Hydrogeological Parameters Identification in the Qingtongxia Irrigation Area Using Canal Stage Fluctuations
Abstract
:1. Introduction
2. The Study Area
2.1. Topography
2.2. Meteorology
2.3. Geology
3. Methodology
3.1. Layout of Monitoring Network
3.2. Hydrological Parameter Acquisition
3.3. Spatial Cross-Correlation Analysis
3.4. Successive Linear Estimator
4. Results and Discussion
4.1. Analysis of Groundwater Level and Irrigation Channel Stage Variation
4.2. Regional Groundwater Flow Field Analysis
4.3. Correlation Analysis of Groundwater Level and Irrigation Channel Stage Variation
4.4. Parameter Identification with SLE Inverse
4.5. Implications and Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Delleur, J.W. Elementary Groundwater Flow and Transport Processes. In The Handbook of Groundwater Engineering; CRC Press: Boca Raton, FL, USA, 1999; pp. 2.1–2.40. [Google Scholar]
- Zhao, Z.; Illman, W.A. On the Importance of Considering Specific Storage Heterogeneity in Hydraulic Tomography: Laboratory Sandbox and Synthetic Studies. J. Hydrol. 2021, 593, 125874. [Google Scholar] [CrossRef]
- Kirlas, M.C. Assessment of Porous Aquifer Hydrogeological Parameters Using Automated Groundwater Level Measurements in Greece. J. Groundw. Sci. Eng. 2021, 9, 269–278. [Google Scholar] [CrossRef]
- Ezzedine, S.; Rubin, Y.; Chen, J. Hydrological-Geophysical Bayesian Method for Subsurface Site Characterization: Theory and Application to LLNL Superfund Site. Water Resour. Res. 1999, 35, 2671–2683. [Google Scholar] [CrossRef]
- Koltermann, C.E.; Gorelick, S.M. Heterogeneity in Sedimentary Deposits: A Review of Structure-Imitating, Process-Imitating, and Descriptive Approaches. Water Resour. Res. 1996, 32, 2617–2658. [Google Scholar] [CrossRef]
- Beckie, R.; Harvey, C.F. What Does a Slug Test Measure: An Investigation of Instrument Response and the Effects of Heterogeneity. Water Resour. Res. 2002, 38, 26-1–26-14. [Google Scholar] [CrossRef]
- Wu, C.M.; Yeh, T.C.J.; Zhu, J.; Lee, T.H.; Hsu, N.S.; Chen, C.H.; Sancho, A.F. Traditional Analysis of Aquifer Tests: Comparing Apples to Oranges? Water Resour. Res. 2005, 41, W09402. [Google Scholar] [CrossRef]
- Yeh, T.C.J.; Liu, S. Hydraulic Tomography: Development of a New Aquifer Test Method. Water Resour. Res. 2000, 36, 2095–2105. [Google Scholar] [CrossRef]
- Zhu, J.; Yeh, T.C.J. Characterization of Aquifer Heterogeneity Using Transient Hydraulic Tomography. Water Resour. Res. 2005, 41, W07028. [Google Scholar] [CrossRef]
- Xiang, J.; Yeh, T.C.J.; Lee, C.H.; Hsu, K.C.; Wen, J.C. A Simultaneous Successive Linear Estimator and a Guide for Hydraulic Tomography Analysis. Water Resour. Res. 2009, 45, W02432. [Google Scholar] [CrossRef]
- Cardiff, M.; Barrash, W.; Kitanidis, P.K.; Malama, B.; Revil, A.; Straface, S.; Rizzo, E. A Potential-Based Inversion of Unconfined Steady-State Hydraulic Tomography. Groundwater 2009, 47, 259–270. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Illman, W.A. Detection of Karst Conduit Patterns via Hydraulic Tomography: A Synthetic Inverse Modeling Study. J. Hydrol. 2019, 572, 131–147. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yeh, T.C.J.; Wen, J.C.; Huang, S.Y.; Zha, Y.; Tsai, J.P. Characterizing Subsurface Hydraulic Heterogeneity of Alluvial Fan Using Riverstage Fluctuations. J. Hydrol. 2019, 547, 650–663. [Google Scholar] [CrossRef]
- Illman, W.A.; Liu, X.; Craig, A. Steady-State Hydraulic Tomography in a Laboratory Aquifer with Deterministic Heterogeneity: Multi-Method and Multiscale Validation of Hydraulic Conductivity Tomograms. J. Hydrol. 2007, 341, 222–234. [Google Scholar] [CrossRef]
- Luo, N.; Zhao, Z.; Illman, W.A.; Berg, S.J. Comparative Study of Transient Hydraulic Tomography with Varying Parameterizations and Zonations: Laboratory Sandbox Investigation. J. Hydrol. 2017, 554, 758–779. [Google Scholar] [CrossRef]
- Cardiff, M.; Zhou, Y.; Barrash, W.; Kitanidis, P.K. Aquifer Imaging with Oscillatory Hydraulic Tomography: Application at the Field Scale. Groundwater 2020, 58, 710–722. [Google Scholar] [CrossRef]
- Straface, S.; Yeh, T.C.J.; Zhu, J.; Troisi, S.; Lee, C.H. Sequential Aquifer Tests at a Well Field, Montalto Uffugo Scalo, Italy. Water Resour. Res. 2007, 43, W07432. [Google Scholar] [CrossRef]
- Zha, Y.; Yeh, T.C.J.; Illman, W.A.; Tanaka, T.; Bruines, P.; Onoe, H. An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami, Japan. Groundwater 2016, 54, 793–804. [Google Scholar] [CrossRef]
- Yeh, T.C.J.; Lee, C.H.; Hsu, K.C.; Illman, W.A.; Barrash, W.; Cai, X.; Daniels, J.; Sudicky, E.; Wan, L.; Li, G.; et al. A View Toward the Future of Subsurface Characterization: CAT Scanning Groundwater Basins. Water Resour. Res. 2008, 44, W03301. [Google Scholar] [CrossRef]
- Yeh, T.C.J.; Xiang, J.; Suribhatla, R.M.; Hsu, K.C.; Lee, C.H.; Wen, J.C. Riverstage Tomography: A New Approach for Characterizing Groundwater Basins. Water Resour. Res. 2009, 45, W05409. [Google Scholar] [CrossRef]
- Jia, Y.; Li, H. The Estimation of Aquifer Parameters Using Tidal Effect in a Coastal Aquifer: A Case Study in Beihai Peninsula, Guangxi China. Earth Sci. Front. 2009, 16, 276–281. [Google Scholar]
- Fang, H.N. Estimating Aquifer Parameters from Barometric-Pressure Effect of Groundwater Before and After Wenchuan Earthquake. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2013. (In Chinese). [Google Scholar]
- Park, E.; Lee, J. A Non-Bayesian Nonparametric Model for Characterization of Basin-Scale Aquifers Using Groundwater Level Fluctuations. J. Hydrol. 2021, 602, 126710. [Google Scholar] [CrossRef]
- Ferris, J.G.; Knowles, D.B.; Brown, R.H.; Stallman, R.W. Theory of Aquifer Tests. In U.S. Geological Survey Water-Supply Paper 1536 E; United States Government Publishing Office: Washington, DC, USA, 1963; 174p. [Google Scholar] [CrossRef]
- Ferris, J.G. Cyclic Fluctuations of Water Level as a Basis for Determining Aquifer Transmissibility. In U.S. Geological Survey, Ground Water Hydraulics Section, Contribution No. 1; United States Government Publishing Office: Washington, DC, USA, 1952; 17p. [Google Scholar] [CrossRef]
- Duffy, C.J.; Gelhar, L.W.; Gross, G.W. Recharge and Groundwater Conditions in the Western Region of the Roswell Basin. Report; New Mexico State University MSC: Las Cruces, NM, USA, 1978. [Google Scholar]
- Gelhar; Duffy, C.J.; Gross, G.W. Stochastic Methods of Analysing Groundwater Recharge: Symposium on Hydrology of Areas of Low Precipitation. 1979. Available online: https://www.researchgate.net/publication/261722292_Stochastic_Methods_of_Analysing_Groundwater_Recharge (accessed on 12 March 2025).
- Sophocleous, M. Stream-Floodwave Propagation Through the Great Bend Alluvial Aquifer, Kansas: Field Measurements and Numerical Simulations. J. Hydrol. 1991, 124, 207–228. [Google Scholar] [CrossRef]
- Pinder, G.F.; Bredehoeft, J.D.; Cooper, H.H. Numerical Determination of Aquifer Diffusivity from Aquifer Response to Fluctuations in River Stage. Water Resour. Res. 1969, 5, 850–855. [Google Scholar] [CrossRef]
- Hall, F.R.; Moench, A.F. Application of the Convolution Equation to Stream-Aquifer Relationships. Water Resour. Res. 1972, 8, 487–493. [Google Scholar] [CrossRef]
- Jha, M.K.; Jayalekshmi, K.; Machiwal, D.; Kamii, Y.; Chikamori, K. Determination of Hydraulic Parameters of an Unconfined Alluvial Aquifer by the Floodwave-Response Technique. Hydrogeol. J. 2004, 12, 628–642. [Google Scholar] [CrossRef]
- Gianni, G.; Richon, J.; Perrochet, P.; Vogel, A.; Brunner, P. Rapid Identification of Transience in Streambed Conductance by Inversion of Floodwave Responses. Water Resour. Res. 2016, 52, 2647–2658. [Google Scholar] [CrossRef]
- Jha, M.K.; Singh, A. Application of Genetic Algorithm Technique to Inverse Modeling of Tide-Aquifer Interaction. Environ. Earth Sci. 2014, 71, 3655–3672. [Google Scholar] [CrossRef]
- Jerbi, H. Consideration of the Use of Direct Recharge in Analytical Models of Floodwave Response: A Case Study of the Merguellil Alluvial Aquifer, Central Tunisia. Hydrogeol. J. 2018, 26, 2395–2409. [Google Scholar] [CrossRef]
- Jia, Z.; Luo, W.; Fang, S.; Wang, L.; Tian, S. Quantifying Drainage Components and Salt and Water Balance in YinNan Irrigation District, China, Based on a Controlled Drainage Experiment. Hydrol. Process. 2007, 21, 1875–1881. [Google Scholar] [CrossRef]
- Wang, X.; Hollanders, P.H.J.; Wang, S.; Fang, S. Effect of Field Groundwater Table Control on Water and Salinity Balance and Crop Yield in the Qingtongxia Irrigation District, China. Irrig. Drain. 2004, 53, 263–275. [Google Scholar] [CrossRef]
- Xu, Z. Water Resources Evaluation of Urban Water Sources in Wuzhong City of Ningxia. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2018. (In Chinese). [Google Scholar]
- Cai, Z.; Wang, W.; Zhao, M.; Ma, Z.; Li, Y. Interaction Between Surface Water and Groundwater in Yinchuan Plain. Water 2020, 12, 2635. [Google Scholar] [CrossRef]
- Qian, H.; Wu, J.; Zhou, Y.; Li, P. Stable Oxygen and Hydrogen Isotopes as Indicators of Lake Water Recharge and Evaporation in the Lakes of the Yinchuan Plain. Hydrol. Process. 2013, 28, 3554–3562. [Google Scholar] [CrossRef]
- Chen, Y. Dynamic Change of Shallow Aquifer in Qingtongxia Irrigation District and Water Ecology Protection. China Water Resour. 2016. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-SLZG201613027.htm (accessed on 12 March 2025). (In Chinese).
- Promma, K.; Zheng, C.; Asnachinda, P. Groundwater and Surface-Water Interactions in a Confined Alluvial Aquifer Between Two Rivers: Effects of Groundwater Flow Dynamics on High Iron Anomaly. Hydrogeol. J. 2007, 15, 495–513. [Google Scholar] [CrossRef]
- Jardani, A.; Dupont, J.P.; Revil, A.; Massei, N.; Fournier, M.; Laignel, B. Geostatistical Inverse Modeling of the Transmissivity Field of a Heterogeneous Alluvial Aquifer Under Tidal Influence. J. Hydrol. 2012, 472–473, 287–300. [Google Scholar] [CrossRef]
- Hsiao, C.T.; Chang, L.C.; Tsai, J.P.; Chen, Y.C. Features of Spatiotemporal Groundwater Head Variation Using Independent Component Analysis. J. Hydrol. 2017, 547, 623–637. [Google Scholar] [CrossRef]
- Yeh, T.C.J.; Srivastava, R.; Guzman, A.; Harter, T. A Numerical Model for Water Flow and Chemical Transport in Variably Saturated Porous Media. Groundwater 1993, 31, 634–644. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Q.; Li, Y.; Tong, Y.; Sun, Y. The Report on the Hydrogeological Environmental Geological Survey of the Yellow River Economic Zone in Ningxia. 2016. Available online: https://www.cgl.org.cn/new/szzy0516.html (accessed on 12 March 2025).
- El-Azhari, A.; Karaoui, I.; Brahim, Y.A.; Azhar, M.; Chehbouni, A.; Bouchaou, L. Analyses of Groundwater Level in a Data-Scarce Region Based on Assessed Precipitation Products and Machine Learning. Groundw. Sustain. Dev. 2024, 26, 101299. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, M.R.; Kavianpour, Y.; Hong, Y. Comparison of PERSIANN and V7 TRMM Multi-satellite Precipitation Analysis (TMPA) Products with Rain Gauge Data over Iran. Int. J. Remote Sens. 2024, 34, 8156–8171. [Google Scholar] [CrossRef]
No | Hydraulic Conductivity (K) | Radius of Influence (m) | ||||||
---|---|---|---|---|---|---|---|---|
(m/d) | ||||||||
K1 | K2 | K3 | K (Average) | Standard Deviation of K | R1 | R2 | R3 | |
Y28 | 11.485 | 10.345 | 9.405 | 10.411 | 0.850463926 | 121.30 | 200.36 | 274.28 |
Y34 | 8.647 | 8.696 | 8.322 | 8.555 | 0.165965860 | 120.70 | 181.87 | 259.29 |
Y36 | 6.094 | 6.293 | 5.944 | 6.110 | 0.142945988 | 140.00 | 219.00 | 297.00 |
Y37 | 9.299 | 8.772 | 7.978 | 8.683 | 0.542955492 | 129.26 | 208.63 | 285.43 |
Y40 | 6.846 | 7.283 | 7.314 | 7.148 | 0.213685647 | 122.13 | 258.01 | 294.48 |
Y41 | 5.318 | 5.321 | 5.326 | 5.322 | 0.003299832 | 65.73 | 106.34 | 193.63 |
Y43 | 4.081 | 4.525 | 4.645 | 4.417 | 0.242586067 | 80.61 | 221.33 | 362.81 |
Y45 | 5.693 | 5.564 | 5.229 | 5.495 | 0.195551073 | 115.98 | 233.57 | 344.81 |
Y46 | 8.307 | 8.252 | 7.818 | 8.126 | 0.218708837 | 127.14 | 187.79 | 288.71 |
Y48 | 4.624 | 4.806 | 4.797 | 4.609 | 0.083754934 | 146.95 | 195.10 | 251.71 |
Y25 | 6.650 | 5.988 | 6.334 | 6.324 | 0.270352856 | 140.17 | 225.38 | 325.10 |
Y26 | 10.124 | 9.700 | 8.004 | 9.276 | 0.915944685 | 129.93 | 180.68 | 300.25 |
Number | K (Pumping Test) (m/d) | Inversed K (m/d) | Error (%) |
---|---|---|---|
Y28 | 10.411 | 5.732 | 44.90% |
Y34 | 8.555 | 5.538 | 35.26% |
Y36 | 6.11 | 6.43 | 5.24% |
Y37 | 8.683 | 6.992 | 19.47% |
Y40 | 7.148 | 5.51 | 22.92% |
Y41 | 5.322 | 4.83 | 9.24% |
Y43 | 4.417 | 4.969 | 12.50% |
Y45 | 5.495 | 6.237 | 13.50% |
Y46 | 8.126 | 6.26 | 22.96% |
Y48 | 4.609 | 4.2 | 8.87% |
Y25 | 6.324 | 5.64 | 10.82% |
Y26 | 9.276 | 5.487 | 40.85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Lu, C.; Xu, W.; Wu, P.; Fang, L.; Li, Y. Hydrogeological Parameters Identification in the Qingtongxia Irrigation Area Using Canal Stage Fluctuations. Water 2025, 17, 861. https://doi.org/10.3390/w17060861
Cai Z, Lu C, Xu W, Wu P, Fang L, Li Y. Hydrogeological Parameters Identification in the Qingtongxia Irrigation Area Using Canal Stage Fluctuations. Water. 2025; 17(6):861. https://doi.org/10.3390/w17060861
Chicago/Turabian StyleCai, Zizhao, Chuan Lu, Wei Xu, Ping Wu, Lei Fang, and Yongping Li. 2025. "Hydrogeological Parameters Identification in the Qingtongxia Irrigation Area Using Canal Stage Fluctuations" Water 17, no. 6: 861. https://doi.org/10.3390/w17060861
APA StyleCai, Z., Lu, C., Xu, W., Wu, P., Fang, L., & Li, Y. (2025). Hydrogeological Parameters Identification in the Qingtongxia Irrigation Area Using Canal Stage Fluctuations. Water, 17(6), 861. https://doi.org/10.3390/w17060861