Coupled Influence of Landscape Pattern and River Structure on Water Quality of Inlet Rivers in the Chaohu Lake Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Sub-Watershed Delineation
2.3.2. Calculation of Landscape Pattern Indices
2.3.3. Calculation of River Structure Indicators
2.3.4. Pearson Correlation Analysis
2.3.5. Partial Least Squares Structural Equation Modelling (PLS-SEM)
3. Results and Discussion
3.1. Spatial Analysis of Water Quality in Sub-Watersheds
3.2. Impact of Landscape Pattern on River Water Quality
3.3. Impact of River Structure on Water Quality
3.4. Coupled Effects of River Structure and Landscape Pattern on Water Quality
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CLB | Chaohu Lake Basin |
CODMn | Permanganate index |
COHESION | Patch cohesion index |
CONTAG | Contagion |
DO | Dissolved oxygen |
LPI | Largest patch index |
NH3-N | Ammonia nitrogen |
NP | Number of patches |
PD | Patch density |
PLS-SEM | Partial least squares structural equation modelling |
Rd | River density |
Rf | River frequency |
SHDI | Shannon diversity |
SHEI | Shannon evenness index |
T | Temperature |
TN | Total nitrogen |
TP | Total phosphorus |
TURB | Turbidity |
Wp | Water surface ratio |
α | Circuits |
β | Edge–node ratio |
γ | Network connectivity |
References
- Nguyen, G.T.; Truong, D.H. Risks of Surface Water Pollution in Southern Vietnam. Civ. Eng. J. 2023, 9, 2725–2735. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, Y.; Zhao, J.; Li, X.; Yu, J.; Qian, G. Changes in Reticular River Network under Rapid Urbanization: A Case of Pudong New Area, Shanghai. Water 2022, 14, 523. [Google Scholar] [CrossRef]
- Oswald, C.J.; Kelleher, C.; Ledford, S.H.; Hopkins, K.G.; Sytsma, A.; Tetzlaff, D.; Toran, L.; Voter, C. Integrating urban water fluxes and moving beyond impervious surface cover: A review. J. Hydrol. 2023, 618, 129188. [Google Scholar] [CrossRef]
- Xi, S.; Liu, G.; Zhou, C.; Wu, L.; Liu, R. Assessment of the sources of nitrate in the Chaohu Lake, China, using a nitrogen and oxygen isotopic approach. Environ. Earth Sci. 2015, 74, 1647–1655. [Google Scholar] [CrossRef]
- Yang, X.; Cui, H.; Liu, X.; Wu, Q.; Zhang, H. Water pollution characteristics and analysis of Chaohu Lake basin by using different assessment methods. Environ. Sci. Pollut. Res. 2020, 27, 18168–18181. [Google Scholar] [CrossRef]
- Yu, H.; Xi, B.; Jiang, J.; Heaphy, M.J.; Wang, H.; Li, D. Environmental heterogeneity analysis, assessment of trophic state and source identification in Chaohu Lake, China. Environ. Sci. Pollut. Res. 2011, 18, 1333–1342. [Google Scholar] [CrossRef]
- Xi, S.-S.; Zhou, C.-C.; Liu, G.-J.; Wu, L.; Wang, P.-H. Spatial and Temporal Distributions of Nitrogen and Phosphate in the Chaohu Lake. Huan Jing Ke Xue = Huanjing Kexue 2016, 37, 542–547. [Google Scholar]
- Liu, J.; Liu, X.; Wang, Y.; Li, Y.; Jiang, Y.; Wang, M.; Wu, J. Landscape pattern at the class level regulates the stream water nitrogen and phosphorus levels in a Chinese subtropical agricultural catchment. Agric. Ecosyst. Environ. 2020, 295, 106897. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, L.; Wang, Y.; Gong, J.; Li, J.; Chen, Q. Dynamics in construction land patterns and its impact on water-related ecosystem services in Chengdu-Chongqing urban agglomeration, China: A multi-scale study. J. Clean. Prod. 2024, 469, 143022. [Google Scholar] [CrossRef]
- Ren, W.; Wu, X.; Ge, X.; Lin, G.; Feng, L.; Ma, W.; Xu, D. Study on the Water Quality Characteristics of the Baoan Lake Basin in China under Different Land Use and Landscape Pattern Distributions. Int. J. Environ. Res. Public Health 2022, 19, 6082. [Google Scholar] [CrossRef]
- Liang, X.; Pan, Y.; Li, C.; Wu, W.; Huang, X. Evaluating the Influence of Land Use and Landscape Pattern on the Spatial Pattern of Water Quality in the Pearl River Basin. Sustainability 2023, 15, 15146. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Zhang, H.; Cao, J.; Chen, J.; Su, C.; Chen, Y. The Impact of Land—Use Composition and Landscape Pattern on Water Quality at Different Spatial Scales in the Dan River Basin, Qin Ling Mountains. Water 2023, 15, 3276. [Google Scholar] [CrossRef]
- Xu, Q.Y.; Wang, P.; Shu, W.; Ding, M.J.; Zhang, H. Influence of landscape structures on river water quality at multiple spatial scales: A case study of the Yuan river watershed, China. Ecol. Indic. 2021, 121, 107226. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Zeng, P.; Wang, Y.; Li, G.; Sun, F.; Che, Y. Linking hydraulic geometry, land use, and stream water quality in the Taihu Basin, China. Environ. Monit. Assess. 2021, 193, 484. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Q.; Xu, Y.; Lu, M.; Lin, Z.; Gao, B. Dynamic impacts of changes in river structure and connectivity on water quality under urbanization in the Yangtze River Delta plain. Ecol. Indic. 2022, 135, 108582. [Google Scholar] [CrossRef]
- Zimmer, M.A.; Burgin, A.J.; Kaiser, K.; Hosen, J. The unknown biogeochemical impacts of drying rivers and streams. Nat. Commun. 2022, 13, 4. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Liu, L.; Wang, R.; Tang, X.; Li, Y.; Li, X. Spatial heterogeneity of the effects of river network patterns on water quality in highly urbanized city. Sci. Total Environ. 2024, 937, 173549. [Google Scholar] [CrossRef]
- Deng, X.J.; Xu, Y.P.; Han, L.F. Impacts of human activities on the structural and functional connectivity of a river network in the Taihu Plain. Land Degrad. Dev. 2018, 29, 2575–2588. [Google Scholar] [CrossRef]
- Urbach, N.; Ahlemann, F. Structural equation modeling in information systems research using Partial Least Squares. J. Inf. Technol. Theory Appl. 2010, 11, 2. [Google Scholar]
- Ahmed, M.F.; Mokhtar, M.B.; Alam, L. Factors influencing people’s willingness to participate in sustainable water resources management in Malaysia. J. Hydrol. Reg. Stud. 2020, 31, 100737. [Google Scholar] [CrossRef]
- Peng, S.; Wu, P.; Lu, Y.; Chen, L.; Wang, Z.; Lu, Y. Influence of river structure and hydrodynamics on water quality in the upper Taihu Basin, China. J. Clean. Prod. 2024, 453, 142262. [Google Scholar] [CrossRef]
- Cai, Y.J.; Wei, J.H.; Zhang, S.Y.; Wang, X.L.; Zhang, Z.M.; Gao, J.F. Spatial Risk Assessment and Source Identification of Heavy Metals in Riverine Sediments of Lake Chaohu Basin, China. Ecosyst. Health Sustain. 2023, 9, 0040. [Google Scholar] [CrossRef]
- Lu, S.; Wu, L.; Guan, H.; Hu, X.; Yang, B.; Luo, W.; Xu, Z.; Zhang, Y.; Liu, B.; Cai, W. Geochemical sedimentary records of eutrophication and environmental change in Chaohu Lake, East China. Open Geosci. 2024, 16, 20220649. [Google Scholar] [CrossRef]
- Chang, W.; Xu, S.-D.; Liu, T.; Wu, L.-L.; Liu, S.-T.; Liu, G.; Sun, J.; Luo, Y.-X.; Gao, L.; Li, H.; et al. Risk prioritization and experimental validation of per- and polyfluoroalkyl substances (PFAS) in Chaohu Lake: Based on nontarget and target analyses. J. Hazard. Mater. 2025, 492, 138179. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Datasets and Its Dynamics in China from 1985 to 2023. 2024. Available online: https://zenodo.org/records/8176941 (accessed on 15 June 2024).
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Zhang, L.; Jin, H.; Mu, Y.; Wang, L. A Pearson correlation-based adaptive variable grouping method for large-scale multi-objective optimization. Inf. Sci. 2023, 639, 118737. [Google Scholar] [CrossRef]
- Leveque, J.G.; Burns, R.C. A Structural Equation Modeling approach to water quality perceptions. J. Environ. Manag. 2017, 197, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Iqbal, J.; Nasir, M.J.; Ahmad, B.; Khan, M.T.; Khan, S.N.; Adnan, S. Impact of land use/land cover changes on water quality and human health in district Peshawar Pakistan. Sci. Rep. 2021, 11, 16526. [Google Scholar] [CrossRef]
- Coffey, R.; Benham, B.; Wolfe, M.L.; Dorai-Raj, S.; Bhreathnach, N.; O’Flaherty, V.; Cormican, M.; Cummins, E. Sensitivity of streamflow and microbial water quality to future climate and land use change in the West of Ireland. Reg. Environ. Chang. 2016, 16, 2111–2128. [Google Scholar] [CrossRef]
- Deng, X.J. Correlations between water quality and the structure and connectivity of the river network in the Southern Jiangsu Plain, Eastern China. Sci. Total Environ. 2019, 664, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.T.; Droste, R.L.; Rennie, C.D. An objective test of stochastic behavior in riverine water quality models. Water Sci. Technol. 2009, 59, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Du, Y. The Effect of Generative AI Ethics on Users’ Continuous Usage Intentions: A PLS-SEM and fsQCA Approach. Int. J. Hum.-Comput. Interact. 2025; early access. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, F.; Wang, X.; Chan, N.W.; Rahman, H.A.; Yang, S.; Tan, M.L. Assessing the factors influencing water quality using environment water quality index and partial least squares structural equation model in the Ebinur Lake Watershed, Xinjiang, China. Environ. Sci. Pollut. Res. 2022, 29, 29033–29048. [Google Scholar] [CrossRef] [PubMed]
Data Type | Data Sources | Spatial Resolution | Temporal Resolution | Accuracy Validation Method | Key Quality Metrics |
---|---|---|---|---|---|
Water quality data | Anhui Ecological Environment Monitoring Centre | Point data | Annual average | Laboratory standard method comparison | Relative error < 5% |
River network data | 1:100,000 National Basic Geographical Database (NGCC), CAS | 1:100,000 | 2022 version | Verification with 1:50,000 topographic maps | River density error within ±5% |
Land use data | China 30 m resolution yearly land cover dataset (CLDC), Wuhan University | 30 m | 2023 | Field validation with 335,709 samples | Overall accuracy 92.3% |
Sub-watershed boundaries | HydroBASINS (WWF & IIASA) | 15 arc-second DEM | Stable version | Hydrological consistency check | Nesting level error < 1% |
Category | Name | Acronym | Significance |
---|---|---|---|
Landscape fragmentation | patch density | PD | Number of landscape patches per unit area. |
number of patches | NP | Reflecting the degree of landscape fragmentation. | |
Landscape aggregation | patch cohesion index | COHESION | Measures the physical connectivity of patch types. |
contagion | CONTAG | Describes the degree of agglomeration of each patch type. | |
largest patch index | LPI | Proportion of the largest patch in the landscape area. | |
Landscape diversity | Shannon diversity | SHDI | Measures the diversity of patch types in the landscape. |
Shannon evenness index | SHEI | Measures the balance of distribution of landscape types, with values close to 1 indicating that the area of each type is evenly distributed. |
Name | Abbr | Equation | Significance |
---|---|---|---|
River density | Rd | Rd = L/A | High values show that dense tributary networks promote multi-channel transport of pollutants (in km/km2) |
River frequency | Rf | Rf = t/A | High values show that dense tributary networks promote multi-channel transport of pollutants (in bars/km2). |
Water surface ratio | Wp | Wp = Wa/A | High values indicate a water body’s strong capacity to hold pollutants |
Circuits | α | α = (h − j + 1)/(2j − 5) | High values indicate a high likelihood of pollutant transfer between the two nodes |
Edge–node ratio | β | β = h/j | High values indicate complex flow paths in the river network |
Network connectivity | γ | γ = h/[3(j − 2)] | Magnitude of probability of change in flow path within the river network |
Evaluating Indicators | Types | Values |
---|---|---|
VIF | CODMn | 2.774 |
COHESION | 1.016 | |
DO | 1.599 | |
Impervious | 1.016 | |
NH3-N | 2.774 | |
PH | 1.599 | |
T | 2.204 | |
TURB | 2.204 | |
Wp | 1 | |
α | 1 | |
γ | 1 | |
AVE | LP | 0.605 |
RS | 0.665 | |
water quality | 0.524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Wang, H.; Wen, S.; Li, Y.; Huang, C. Coupled Influence of Landscape Pattern and River Structure on Water Quality of Inlet Rivers in the Chaohu Lake Basin. Water 2025, 17, 2422. https://doi.org/10.3390/w17162422
Zhu H, Wang H, Wen S, Li Y, Huang C. Coupled Influence of Landscape Pattern and River Structure on Water Quality of Inlet Rivers in the Chaohu Lake Basin. Water. 2025; 17(16):2422. https://doi.org/10.3390/w17162422
Chicago/Turabian StyleZhu, Hongyu, Haibei Wang, Shanshan Wen, Yunmei Li, and Chang Huang. 2025. "Coupled Influence of Landscape Pattern and River Structure on Water Quality of Inlet Rivers in the Chaohu Lake Basin" Water 17, no. 16: 2422. https://doi.org/10.3390/w17162422
APA StyleZhu, H., Wang, H., Wen, S., Li, Y., & Huang, C. (2025). Coupled Influence of Landscape Pattern and River Structure on Water Quality of Inlet Rivers in the Chaohu Lake Basin. Water, 17(16), 2422. https://doi.org/10.3390/w17162422