The Current Oxygen and Hydrogen Isotopic Status of Lake Baikal
Abstract
:1. Introduction
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.13 | 0.33 | 4.88 | 0.55 | 0.82 | −17.8 | −28.16 | −216.34 | −18.36 | −139.76 |
2 | 0.85 | 0.2 | 4.32 | 0.06 | 0.76 | −14.4 | −25.31 | −199.11 | −17.37 | −132.96 |
3 | 0.93 | 0.24 | 5.08 | 0.23 | 0.65 | −6.4 | −20.73 | −161.14 | −16.57 | −126.37 |
4 | 2.5 | 0.58 | 4.82 | 0.77 | 0.56 | 2.5 | −14.92 | −113.98 | −15.39 | −116.76 |
5 | 7.74 | 0.91 | 4.54 | 0.52 | 0.55 | 10.2 | −13.31 | −103.39 | −15.27 | −115.93 |
6 | 11.71 | 1.61 | 4.46 | 0.12 | 0.67 | 15.4 | −11.25 | −93.09 | −14.99 | −114.46 |
7 | 11.09 | 2.58 | 4.82 | 0.17 | 0.74 | 18.3 | −9.89 | −78.05 | −14.44 | −109.97 |
8 | 10.46 | 2.2 | 5.08 | 0.94 | 0.78 | 15.8 | −9.71 | −74.97 | −14.49 | −110.03 |
9 | 8.29 | 1.39 | 5.02 | 1.77 | 0.76 | 9.1 | −14.13 | −106.36 | −15.30 | −115.81 |
10 | 5.23 | 0.7 | 5.18 | 2.85 | 0.73 | 1.8 | −20.98 | −157.25 | −16.15 | −122.10 |
11 | 2.18 | 0.86 | 5.31 | 3.42 | 0.79 | −7.6 | −25.51 | −191.26 | −18.33 | −138.30 |
12 | 1.49 | 0.86 | 5.39 | 3.33 | 0.85 | −15.3 | −27.53 | −212.21 | −19.90 | −152.10 |
2. Methods
3. Results and Discussion
3.1. The Southern Basin of Lake Baikal
3.2. The Central Basin of Lake Baikal
3.3. The Northern Basin of Lake Baikal
3.4. Isotopic Composition of the Surface Water
3.5. Isotopic Characteristics of Inflow in Precipitation, Rivers and the Lake
3.6. Isotopic Composition in 1991, 1992, and 2021
3.7. Renewal of Lake Baikal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potemkina, T.G.; Potemkin, V.L. Actual inflow of riverine sediment load into Lake Baikal: Main tributaries—The Selenga, Upper Angara, and Barguzin Rivers (Russia). Limnol. Freshw. Biol. 2021, 1, 1111–1114. [Google Scholar] [CrossRef]
- Seal, R.R.; Shanks, W.C. Oxygen and hydrogen isotope systematics of Lake Baikal, Siberia: Implications for paleoclimate studies. Limnol. Oceanogr. 1998, 43, 125–126. [Google Scholar] [CrossRef]
- Shimaraev, M.N.; Verbolov, V.I. Water temperature and circulation. In Lake Baikal: Evolution and Biodiversity; Kozhova, O.M., Izmest’eva, L.R., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 26–44. [Google Scholar]
- Shimaraev, M.N.; Granin, N.G.; Zhdanov, A.A. Deep ventilation of Lake Baikal waters due to spring thermal bars. Limnol. Oceanogr. 1993, 38, 1068–1072. [Google Scholar] [CrossRef]
- Shimaraev, M.N.; Sinyukovich, V.N.; Sizova, L.N.; Troitskaya, E.S. Heat balance of Lake Baikal and the relationship of its ice-thermal and water regime with global atmospheric circulation in the Northern Hemisphere during the modern period. Limnol. Freshw. Biol. 2018, 1, 10–14. [Google Scholar] [CrossRef]
- Weiss, R.F.; Carmack, E.C.; Koropalov, V.M. Deep-water renewal and biological production in Lake Baikal. Nature 1991, 349, 665–669. [Google Scholar] [CrossRef]
- Hohmann, R.; Hofer, M.; Kipfer, R.; Peeters, F.; Imboden, D.M.; Baur, H.; Shimaraev, M.N. Distribution of helium and tritium in Lake Baikal. J. Geophys. Res. 1998, 10, 12823–12838. [Google Scholar] [CrossRef] [Green Version]
- Bridgman, B.H.; Oliver, J.E. The Global Climate System: Patterns, Processes, and Teleconnections; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Aizen, E.M.; Aizen, V.B.; Melack, J.M.; Nakamura, T.; Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Climatol. 2001, 21, 535–556. [Google Scholar] [CrossRef]
- Galaziy, G.I. (Ed.) Atlas of Lake Baikal; Roskartografiya: Moscow, Russia, 1993.
- Gibson, J.J.; Birks, S.J.; Yi, Y. Stable isotope mass balance of lakes: A contemporary perspective. Quat. Sci. Rev. 2016, 131, 316–328. [Google Scholar] [CrossRef]
- Kurita, N.; Yoshida, N.; Inoue, G.; Chayanova, E.A. Modern isotope climatology of Russia: A first assessment. J. Geophys. Res. 2004, 109, D03102. [Google Scholar] [CrossRef]
- Yamanaka, T.; Tsujimura, M.; Oyunbaatar, D.; Davaa, G. Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle. J. Hydrol. 2007, 333, 21–34. [Google Scholar] [CrossRef]
- Kostrova, S.S.; Meyer, H.; Fernandoy, F.; Werner, M.; Tarasov, P.E. Moisture origin and stable isotope characteristics of precipitation in southeast Siberia. Hydrol. Process. 2020, 34, 51–67. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, J.R.; Vennemann, T.W.; McKenzie, W.F. Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4) aq and H2O. Geochim. Cosmochim. Acta 2003, 67, 3135–3144. [Google Scholar] [CrossRef]
- Liang, Y.; Blake, R.E. Oxygen isotope signature of Pi regeneration from organic compounds by phosphomonoesterases and photooxidation. Geochim. Cosmochim. Acta 2006, 70, 3957–3969. [Google Scholar] [CrossRef]
- Liang, Y.; Blake, R.E. Compound- and enzyme-specific phosphodiester hydrolysismechanisms revealed by δ18O of dissolved inorganic phosphate: Implications for marine P cycling. Geochim. Cosmochim. Acta 2009, 73, 3782–3794. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press.
- Sharma, S.; Richardson, D.C.; Woolway, R.I.; Imrit, M.A.; Bouffard, D.; Blagrave, K.; Daly, J.; Filazzola, A.; Granin, N.; Korhonen, J.; et al. Loss of ice cover, shifting phenology, and more extreme events in northern hemisphere lakes. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006348. [Google Scholar] [CrossRef]
- Timoshkin, O.A. Coastal zone of the world’s great lakes as a target feld for interdisciplinary research and ecosystem monitoring: Lake Baikal (East Siberia). Limnol. Freshw. Biol. 2018, 1, 81–97. [Google Scholar] [CrossRef]
- Vadeboncoeur, Y.; Moore, M.V.; Stewart, S.D.; Chandra, S.; Atkins, K.S.; Baron, J.S.; Bouma-Gregson, K.; Brothers, S.; Francoeur, S.N.; Genzoli, L.; et al. Blue waters, green bottoms: Benthic filamentous algal blooms are an emerging threat to clear lakes worldwide. BioScience 2021, 71, 1011–1027. [Google Scholar] [CrossRef]
- IAEA (International Atomic Energy Agency). Statistical treatment of data on environmental isotopes in precipitation. IAEA Tech. Rep. Ser. 1992, 331, 240–242. [Google Scholar]
- De Batist, M.; Canals, M.; Sherstyankin, P.; Alekseev, S.; The INTAS Project 99-1669 Team. A New Bathymetric Map of Lake Baikal. 2002. Available online: https://dataservices.gfz-potsdam.de/SDDB/showshort.php?id=escidoc:76692 (accessed on 26 November 2021).
- IGCE Roshydromet. A Report on Climate Features on the Territory of Russian Federation in 2016; Frolov, A.V., Ed.; Roshydromet Press: Moscow, Russia, 2017. (In Russian) [Google Scholar]
- Gonfiantini, R. Environmental isotopes in lake studies. In Handbook of Environmental Isotope Geochemistry; Fritz, P., Fontes, J.C., Eds.; Elsevier: New York, NY, USA, 1986; Volume 3, pp. 113–168. [Google Scholar]
- Gat, J.R. Stable Isotopes of fresh and saline lakes. In Physics and Chemistry of Lakes; Lerman, A., Imboden, D., Gat, J.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 139–166. [Google Scholar]
- Falkner, K.K.; Church, M.; Measures, C.I.; Le Baron, G.; Thouron, D.; Jeandel, C.; Stordal, M.C.; Gill, G.A.; Mortlock, R.; Froelich, P.; et al. Minor and trace element chemistry of Lake Baikal, its tributaries and surrounding hot springs. Limnol. Oceanogr. 1997, 42, 329–345. [Google Scholar] [CrossRef]
- Luterbacher, J.; Dietrich, D.; Xoplaki, E.; Grosjean, M.; Wanner, H. European seasonal and annual temperature variability, trends and extremes since 1500. Science 2004, 303, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Osborn, T.J.; Briffa, K.R. The spatial extent of 20th century warmth in the context of the past 1200 years. Science 2006, 311, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Fedotov, A.P.; Trunova, V.A.; Enushchenko, I.V.; Vorobyeva, S.S.; Stepanova, O.G.; Petrovskii, S.K.; Melgunov, M.S.; Zvereva, V.V.; Krapivina, S.M.; Zheleznyakova, T.O. A 850-year record climate and vegetation changes in East Siberia (Russia), inferred from geochemical and biological proxies of lake sediments. Environ. Earth Sci. 2015, 73, 7297–7314. [Google Scholar] [CrossRef]
- Hohmann, R.; Kipfer, R.; Peeters, F.; Piepke, G.; Imboden, D.M.; Shimaraev, M.N. Processes of deep-water renewal in Lake Baikal. Limnol. Oceanogr. 1997, 42, 841–855. [Google Scholar] [CrossRef] [Green Version]
- Peeters, F.; Kipfer, R.; Hohmann, R.; Hofer, M.; Imboden, D.M.; Kodenev, G.G.; Khodzher, T. Modeling transport rates in Lake Baikal: Gas exchange and deep water renewal. Environ. Sci. Technol. 1997, 31, 2973–2982. [Google Scholar] [CrossRef] [Green Version]
- Shimaraev, M.N.; Domysheva, V.M.; Gnatovskii, R.Y.; Blinov, V.V.; Sakirko, M.V. The influence of deep convection on aeration of the bottom zone in Baikal. Geogr. Nat. Resour. 2016, 37, 212–219. [Google Scholar] [CrossRef]
- Kuznetsova, L.P. Transfer of Moisture over the Territory of the USSR; Nauka: Moscow, Russia, 1978. (In Russian) [Google Scholar]
- Kracht, O.; Gresch, M.; Gujer, W. A stable isotope approach for the quantification of sewer infiltration. Environ. Sci. Technol. 2007, 41, 5839–5845. [Google Scholar] [CrossRef]
- Bieroza, M.; Baker, A.; Bridgeman, J.; Boomer, I. Stable isotopic composition of raw and treated water. Proceedings of the Institution of Civil Engineers. Water Manag. 2014, 167, 414–429. [Google Scholar]
- Timoshkin, O.A.; Moore, M.V.; Kulikova, N.N.; Tomberg, I.V.; Malnik, V.V.; Shimaraev, M.N.; Troitskaya, E.S.; Shirokaya, A.A.; Sinyukovich, V.N.; Zaitseva, E.P.; et al. Groundwater contamination by sewage causes benthic algal outbreaks in the littoral zone of Lake Baikal (East Siberia). J. Great Lakes Res. 2018, 44, 230–244. [Google Scholar] [CrossRef]
- Schilperoort, R.P.S.; Meijer, H.A.J.; Flamink, C.M.L.; Clemens, F.H.L.R. Changes in isotope ratios during domestic wastewater production. Water Sci. Technol. 2007, 55, 93–101. [Google Scholar] [CrossRef] [PubMed]
- De Bondt, K.; Seveno, F.; Petrucci, G.; Rodriguez, F.; Joannis, C.; Claeys, P. Potential and limits of stable isotopes (δ18O and δD) to detectparasitic water in sewers of oceanic climate cities. J. Hydrol. Reg. Stud. 2018, 18, 119–142. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedotov, A.; Gnatovsky, R.; Blinov, V.; Sakirko, M.; Domysheva, V.; Stepanova, O. The Current Oxygen and Hydrogen Isotopic Status of Lake Baikal. Water 2021, 13, 3476. https://doi.org/10.3390/w13233476
Fedotov A, Gnatovsky R, Blinov V, Sakirko M, Domysheva V, Stepanova O. The Current Oxygen and Hydrogen Isotopic Status of Lake Baikal. Water. 2021; 13(23):3476. https://doi.org/10.3390/w13233476
Chicago/Turabian StyleFedotov, Andrey, Ruslan Gnatovsky, Vadim Blinov, Maria Sakirko, Valentina Domysheva, and Olga Stepanova. 2021. "The Current Oxygen and Hydrogen Isotopic Status of Lake Baikal" Water 13, no. 23: 3476. https://doi.org/10.3390/w13233476
APA StyleFedotov, A., Gnatovsky, R., Blinov, V., Sakirko, M., Domysheva, V., & Stepanova, O. (2021). The Current Oxygen and Hydrogen Isotopic Status of Lake Baikal. Water, 13(23), 3476. https://doi.org/10.3390/w13233476