Climate Change and Hydrological Processes, 2nd Edition
1. Introduction
2. Main Contributions to This Special Issue
3. Concluding Remarks
Funding
Conflicts of Interest
List of Contributions
- Radu, A.; Comănescu, L. Historical Evolution and Future Trends of Riverbed Dynamics Under Anthropogenic Impact and Climatic Change: A Case Study of the Ialomița River (Romania). Water 2025, 17, 2151. https://doi.org/10.3390/w17142151.
- Ajin, R.S.; Costache, R.; Bărbulescu, A.; Fanti, R.; Segoni, S. Flood Susceptibility Assessment Using Multi-Tier Feature Selection and Ensemble Boosting Machine Learning Models. Water 2025, 17, 2041. https://doi.org/10.3390/w17142041.
- Dobrica, G.; Maftei, C.E.; Carazeanu Popovici, I.; Lupascu, N. Evolution of Nuntași-Tuzla Lake Chemistry in the Context of Human Intervention. Water 2025, 17, 1482. https://doi.org/10.3390/w17101482.
- Popescu, C.; Bărbulescu, A. GIS-Based Accessibility Analysis for Emergency Response in Hazard-Prone Mountain Catchments: A Case Study of Vărbilău, Romania. Water 2025, 17, 2803. https://doi.org/10.3390/w17192803.
- Ma, H.; Jing, J.; Dai, C.; Xu, Y.; Qi, P.; Song, H. Spatiotemporal Dynamics of Drought–Flood Abrupt Alternations and Their Delayed Effects on Vegetation Growth in Heilongjiang River Basin. Water 2025, 17, 1419. https://doi.org/10.3390/w17101419.
- Ande, R.; Pandugula, C.; Mehta, D.; Vankayalapati, R.; Birbal, P.; Verma, S.; Azamathulla, H.M.; Nanavati, N. Understanding Climate Change Impacts on Streamflow by Using Machine Learning: Case Study of Godavari Basin. Water 2025, 17, 1171. https://doi.org/10.3390/w17081171.
- Taheri, M.; Bigdeli, M.; Imanian, H.; Mohammadian, A. An Overview of Evapotranspiration Estimation Models Utilizing Artificial Intelligence. Water 2025, 17, 1384. https://doi.org/10.3390/w17091384.
- Wang, H.; Wang, W.; Guo, F. Time-Lag Effects of Winter Arctic Sea Ice on Subsequent Spring Precipitation Variability over China and Its Possible Mechanisms. Water 2025, 17, 1443. https://doi.org/10.3390/w17101443.
References
- Bărbulescu, A.; Maftei, C.E. Evaluating the Probable Maximum Precipitation. Case study from the Dobrogea region, Romania. Rom. Rep. Phys. 2023, 75, 704. [Google Scholar] [CrossRef]
- Albulescu, A.C.; Minea, I.; Boicu, D.; Larion, D. Comparative multi-criteria assessment of hydrological vulnerability—Case study: Drainage basins in the Northeast Region of Romania. Water 2022, 14, 1302. [Google Scholar] [CrossRef]
- Birsan, M.-V.; Nita, I.-A.; Amihăiesei, V.-A. Influence of large-scale atmospheric circulation on Romanian snowpack duration. Rom. Rep. Phys. 2024, 76, 708. [Google Scholar]
- Cristian, A.; Zuzeac, M.; Ciocan, G.; Iorga, G.; Antonescu, B. A thunderstorm climatology of Romania (1941―2022). Rom. Rep. Phys. 2024, 76, 710. [Google Scholar]
- Wang, L.; Cui, S.; Li, Y.; Huang, H.; Manandhar, B.; Nitivattananon, V.; Fang, H.; Huang, W. A review of the flood management: From flood control to flood resilience. Heliyon 2022, 8, e11763. [Google Scholar] [CrossRef] [PubMed]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; López-Moreno, J.I.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef]
- Bertoldi, G.; Camporese, M.; Sulis, M. Advances in Catchment Science through Integrated Hydrological Modelling and Monitoring. Water 2021, 13, 2013. [Google Scholar] [CrossRef]
- John, A.; Nathan, R.; Horne, A.; Stewardson, M.; Webb, J.A. How to incorporate climate change into modelling environmental water outcomes: A review. J. Water Clim. Change 2020, 11, 327–340. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- WMO. State of Climate Services 2021: Water; World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Gudmundsson, L.; Seneviratne, S.I.; Zhang, X. Anthropogenic climate change detected in European drought observations. Environ. Res. Lett. 2016, 11, 044005. [Google Scholar] [CrossRef]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; pp. 131–202. [Google Scholar]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Change 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Taylor, R.G.; Favreau, G.; Todd, M.C.; Shamsudduha, M.; Villholth, K.G.; MacDonald, A.M.; Scanlon, B.R.; Kotchoni, D.O.; Vouillamoz, J.M.; et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 2019, 572, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, L.; Leonard, M.; Do, H.X.; Westra, S.; Seneviratne, S.I. Observed trends in global indicators of mean and extreme streamflow. Geophys. Res. Lett. 2019, 46, 756–766. [Google Scholar] [CrossRef]
- Dumitriu, C.Ș.; Bărbulescu, A.; Maftei, C.E. IrrigTool—A New Tool for Determining the Irrigation Rate Based on Evapotranspiration Estimated by the Thornthwaite Equation. Water 2022, 14, 2399. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 2019, 9, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Popescu-Bodorin, N.; Bărbulescu, A. A ten times smaller version of CPC Global Daily Precipitation Dataset for parallel distributed processing in Matlab and R. Rom. Rep. Phys. 2024, 76, 703. [Google Scholar]
- van Dijk, A.I.J.M.; Brakenridge, G.R.; Kettner, A.J.; Beck, H.E.; De Groeve, T.; Schellekens, J. River gauging at global scale using optical and passive microwave remote sensing. Water Resour. Res. 2016, 52, 6404–6418. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. An evolutionary perspective on water governance: From understanding to transformation. Water Resour. Manag. 2017, 31, 2917–2932. [Google Scholar] [CrossRef]
- UNESCO-WWAP. The United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A. Climate Change and Hydrological Processes, 2nd Edition. Water 2025, 17, 2943. https://doi.org/10.3390/w17202943
Bărbulescu A. Climate Change and Hydrological Processes, 2nd Edition. Water. 2025; 17(20):2943. https://doi.org/10.3390/w17202943
Chicago/Turabian StyleBărbulescu, Alina. 2025. "Climate Change and Hydrological Processes, 2nd Edition" Water 17, no. 20: 2943. https://doi.org/10.3390/w17202943
APA StyleBărbulescu, A. (2025). Climate Change and Hydrological Processes, 2nd Edition. Water, 17(20), 2943. https://doi.org/10.3390/w17202943