Study on the Impact of Closed Coal Mines on Groundwater in the Panlong River Basin (Shangdong Province, China) Based on Sulfur and Oxygen Isotopes
Abstract
:1. Introduction
2. Study Area
3. Sampling and Analysis Methods
3.1. Sample Collections
3.2. Physical-Chemical Testing
3.3. Analysis of Stable Isotopes
4. Results and Discussions
4.1. Hydrochemical Characteristics of Water Samples
4.2. Hydrochemical Types Analysis
4.3. Analysis of Water–Rock Interaction of Water Samples
4.4. Sulfur and Oxygen Isotope Characteristics
4.5. Source Identification of Sulfate
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, D.N.; Ortega-Camacho, D.; Acosta-González, G.; Leal-Bautista, R.M.; Fox, W.E.; Cejudo, E. A multi-approach assessment of land use effects on groundwater quality in a karstic aquifer. Heliyon 2020, 6, e3970. [Google Scholar] [CrossRef] [PubMed]
- Sheibani, S.; Ataie-Ashtiani, B.; Safaie, A.; Simmons, C.T. Influence of lakebed sediment deposit on the interaction of hypersaline lake and groundwater: A simplified case of lake Urmia, Iran. J. Hydrol. 2020, 588, 125110. [Google Scholar] [CrossRef]
- Barbieri, M.; Barberio, M.D.; Banzato, F.; Billi, A.; Boschetti, T.; Franchini, S.; Gori, F.; Petitta, M. Climate change and its effect on groundwater quality. Environ. Geochem. Health 2023, 45, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Junyi, H.; Shi, Y.; Zhang, Q.; Li, L. Hydrochemical characteristics and estimation of the dissolved inorganic carbon flux in the Donghe River Basin of western Hunan. Hydrogeol. Eng. Geol. 2019, 46, 64–72. [Google Scholar]
- Zhou, J.; Ding, Y.; Zeng, G.; Wu, J.; Qin, J. Major Ion Chemistry of Surface Water in the Upper Reach of Shule River Basin and the Possible Controls. Environ. Sci. 2014, 35, 3315–3324. [Google Scholar]
- Li, J.; Zou, S.-Z.; Zhao, Y.; Zhao, R.-K.; Dang, Z.-W.; Pan, M.-Q.; Zhu, D.-N.; Zhou, C.-S. Major Ionic Characteristics and Factors of Karst Groundwater at Huixian Karst Wetland, China. Environ. Sci. 2021, 42, 1750–1760. [Google Scholar]
- Sappa, G.; Vitale, S.; Ferranti, F. Identifying Karst Aquifer Recharge Areas using Environmental Isotopes: A Case Study in Central Italy. Geosciences 2018, 8, 351. [Google Scholar] [CrossRef]
- Wannous, M.; Theilen-Willige, B.; Troeger, U.; Falk, M.; Siebert, C.; Bauer, F. Hydrochemistry and environmental isotopes of spring water and their relation to structure and lithology identified with remote sensing methods in Wadi Araba, Egypt. Hydrogeol. J. 2021, 29, 2245–2266. [Google Scholar] [CrossRef]
- Gu, H.; Chi, B.; Wang, H.; Zhang, Y.; Wang, M. Relationship between surface water and groundwater in the Liujiang Basin-Hydrochemical constrains. Adv. Earth Sci. 2017, 32, 789–799. [Google Scholar]
- Bing, L.; He, W.; Jiang, H.; Jia, Y.; Yang, Y.; Gu, H.; Huan, H. Transformation relationship of different water body in Donggong River based on hydrochemistry and hydrogen-oxygen isotopes. Res. Environ. Sci. 2020, 33, 1979–1990. [Google Scholar]
- Nguyen, B.C.; Putaud, J.P. Stable isotopes: Natural and anthropogenic sulphur in the environment. Atmos. Res. 1993, 29, 275. [Google Scholar] [CrossRef]
- Tuttle, M.; Breit, G.N.; Cozzarelli, I.M. Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA. Chem. Geol. 2009, 265, 455–467. [Google Scholar] [CrossRef]
- Ingri, J.; Torssander, P.; Andersson, P.; Mörth, C.-M.; Kusakabe, M. Hydrogeochemistry of sulfur isotopes in the Kalix River catchment, northern Sweden. Appl. Geochem. 2015, 12, 483–496. [Google Scholar] [CrossRef]
- Cortecci, G.; Boschetti, T.; Dinelli, E.; Cabella, R. Sulphur isotopes, trace elements and mineral stability diagrams of waters from the abandoned Fe–Cu mines of Libiola and Vigonzano (Northern Apennines, Italy). Water Air Soil Pollut. 2008, 192, 85–103. [Google Scholar] [CrossRef]
- Ma, Y.-H.; Su, C.-L.; Liu, W.-J.; Zhu, Y.-P.; Li, J.-X. Identification of sulfacte sources in the groundwater system of Zaozhuang: Evidences from isotopic and hydrochemical chracteristics. Environ. Sci. 2016, 37, 4690–4699. [Google Scholar]
- Qiuxia, Z.; Jianwei, Z.; Fengxin, K.; Shanghua, L.; Dong, W.; Liming, Z.; Lei, Y. Hydrodynamic analysis and isotope tracing for probing into groundwater pollution of Zibo mining area. Environ. Sci. Technol. 2016, 39, 116–122. [Google Scholar]
- Zhao, C.; Liang, Y.; Lu, H.; Tang, C.; Shen, H.; Wang, Z. SO42− δ34S Characteristcis of Environmental Effects of Karst Water in Niangziguan Spring Group. Carsologica Sin. 2019, 38, 867–875. [Google Scholar]
- DZ/T 0064.49-2021; Methods for Analysis of Groundwater Quality. Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2021.
- Huiming, B. Purifying barite for oxygen isotope measurement by dissolution andreprecipitation in a chelating solution. Anal. Chem. 2006, 78, 304–309. [Google Scholar]
- Zhang, Q.; Wang, H.; Lu, C. Tracing sulfate origin and transformation in an area with multiple sources of pollution in northern China by using environmental isotopes and Bayesian isotope mixing model. Environ. Pollut. 2020, 265, 115105. [Google Scholar] [CrossRef]
- GB/T 14848-2017; Standard for Groundwater Quality. Standardization Administration of China (SAC): Beijing, China, 2017.
- Wang, Y.; Shi, L.; Qiu, M. Analysis of Chemical Charateristics of Mine Water based on Piper Trilinear Diagram. Shandong Coal Sci. Technol. 2019, 4, 145–147. [Google Scholar] [CrossRef]
- Chidambaram, S.; Anandhan, P.; Prasanna, M.V.; Srinivasamoorthy, K.; Vasanthavigar, M. Major ion chemistry and identification of hydrogeochemical processes controlling groundwater in and around Neyveli Lignite Mines, Tamil Nadu, South India. Arab. J. Geosci. 2013, 6, 3451–3467. [Google Scholar] [CrossRef]
- Tu, C.-L.; Yin, L.-H.; He, C.-Z.; Cun, D.-X.; Ma, Y.-Q.; Linghu, C.-W. Hydrochemical Composition Characteristics and Control Factors of Xiaohuangni River Basin in the upper Pearl River. Environ. Sci. 2022, 43, 1885–1897. [Google Scholar]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 30. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Shen, J.; Qu, K.; Yin, N.; Yu, H.; Ma, G. Sulfur and Lead Isotope Composition and Tracing for Sources of Ore-forming Materials in Beiming River Iron Deposites, Southern Taihang Mountains. Geoscience 2011, 25, 846–852. [Google Scholar]
- Xiao, H.; Liu, C.; Li, S. Ceochemical Characteristics of Sulfur and Nitrogen Isotopic Compositions in Rains of Guiyang in Summer. Geochimica 2003, 32, 248–254. [Google Scholar]
- Zhang, D.; Yang, J.; Huang, X.; Liu, S.; Zhang, Z. Sources of dissolved heavy metals in river water of the Yiluo River basin based on sulfur isotope of sulfate. China Environ. Sci. 2019, 39, 2549–2559. [Google Scholar]
- Petelet-Giraud, E.; Klaver, G.; Negrel, P. Natural versus anthropogenic sources in the surface- and groundwater dissolved load of the Dommel river (Meuse basin): Constraints by boron and strontium isotopes and gadolinium anomaly. J. Hydrol. 2009, 369, 336–349. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, H.; Zhu, Y.; Piao, H.; Jiang, H.; Liu, D. Characterization of sulfur isotope composition of atmospheric precipitation in China. Prog. Nat. Sci. 1994, 4, 741–745. [Google Scholar]
- Li, X.; Gan, Y.; Zhou, A.; Liu, Y.; Wang, D. Hydrological controls on the sources of dissolved sulfate in the Heihe River, a large inland river in the arid Northwestern China, inferred from S and O isotopes. Appl. Geochem. 2013, 35, 99–109. [Google Scholar] [CrossRef]
- Goldberg, T.; Poulton, S.W.; Strauss, H. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution. Precambrian Res. 2005, 137, 223–241. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, C.Q.; Yang, Y.; Wu, P. Characterization of heavy metals and sulphur isotope in water and sediments of a mine-tailing area rich in carbonate. Water Air Soil Pollut. 2004, 155, 51–62. [Google Scholar] [CrossRef]
- Kohl, I.; Bao, H. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH = 2–11). Geochim. Et. Cosmochim. Acta 2011, 75, 1798. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Pang, W.; Teng, Y.; Qi, H. Using sulfur and oxygen isotope to trace the source of sulphate in Baotuquan spring area of Jinan. Geol. Surv. China 2019, 6, 75–80. [Google Scholar]
- Zhang, D.; Zhu, S.; Zhao, Z.; LI, H.; Yang, J.; Duan, H.; Guo, W.; Liu, Y. The Water-Sediment Regulation Scheme at Xiaolangdi Reservoir and Its Impact on Sulfur Cycling in the Yellow River Basin. Earth Sci. 2022, 47, 589–606. [Google Scholar]
Indicators | Surface Water (n = 7) | Pore Water (n = 23) | Mine Water (n = 9) | Karst Water (n = 25) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Avg. | SD | CV | Min. | Max. | Avg. | SD | CV | Min. | Max. | Avg. | SD | CV | Min. | Max. | Avg. | SD | CV | |
TDS (mg/L) | 385.00 | 1382.00 | 1049.80 | 398.80 | 0.38 | 389.00 | 2156.00 | 985.78 | 329.82 | 0.33 | 670.00 | 3620.00 | 2046.3 | 831.15 | 0.56 | 459.00 | 2139.00 | 868.96 | 347.75 | 0.40 |
TP | 0.01 | 0.13 | 0.04 | 0.05 | 1.06 | 0.007 | 0.064 | 0.028 | 0.01 | 0.53 | 0.011 | 0.103 | 0.032 | 0.03 | 0.83 | 0.007 | 0.126 | 0.027 | 0.02 | 0.81 |
TN | 0.20 | 4.20 | 1.37 | 1.27 | 0.93 | 0.31 | 48.44 | 18.91 | 14.23 | 0.75 | 0.296 | 37.763 | 14.609 | 14.93 | 1.02 | 0.67 | 45.68 | 13.97 | 9.57 | 0.68 |
K+ (mg/L) | 3.9 | 8.3 | 5.4 | 1.42 | 0.26 | 0.33 | 2.21 | 1.12 | 0.54 | 0.48 | 0.91 | 33.41 | 7.61 | 9.57 | 1.26 | 0.73 | 13.81 | 1.98 | 2.52 | 1.27 |
Na+ (mg/L) | 27.2 | 139.4 | 89.0 | 36.94 | 0.415 | 16.16 | 134.65 | 49.15 | 34.03 | 0.69 | 28.958 | 618.412 | 128.499 | 175.77 | 1.37 | 9.40 | 221.51 | 47.98 | 50.60 | 1.05 |
Ca2+ (mg/L) | 56.2 | 278.3 | 183.1 | 80.83 | 0.44 | 97.97 | 461.82 | 233.81 | 71.32 | 0.31 | 158.44 | 399.025 | 279.082 | 81.02 | 0.29 | 125.74 | 370.72 | 192.69 | 61.47 | 0.32 |
Mg2+ (mg/L) | 13.4 | 56.8 | 41.4 | 16.93 | 0.41 | 14.24 | 89.32 | 32.87 | 16.36 | 0.50 | 22.78 | 135.358 | 51.839 | 34.90 | 0.67 | 11.43 | 64.20 | 32.49 | 13.70 | 0.42 |
Cl− (mg/L) | 28.13 | 131.34 | 80.76 | 30.20 | 0.37 | 34.53 | 539.55 | 125.15 | 104.91 | 0.84 | 42.087 | 125.168 | 75.003 | 26.58 | 0.35 | 8.48 | 133.42 | 66.05 | 32.17 | 0.49 |
SO42− (mg/L) | 122.84 | 901.62 | 535.88 | 278.77 | 0.52 | 40.97 | 665.72 | 272.01 | 155.14 | 0.57 | 221.125 | 2049.01 | 657.16 | 566.30 | 0.86 | 106.09 | 1131.35 | 296.52 | 230.37 | 0.78 |
HCO32− (mg/L) | 117.22 | 306.20 | 209.08 | 71.78 | 0.34 | 270.32 | 527.48 | 373.75 | 65.75 | 0.18 | 258.355 | 729.61 | 424.08 | 126.77 | 0.30 | 220.08 | 497.57 | 332.18 | 56.87 | 0.17 |
NO3− (mg/L) | 0.05 | 2.40 | 0.93 | 0.83 | 0.89 | 0.19 | 45.67 | 18.48 | 12.73 | 0.69 | 0.248 | 37.72 | 14.99 | 14.48 | 0.97 | 0.50 | 42.09 | 13.13 | 9.18 | 0.70 |
F− (mg/L) | 0.09 | 0.87 | 0.53 | 0.30 | 0.57 | 0.07 | 0.71 | 0.27 | 0.18 | 0.67 | 0.057 | 0.351 | 0.183 | 0.09 | 0.47 | 0.035 | 0.27 | 0.14 | 0.06 | 0.41 |
Fe (μg/L) | 23.86 | 121.21 | 55.38 | 32.26 | 0.58 | 20.32 | 1174.50 | 117.09 | 229.96 | 1.96 | 44.43 | 22032.00 | 2731 | 6070.82 | 1.86 | 19.313 | 2268.56 | 307.41 | 575.57 | 1.87 |
Mn (μg/L) | 4.67 | 913.17 | 342.21 | 335.09 | 0.98 | 1.69 | 1897.55 | 238.77 | 483.85 | 2.03 | 0.70 | 5478 | 1898 | 1170.05 | 1.59 | 0.651 | 467.37 | 38.97 | 94.71 | 2.43 |
Water Bodies | Pore Water | Mine Water | Karst Water | |
---|---|---|---|---|
δ34SSO4 | Max. | 8.0‰ | 6.4‰ | 7.8‰ |
Min. | −2.5‰ | −4.7‰ | −3.4‰ | |
Avg. | 3.16‰ | 0.23‰ | 2.44‰ | |
SD | 3.36 | 2.70 | 2.45 | |
δ18OSO4 | Max. | 7.9‰ | 7.4‰ | 8.8‰ |
Min. | −0.2‰ | −0.3‰ | −4.6‰ | |
Avg. | 3.90‰ | 2.96‰ | 3.88‰ | |
SD | 2.79 | 2.96 | 2.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Chen, H.; Zhang, F.; Han, Z.; Shi, H.; Meng, J.; Feng, Q.; Chen, D. Study on the Impact of Closed Coal Mines on Groundwater in the Panlong River Basin (Shangdong Province, China) Based on Sulfur and Oxygen Isotopes. Water 2024, 16, 1634. https://doi.org/10.3390/w16111634
Chen H, Chen H, Zhang F, Han Z, Shi H, Meng J, Feng Q, Chen D. Study on the Impact of Closed Coal Mines on Groundwater in the Panlong River Basin (Shangdong Province, China) Based on Sulfur and Oxygen Isotopes. Water. 2024; 16(11):1634. https://doi.org/10.3390/w16111634
Chicago/Turabian StyleChen, Hao, Hongnian Chen, Feng Zhang, Zhantao Han, Huijian Shi, Jia Meng, Qiyan Feng, and Di Chen. 2024. "Study on the Impact of Closed Coal Mines on Groundwater in the Panlong River Basin (Shangdong Province, China) Based on Sulfur and Oxygen Isotopes" Water 16, no. 11: 1634. https://doi.org/10.3390/w16111634
APA StyleChen, H., Chen, H., Zhang, F., Han, Z., Shi, H., Meng, J., Feng, Q., & Chen, D. (2024). Study on the Impact of Closed Coal Mines on Groundwater in the Panlong River Basin (Shangdong Province, China) Based on Sulfur and Oxygen Isotopes. Water, 16(11), 1634. https://doi.org/10.3390/w16111634