Next Article in Journal
The Determinants of Access to Sanitation: The Role of Human Rights and the Challenges of Measurement
Previous Article in Journal
Evaluation of Microbial Contamination of Groundwater under Different Topographic Conditions and Household Water Treatment Systems in Special Region of Yogyakarta Province, Indonesia
Article

Effect of Unimodal and Bimodal Soil Hydraulic Properties on Slope Stability Analysis

1
Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan
2
Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 701, Taiwan
*
Author to whom correspondence should be addressed.
Academic Editor: Renato Morbidelli
Water 2021, 13(12), 1674; https://doi.org/10.3390/w13121674
Received: 18 May 2021 / Revised: 10 June 2021 / Accepted: 14 June 2021 / Published: 16 June 2021
(This article belongs to the Section Hydrology)
Rainfall infiltration is the primary triggering factor of slope instability. The process of rainfall infiltration leads to changes in the water content and internal stress of the slope soil, thereby affecting slope stability. The soil water retention curve (SWRC) was used to describe the relationship between soil water content, matric suction, and the water retention characteristics of the soil. This characteristic is essential for estimating the properties of unsaturated soils, such as unsaturated hydraulic conductivity function and shear strength. Thus, SWRC is regarded as important information for depicting the properties of unsaturated soil. The SWRC is primarily affected by the soil pore size distribution (PSD) and has unimodal and bimodal features. The bimodal SWRC is suitable for soils with structural or dual-porous media. This model can describe the structure of micropores and macropores in the soil and allow the hydraulic behavior at different pore scales to be understood. Therefore, this model is more consistent with the properties of onsite soil. Few studies have explored the differences in the impact of unimodal and bimodal models on unsaturated slopes. This study aims to consider unimodal and bimodal SWRC to evaluate the impact of unsaturated slope stability under actual rainfall conditions. A conceptual model of the slope was built based on field data to simulate changes in the hydraulic behavior of the slope. The results of seepage analysis show that the bimodal model has a better water retention capacity than the unimodal model, and therefore, its water storage performance is better. Under the same saturated hydraulic conductivity function, the wetting front of the bimodal model moves down faster. This results in changes in the pressure head, water content, and internal stress of the soil. The results show that the water content and suction stress changes of the bimodal model are higher than those of the unimodal model due to the difference in water retention capacity. Based on the stability of the slope, calculated using the seepage analysis, the results indicate that the potential failure depth of the bimodal model is deeper than that of the unimodal model. View Full-Text
Keywords: soil hydraulic properties; soil water retention curve; slope stability soil hydraulic properties; soil water retention curve; slope stability
Show Figures

Figure 1

MDPI and ACS Style

Yeh, H.-F.; Huang, T.-T.; Lee, J.-W. Effect of Unimodal and Bimodal Soil Hydraulic Properties on Slope Stability Analysis. Water 2021, 13, 1674. https://doi.org/10.3390/w13121674

AMA Style

Yeh H-F, Huang T-T, Lee J-W. Effect of Unimodal and Bimodal Soil Hydraulic Properties on Slope Stability Analysis. Water. 2021; 13(12):1674. https://doi.org/10.3390/w13121674

Chicago/Turabian Style

Yeh, Hsin-Fu, Tsien-Ting Huang, and Jhe-Wei Lee. 2021. "Effect of Unimodal and Bimodal Soil Hydraulic Properties on Slope Stability Analysis" Water 13, no. 12: 1674. https://doi.org/10.3390/w13121674

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop