu, S.; Xu, Z.; Zhou, F.; Xia, P.; Adalibieke, W. Distinguishing the impacts of land use change in intensity and type on ecosystem services trade-offs. J. Environ. Manag. 2022, 316, 115206. [Google Scholar] [CrossRef]
- Yang, F.; Ouyang, J.; Duan, N.; Zhao, Z. Spatial-temporal evolution and economic driving analysis of water network pattern in Dongting Lake Basin from 1990 to 2020. Econ. Geogr. 2022, 42, 188–197. [Google Scholar] [CrossRef]
- Dietz, K.; Engels, B. Analysing land conflicts in times of global crises. Geoforum 2020, 111, 208–217. [Google Scholar] [CrossRef]
- Bao, W.; Yang, Y.; Zou, L. How to reconcile land use conflicts in mega urban agglomeration? A scenario-based study in the Beijing-Tianjin-Hebei region, China. J. Environ. Manag. 2021, 296, 113168. [Google Scholar] [CrossRef]
- Lin, G.; Fu, J.; Jiang, D. Production-living-ecological conflict identification using a multiscale integration model based on spatial suitability analysis and sustainable development evaluation: A case study of Ningbo, China. Land 2021, 10, 383. [Google Scholar] [CrossRef]
- Albert, J.S.; Destouni, G.; Duke- Sylvester, S.M.; Magurran, A.E.; Oberdorff, T.; Reis, R.E.; Winemiller, K.O.; Ripple, W.J. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021, 50, 85–94. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of agricultural transitions and urbanization for ecosystem services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Wang, C.; Li, C.; Jiang, W.; Hua, T.; Zhao, W. The research priorities of Resources and Environmental Sciences. Geogr. Sustain. 2021, 2, 87–94. [Google Scholar] [CrossRef]
- Klein, B.; Hoel, E. The emergence of informative higher scales in complex networks. Complexity 2020, 8932526. [Google Scholar] [CrossRef]
- Arneth, A.; Brown, C.; Rounsevell, M.D.A. Global models of human decision making for land-based mitigation and adaptation assessment. Nat. Clim. Chang. 2014, 4, 550–557. [Google Scholar] [CrossRef]
- Ali, S.; Xu, H.; Xu, P.; Ahmed, W. Evolutional attitude based on option prioritization for conflict analysis of urban transport planning in Pakistan. J. Syst. Sci. Syst. Eng. 2019, 28, 356–381. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Deng, C.; Li, Z.; Liu, Y. Response Characteristics of Soil Erosion to Spatial Conflict in the Production-Living-Ecological Space and Their DrivingMechanism: A Case Study of Dongting Lake Basin in China. Land 2022, 11, 1794. https://doi.org/10.3390/land11101794
Liu C, Deng C, Li Z, Liu Y. Response Characteristics of Soil Erosion to Spatial Conflict in the Production-Living-Ecological Space and Their DrivingMechanism: A Case Study of Dongting Lake Basin in China. Land. 2022; 11(10):1794. https://doi.org/10.3390/land11101794
Chicago/Turabian StyleLiu, Changchang, Chuxiong Deng, Zhongwu Li, and Yaojun Liu. 2022. "Response Characteristics of Soil Erosion to Spatial Conflict in the Production-Living-Ecological Space and Their DrivingMechanism: A Case Study of Dongting Lake Basin in China" Land 11, no. 10: 1794. https://doi.org/10.3390/land11101794
APA StyleLiu, C., Deng, C., Li, Z., & Liu, Y. (2022). Response Characteristics of Soil Erosion to Spatial Conflict in the Production-Living-Ecological Space and Their DrivingMechanism: A Case Study of Dongting Lake Basin in China. Land, 11(10), 1794. https://doi.org/10.3390/land11101794