Socio-Hydrology: A New Understanding to Unite or a New Science to Divide?
Abstract
:1. Introduction
2. Socio-Hydrology: Originality, Practicality, and Contributions
2.1. Is Socio-Hydrology a New Science?
2.2. What Is New about Socio-Hydrology?
“System dynamics which provides a unique framework for integrating the disparate physical and social systems important to water resource management is formulated on the premise that the structure of a system, the network of cause and effect relations between system elements, governs the overall system’s behavior.[45]
The systems approach is a discipline for seeing the structures that underlie complex domains. System dynamics is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static snapshots, and for seeing processes rather than objects [21]. The major concept of the system dynamics simulation approach is feedback which is used as the basis for structuring description of complex systems and their economic, social, political, and environmental implications.[46]
The typical purpose of a system dynamics study is to realize how and why the dynamics of concern are generated and to look for managerial policies that can improve the situation.”[47]
“In system dynamics studies the emphasis is on understanding trends and behaviors rather than values and numbers.”
2.3. Where Are the Boundaries of Socio-Hydrology?
“Integrated studies of coupled human and natural systems reveal new and complex patterns and processes not evident when studied by social or natural scientists separately. Synthesis of six case studies from around the world shows that couplings between human and natural systems vary across space, time, and organizational units. They also exhibit nonlinear dynamics with thresholds, reciprocal feedback loops, time lags, resilience, heterogeneity, and surprises. Furthermore, past couplings have legacy effects on present conditions and future possibilities.”
2.4. Is Socio-Hydrology Practical?
2.5. Is Socio-Hydrology Converging to Water Resources Systems or Coupled Human and Natural Systems?
2.6. Is Socio-Hydrology Reinventing the Wheel?
“Socio-hydrology is still dominated by hydrologists, who have adopted a perceived hegemonic attitude toward inter-disciplinary collaboration.”
3. Efficiency of Our Peer-Review Systems
4. Conclusions and Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Review Report of “Socio-Hydrology: A New Science of People and Water”; National Technical University of Athens: Athens, Greece, 2011; Available online: http://www.itia.ntua.gr/en/docinfo/1991/ (accessed on 20 May 2020).
- Sivakumar, B. Socio-hydrology: Not a new science, but a recycled and re-worded hydrosociology. Hydrol. Process. 2012, 26, 3788–3790. [Google Scholar] [CrossRef]
- Falkenmark, M. Main problems of water use and transfer of technology. GeoJournal 1979, 3, 435–443. [Google Scholar] [CrossRef]
- Seidl, R.; Barthel, R. Linking scientific disciplines: Hydrology and social sciences. J. Hydrol. 2017, 550, 441–452. [Google Scholar] [CrossRef]
- McCurley, K.L.; Jawitz, J.W. Hyphenated hydrology: Interdisciplinary evolution of water resource science. Water Resour. Res. 2017, 53, 2972–2982. [Google Scholar] [CrossRef]
- Keys, P.W.; Wang-Erlandsson, L. On the social dynamics of moisture recycling. Earth Syst. Dyn. 2018, 9, 829–847. [Google Scholar] [CrossRef] [Green Version]
- Hynds, P.; Regan, S.; Andrade, L.; Mooney, S.; O’Malley, K.; DiPelino, S.; O’Dwyer, J. Muddy Waters: Refining the Way Forward for the “Sustainability Science” of Socio-Hydrogeology. Water 2018, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Smakhtin, V.U.; Shilpakar, R.L.; Hughes, D.A. Hydrology-based assessment of environmental flows: An example from Nepal. Hydrol. Sci. J. 2006, 51, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Kock, B. Agent-Based Models of Socio-Hydrological Systems for Exploring the Institutional Dynamics of Water Resources Conflict. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2008. [Google Scholar]
- Mohorjy, A.M. Multidisciplinary planning and managing of water reuse. JAWRA J. Am. Water Resour. Assoc. 1989, 25, 433–442. [Google Scholar] [CrossRef]
- Pande, S.; Sivapalan, M. Progress in socio-hydrology: A meta-analysis of challenges and opportunities. WIREs Water 2016, 4, e1193. [Google Scholar] [CrossRef] [Green Version]
- Di Baldassarre, G.; Sivapalan, M.; Rusca, M.; Cudennec, C.; Garcia, M.; Kreibich, H.; Konar, M.; Mondino, E.; Mård, J.; Pande, S.; et al. Sociohydrology: Scientific challenges in addressing the sustainable development goals. Water Resour. Res. 2019, 55, 6327–6355. [Google Scholar] [CrossRef] [Green Version]
- Leong, C. The role of narratives in sociohydrological models of flood behaviors. Water Resour. Res. 2018, 54, 3100–3121. [Google Scholar] [CrossRef]
- Sanderson, M.R.; Bergtold, J.S.; Heier Stamm, J.L.; Caldas, M.M.; Ramsey, S.M. Bringing the “social” into sociohydrology: Conservation policy support in the Central Great Plains of Kansas, USA. Water Resour. Res. 2017, 53, 6725–6743. [Google Scholar] [CrossRef]
- Haeffner, M.; Jackson-Smith, D.; Flint, C.G. Social position influencing the water perception gap between local leaders and constituents in a socio-hydrological system. Water Resour. Res. 2018, 54, 663–679. [Google Scholar] [CrossRef]
- Newell, B.; Wasson, R. Social system vs solar system: Why policy makers need history. In Conflict and Cooperation Related to International Water Resources: Historical Perspectives; Castelein, S., Otte, A., Eds.; UNESCO: Paris, France, 2002; p. 22. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Visualizing Bibliometric networks. In Measuring Scholarly Impact; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. ISBN 9783319103778. [Google Scholar]
- Mirchi, A.; Madani, K.; Watkins, D.; Ahmad, S. Synthesis of system dynamics tools for holistic conceptualization of water resources problems. Water Resour. Manag. 2012, 26, 2421–2442. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Fahmy, H. A new modeling approach for water resources policy analysis. Water Resour. Res. 1999, 35, 295–304. [Google Scholar] [CrossRef]
- Guo, H.C.; Liu, L.; Huang, G.H.; Fuller, G.A.; Zou, R.; Yin, Y.Y. A system dynamics approach for regional environmental planning and management: A study for the Lake Erhai Basin. J. Environ. Manag. 2001, 61, 93–111. [Google Scholar] [CrossRef] [Green Version]
- Madani, K. Water Transfer and watershed development: A system dynamics approach. In Proceedings of the World Environmental and Water Resources Congress, Tampa, FL, USA, 15–19 May 2007; pp. 1–15. [Google Scholar]
- Madani, K.; Mariño, M.A. System dynamics analysis for managing Iran’s Zayandeh-Rud river basin. Water Resour. Manag. 2009, 23, 2163–2187. [Google Scholar] [CrossRef]
- Ahmad, S.; Prashar, D. Evaluating municipal water conservation policies using a dynamic simulation model. Water Resour. Manag. 2010, 24, 3371–3395. [Google Scholar] [CrossRef]
- Shahbazbegian, M.; Bagheri, A. Rethinking assessment of drought impacts: A systemic approach towards sustainability. Sustain. Sci. 2010, 5, 223–236. [Google Scholar] [CrossRef]
- Bagheri, A.; Darijani, M.; Asgary, A.; Morid, S. Crisis in urban water systems during the reconstruction period: A system dynamics analysis of alternative policies after the 2003 earthquake in Bam-Iran. Water Resour. Manag. 2010, 24, 2567–2596. [Google Scholar] [CrossRef]
- Madani, K. Towards Sustainable Watershed Management: Using System Dynamics for Integrated Water Resources Planning; VDM Verlag Dr. Müller: Saarbrücken, Germany, 2010. [Google Scholar]
- Davies, E.G.R.; Simonovic, S.P. Global water resources modeling with an integrated model of the social-economic-environmental system. Adv. Water Resour. 2011, 34, 684–700. [Google Scholar] [CrossRef]
- Zarghami, M.; Akbariyeh, S. System dynamics modeling for complex urban water systems: Application to the city of Tabriz, Iran. Resour. Conserv. Recycl. 2012, 60, 99–106. [Google Scholar] [CrossRef]
- Simonovic, S.P. World water dynamics: Global modeling of water resources. J. Environ. Manage. 2002, 66, 249–267. [Google Scholar] [CrossRef]
- Xu, Z.X.; Takeuchi, K.; Ishidaira, H.; Zhang, X.W. Sustainability analysis for Yellow River water resources using the system dynamics approach. Water Resour. Manag. 2002, 16, 239–261. [Google Scholar] [CrossRef]
- Martínez Fernández, J.; Selma, M.A.E. The dynamics of water scarcity on irrigated landscapes: Mazarrón and Aguilas in south-eastern Spain. Syst. Dyn. Rev. 2004, 20, 117–137. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Rajasekaram, V. Integrated analyses of Canada’s water resources: A system dynamics approach. Can. Water Resour. J. 2004, 29, 223–250. [Google Scholar] [CrossRef]
- Madani Larijani, K. Watershed Management and Sustainability—A System Dynamics Approach (Case Study: Zayandeh-Rud River Basin, Iran); Lund University: Lund, Sweden, 2005. [Google Scholar]
- Bagheri, A. Sustainable Development: Implementation in Urban Water Systems; Lund University: Lund, Sweden, 2006. [Google Scholar]
- Leal Neto, A.D.C.; Legey, L.F.L.; González-Araya, M.C.; Jablonski, S. A system dynamics model for the environmental management of the Sepetiba Bay Watershed, Brazil. Environ. Manag. 2006, 38, 879–888. [Google Scholar] [CrossRef]
- Bagheri, A.; Hjorth, P. A framework for process indicators to monitor for sustainable development: Practice to an urban water system. Environ. Dev. Sustain. 2007, 9, 143–161. [Google Scholar] [CrossRef]
- Hjorth, P.; Bagheri, A. Navigating towards sustainable development: A system dynamics approach. Futures 2006, 38, 74–92. [Google Scholar] [CrossRef]
- MacCracken, M. Prediction versus projection—Forecast versus possibility. WeatherZine 2001, 26, 3–4. [Google Scholar]
- Taleb, N.N. The Black Swan: The Impact of Highly Improbable, 1st ed.; Random House: New York, NY, USA, 2007. [Google Scholar]
- Loucks, D.P. Debates-perspectives on socio-hydrology: Simulating hydrologic-human interactions. Water Resour. Res. 2015, 51, 4789–4794. [Google Scholar] [CrossRef]
- Ceola, S.; Montanari, A.; Krueger, T.; Dyer, F.; Kreibich, H.; Westerberg, I.; Carr, G.; Cudennec, C.; Elshorbagy, A.; Savenije, H.; et al. Adaptation of water resources systems to changing society and environment: A statement by the International Association of Hydrological Sciences. Hydrol. Sci. J. 2016, 61, 2803–2817. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Sanderson, M.; Garcia, M.; Konar, M.; Blöschl, G.; Sivapalan, M. Prediction in a socio-hydrological world. Hydrol. Sci. J. 2017, 62, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Sterman, J. Systems Thinking and Modeling for a Complex. World; McGraw Hill: Boston, MA, USA, 2000; ISBN 0-07-231135-5. [Google Scholar]
- Bender, M.J.; Simonovic, S.P. A systems approach for collaborative decision support in water resources planning. In Proceedings of the 1996 International Symposium on Technology and Society Technical Expertise and Public Decisions, Princeton, NJ, USA, 21–22 June 1996; pp. 357–363. [Google Scholar] [CrossRef]
- Saysel, A.K.; Barlas, Y.; Yenigün, O. Environmental sustainability in an agricultural development project: A system dynamics approach. J. Environ. Manag. 2002, 64, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, A.; Hjorth, P. Planning for sustainable development: A paradigm shift towards a process-based approach. Sustain. Dev. 2007, 15, 83–96. [Google Scholar] [CrossRef]
- Hui, R.; Lund, J.R.; Madani, K. Game theory and risk-based leveed river system planning with noncooperation. Water Resour. Res. 2016, 52, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Gohari, A.; Mirchi, A.; Madani, K. System dynamics evaluation of climate change adaptation strategies for water resources management in Central Iran. Water Resour. Manag. 2017, 31, 1413–1434. [Google Scholar] [CrossRef] [Green Version]
- Bahaddin, B.; Mirchi, A.; Watkins, D.; Ahmad, S.; Rich, E.; Madani, K. System Archetypes in Water Resource Management. In Proceedings of the World Environmental and Water Resources Congress 2018, Minneapolis, MN, USA, 3–7 June 2018; pp. 130–140. [Google Scholar]
- Ristić, B.; Madani, K. A game theory warning to blind drivers playing chicken with public goods. Water Resour. Res. 2019, 55, 2000–2013. [Google Scholar] [CrossRef]
- Madani, K. Game theory and water resources. J. Hydrol. 2010, 381, 225–238. [Google Scholar] [CrossRef]
- Madani, K.; Hipel, K.W. Non-cooperative stability definitions for strategic analysis of generic water resources conflicts. Water Resour. Manag. 2011, 25, 1949–1977. [Google Scholar] [CrossRef]
- Mirchi, A. System Dynamics Modeling As a Quantitative- Qualitative Framework for Sustainable Water Resources Management: Insights for Water Quality Policy in the Great Lakes Region. Doctoral Thesis, Michigan Technological University, Houghton, MI, USA, 2013. [Google Scholar]
- Mirchi, A.; Watkins, D.W.; Madani, K. Water resources system archetypes: Towards a holistic understanding of persistent water resources problems. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 5–9 December 2011; p. H11F-1142. [Google Scholar]
- Madani, K.; Lund, J.R. California’s Sacramento-San Joaquin delta conflict: From cooperation to chicken. J. Water Resour. Plan. Manag. 2012, 138, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Mirchi, A.; Watkins, D. A systems approach to holistic total maximum daily load policy: Case of Lake Allegan, Michigan. J. Water Resour. Plan. Manag. 2013, 139, 544–553. [Google Scholar] [CrossRef]
- Madani, K.; Zarezadeh, M. The significance of game structure evolution for deriving game-theoretic policy insights. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 2715–2720. [Google Scholar] [CrossRef]
- Mirchi, A.; Watkins, D.W.; Huckins, C.J.; Madani, K.; Hjorth, P. Water resources management in a homogenizing world: Averting the Growth and Underinvestment trajectory. Water Resour. Res. 2014, 50, 7515–7526. [Google Scholar] [CrossRef] [Green Version]
- White, G.F. Human Adjustments to Floods: A Geographical Approach to the Flood Problem in the United States; The University of Chicago–Department of Geography: Chicago, IL, USA, 1945. [Google Scholar]
- Burton, I.; Kates, R.W.; White, G.F. The Human Ecology of Extreme Geophysical Events; FMHI Publications: Tampa, FL, USA, 1968; Available online: https://scholarcommons.usf.edu/fmhi_pub/78/ (accessed on 7 July 2020).
- Burby, R.J. Hurricane Katrina and the paradoxes of government disaster policy: Bringing about wise governmental decisions for hazardous Areas. Ann. Am. Acad. Pol. Soc. Sci. 2006, 604, 171–191. [Google Scholar] [CrossRef] [Green Version]
- Senge, P.M. The Fifth Discipline: The Art and Practice of the Learning Organization; Doubleday/Currency: New York, NY, USA, 1990. [Google Scholar]
- Alcott, B. Jevons’ paradox. Ecol. Econ. 2005, 54, 9–21. [Google Scholar] [CrossRef]
- Kallis, G. Coevolution in water resource development. The vicious cycle of water supply and demand in Athens, Greece. Ecol. Econ. 2010, 69, 796–809. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef] [Green Version]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Gohari, A.; Eslamian, S.; Mirchi, A.; Abedi-Koupaei, J.; Massah Bavani, A.; Madani, K. Water transfer as a solution to water shortage: A fix that can Backfire. J. Hydrol. 2013, 491, 23–39. [Google Scholar] [CrossRef]
- Sage, A.; White, E. On the value dependent role of the identification processing and evaluation of information in risk/benefit analysis. In Risk/Benefit Analysis in Water Resources Planning and Management; Haimes, Y.Y., Ed.; Springer: Boston, MA, USA, 1981; pp. 245–262. [Google Scholar]
- Howitt, R.E.; Msangi, S.; Reynaud, A.; Knapp, K.C. Estimating intertemporal preferences for natural resource allocation. Am. J. Agric. Econ. 2005, 87, 969–983. [Google Scholar] [CrossRef]
- Li, M.; Xu, W.; Rosegrant, M.W. Irrigation, risk aversion, and water right priority under water supply uncertainty. Water Resour. Res. 2017, 53, 7885–7903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whateley, S.; Palmer, R.N.; Brown, C. Seasonal Hydroclimatic Forecasts as Innovations and the Challenges of Adoption by Water Managers. J. Water Resour. Plan. Manag. 2015, 141, 04014071. [Google Scholar] [CrossRef]
- OBeidi, A.; Hipel, K. Strategic and dilemma analyses of a water export conflict. INFOR Inf. Syst. Oper. Res. 2005, 43, 247–270. [Google Scholar] [CrossRef]
- Kuruppu, N.; Liverman, D. Mental preparation for climate adaptation: The role of cognition and culture in enhancing adaptive capacity of water management in Kiribati. Glob. Environ. Change 2011, 21, 657–669. [Google Scholar] [CrossRef]
- Madani, K.; Dinar, A. Non-cooperative institutions for sustainable common pool resource management: Application to groundwater. Ecol. Econ. 2012, 74, 34–45. [Google Scholar] [CrossRef]
- Hall, J.; Borgomeo, E. Risk-based principles for defining and managing water security. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371. [Google Scholar] [CrossRef] [Green Version]
- Madani, K.; Hooshyar, M. A game theory-reinforcement learning (GT-RL) method to develop optimal operation policies for multi-operator reservoir systems. J. Hydrol. 2014, 519, 732–742. [Google Scholar] [CrossRef]
- Gallagher, J. Learning about an infrequent event: Evidence from flood insurance take-up in the United States. Am. Econ. J. Appl. Econ. 2014, 6, 206–233. [Google Scholar] [CrossRef] [Green Version]
- Berglund, E.Z. Using agent-based modeling for water resources planning and management. J. Water Resour. Plan. Manag. 2015, 141, 1–17. [Google Scholar] [CrossRef]
- DeCaro, D.A.; Arnold, C.A.; Frimpong Boamah, E.; Garmestani, A.S. Understanding and applying principles of social cognition and decision making in adaptive environmental governance. Ecol. Soc. 2017, 22, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, E.; Cai, X.; Brozović, N.; Minsker, B. Evaluating the impacts of farmers’ behaviors on a hypothetical agricultural water market based on double auction. Water Resour. Res. 2017, 53, 4053–4072. [Google Scholar] [CrossRef]
- Palmer, R.N.; Werick, W.J.; MacEwan, A.; Woods, A.W. Modeling water resources opportunities, challenges and trade-offs: The use of shared vision modeling for negotiation and conflict resolution. In Proceedings of the WRPMD’99, Tempe, AZ, USA, 6–9 June 1999; pp. 1–13. [Google Scholar] [CrossRef]
- Cohen, S.; Neilsen, D.; Smith, S.; Neale, T.; Taylor, B.; Barton, M.; Merritt, W.; Alila, Y.; Shepherd, P.; Mcneill, R.; et al. Learning with local help: Expanding the dialogue on climate change and water management in the Okanagan Region, British Columbia, Canada. Clim. Change 2006, 75, 331–358. [Google Scholar] [CrossRef]
- Langsdale, S.; Beall, A.; Carmichael, J.; Cohen, S.; Forster, C. An exploration of water resources futures under climate change using system dynamics modeling. Integr. Assess. 2007, 7, 51–79. [Google Scholar]
- Heinmiller, T. Path dependency and collective action in common pool governance. Int. J. Commons 2009, 3, 131. [Google Scholar] [CrossRef]
- Harris, E. The impact of institutional path dependence on water market efficiency in Victoria, Australia. Water Resour. Manag. 2011, 25, 4069–4080. [Google Scholar] [CrossRef]
- Libecap, G.D. Institutional path dependence in climate adaptation: Coman’s “some unsettled problems of irrigation”. Am. Econ. Rev. 2011, 101, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Carr, G.; Loucks, D.; Blöschl, G. An analysis of public participation in the Lake Ontario—St. Lawrence river study. In Water Co-Management; Grover, V.I., Krantzberg, G., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 48–77. [Google Scholar]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 2013, 23, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Langsdale, S.; Beall, A.; Bourget, E.; Hagen, E.; Kudlas, S.; Palmer, R.; Tate, D.; Werick, W. Collaborative modeling for decision support in water resources: Principles and best practices. J. Am. Water Resour. Assoc. 2013, 49, 629–638. [Google Scholar] [CrossRef]
- Marshall, G.R.; Alexandra, J. Institutional path dependence and environmental water recovery in Australia’s Murray-Darling Basin. Water Altern. 2016, 9, 679–703. [Google Scholar]
- Elshafei, Y.; Tonts, M.; Sivapalan, M.; Hipsey, M.R. Sensitivity of emergent sociohydrologic dynamics to internal system properties and external sociopolitical factors: Implications for water management. Water Resour. Res. 2016, 52, 4944–4966. [Google Scholar] [CrossRef] [Green Version]
- Van Emmerik, T.H.M.; Li, Z.; Sivapalan, M.; Pande, S.; Kandasamy, J.; Savenije, H.H.G.; Chanan, A.; Vigneswaran, S. Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River Basin, Australia. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 3387–3435. [Google Scholar] [CrossRef]
- Garcia, M.; Portney, K.; Islam, S. A question driven socio-hydrological modeling process. Hydrol. Earth Syst. Sci. 2016, 20, 73–92. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.J.; Sangwan, N.; Sung, K.; Chen, X.; Merwade, V. Incorporating institutions and collective action into a sociohydrological model of flood resilience. Water Resour. Res. 2017, 53, 1336–1353. [Google Scholar] [CrossRef]
- Gunda, T.; Turner, B.L.; Tidwell, V.C. The influential role of sociocultural feedbacks on community-managed irrigation system behaviors during times of water stress. Water Resour. Res. 2018, 54, 2697–2714. [Google Scholar] [CrossRef]
- Kuil, L.; Evans, T.; McCord, P.F.; Salinas, J.L.; Blöschl, G. Exploring the influence of smallholders’ perceptions regarding water availability on crop choice and water allocation through socio-hydrological modeling. Water Resour. Res. 2018, 54, 2580–2604. [Google Scholar] [CrossRef]
- Sung, K.; Jeong, H.; Sangwan, N.; Yu, D.J. Effects of flood control strategies on flood resilience under sociohydrological disturbances. Water Resour. Res. 2018, 54, 2661–2680. [Google Scholar] [CrossRef]
- Xu, L.; Gober, P.; Wheater, H.S.; Kajikawa, Y. Reframing socio-hydrological research to include a social science perspective. J. Hydrol. 2018, 563, 76–83. [Google Scholar] [CrossRef]
- O’Keeffe, J.; Moulds, S.; Bergin, E.; Brozović, N.; Mijic, A.; Buytaert, W. Including farmer irrigation behavior in a sociohydrological modeling framework with application in North India. Water Resour. Res. 2018, 54, 4849–4866. [Google Scholar] [CrossRef]
- O’Keeffe, J.; Moulds, S.; Scheidegger, J.M.; Jackson, C.R.; Nair, T.; Mijic, A. Isolating the impacts of anthropogenic water use within the hydrological regime of north India. Earth Surf. Process. Landf. 2020, 45, 1217–1228. [Google Scholar] [CrossRef]
- Srinivasan, V.; Lambin, E.F.; Gorelick, S.M.; Thompson, B.H.; Rozelle, S. The nature and causes of the global water crisis: Syndromes from a meta-analysis of coupled human-water studies. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Salinas, J.L.; Blöschl, G. Socio-hydrology: Conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 2013, 17, 3295–3303. [Google Scholar] [CrossRef] [Green Version]
- Di Baldassarre, G.; Wanders, N.; AghaKouchak, A.; Kuil, L.; Rangecroft, S.; Veldkamp, T.I.E.; Garcia, M.; van Oel, P.R.; Breinl, K.; Van Loon, A.F. Water shortages worsened by reservoir effects. Nat. Sustain. 2018, 1, 617–622. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Martinez, F.; Kalantari, Z.; Viglione, A. Drought and flood in the Anthropocene: Feedback mechanisms in reservoir operation. Earth Syst. Dyn. 2017, 8, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Gober, P.; Wheater, H.S. Socio-hydrology and the science—Policy interface: A case study of the Saskatchewan river basin. Hydrol. Earth Syst. Sci. 2014, 18, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M.R. A prototype framework for models of socio-hydrology: Identification of key feedback loops and parameterisation approach. Hydrol. Earth Syst. Sci. 2014, 18, 2141–2166. [Google Scholar] [CrossRef] [Green Version]
- Elshafei, Y.; Coletti, J.Z.; Sivapalan, M.; Hipsey, M.R. A model of the socio-hydrologic dynamics in a semiarid catchment: Isolating feedbacks in the coupled human-hydrology system. Water Resour. Res. 2015, 51, 6442–6471. [Google Scholar] [CrossRef]
- Global Water Partnership. What Is IWRM? Available online: https://www.gwp.org/en/GWP-CEE/about/why/what-is-iwrm/ (accessed on 30 May 2020).
- Biswas, A.K. Integrated water resources management: A reassessment. Water Int. 2004, 29, 248–256. [Google Scholar] [CrossRef]
- Biswas, A.K. Integrated water resources management: Is it working? Int. J. Water Resour. Dev. 2008, 24, 5–22. [Google Scholar] [CrossRef]
- Molle, F. Nirvana concepts, narratives and policy models: Insights from the water sector. Water Altern. 2008, 1, 131–156. [Google Scholar]
- Medema, W.; McIntosh, B.S.; Jeffrey, P.J. From premise to practice: A critical assessment of integrated Water resources management and adaptive management approaches in the water sector. Ecol. Soc. 2008, 13, 29. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, P.; Madani, K. Sustainability monitoring and assessment: New challenges require new thinking. J. Water Resour. Plan. Manag. 2014, 140, 133–135. [Google Scholar] [CrossRef]
- Simonovic, S.P. Managing Water Resources: Methods and Tools for a Systems Approach; Routledge: London, UK, 2009; ISBN 9781844075546. [Google Scholar]
- Mirchi, A.; Watkins, D.J.; Madani, K. Modeling for watershed planning, management, and decision making. In Watersheds: Management, Restoration and Environmental Impact; Nova Science Pub Inc.: London, UK, 2010; ISBN 9781616686673. [Google Scholar]
- Loucks, D.P.; van Beek, E. Water Resources Systems Planning and Management: An. Introduction to Methods, Models and Applications; UNESCO: Paris, France, 2005. [Google Scholar]
- Loucks, D.P.; Stedinger, J.R.; Haith, D.A. Water Resource Systems Planning and Analysis, 1st ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1981. [Google Scholar]
- Nayak, M.A.; Herman, J.D.; Steinschneider, S. Balancing flood risk and water supply in California: Policy search integrating short-term forecast ensembles with conjunctive use. Water Resour. Res. 2018, 54, 7557–7576. [Google Scholar] [CrossRef]
- Aljefri, Y.M.; Fang, L.; Hipel, K.W.; Madani, K. Strategic analyses of the hydropolitical conflicts surrounding the grand Ethiopian renaissance dam. Group Decis. Negot. 2019, 28, 305–340. [Google Scholar] [CrossRef]
- Seifi, A.; Hipel, K.W. Interior-point method for reservoir operation with stochastic inflows. J. Water Resour. Plan. Manag. 2001, 127, 48–57. [Google Scholar] [CrossRef]
- Wang, L.; Fang, L.; Hipel, K.W. Mathematical programming approaches for modeling water rights allocation. J. Water Resour. Plan. Manag. 2007, 133, 50–59. [Google Scholar] [CrossRef]
- Rheinheimer, D.E.; Null, S.E.; Lund, J.R. Optimizing selective withdrawal from reservoirs to manage downstream temperatures with climate warming. J. Water Resour. Plan. Manag. 2015, 141, 1–9. [Google Scholar] [CrossRef]
- Ahmad, S.; Simonovic, S.P. System dynamics modeling of reservoir operations for flood management. J. Comput. Civ. Eng. 2000, 14, 190–198. [Google Scholar] [CrossRef]
- Akter, T.; Simonovic, S.P. Aggregation of fuzzy views of a large number of stakeholders for multi-objective flood management decision-making. J. Environ. Manage. 2005, 77, 133–143. [Google Scholar] [CrossRef]
- Jiang, H.; Simonovic, S.P.; Yu, Z.; Wang, W. A system dynamics simulation approach for environmentally friendly operation of a reservoir system. J. Hydrol. 2020, 587, 124971. [Google Scholar] [CrossRef]
- King, L.M.; Simonovic, S.P.; Hartford, D.N.D. Using system dynamics simulation for assessment of hydropower system safety. Water Resour. Res. 2017, 53, 7148–7174. [Google Scholar] [CrossRef]
- Mautner, M.R.L.; Foglia, L.; Herrera, G.S.; Galán, R.; Herman, J.D. Urban growth and groundwater sustainability: Evaluating spatially distributed recharge alternatives in the Mexico City Metropolitan Area. J. Hydrol. 2020, 586, 124909. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Ahmad, S. Computer-based model for flood evacuation emergency planning. Nat. Hazards 2005, 34, 25–51. [Google Scholar] [CrossRef]
- Chang, N.B.; Chen, H.W.; Ning, S.K. Identification of river water quality using the fuzzy synthetic evaluation approach. J. Environ. Manag. 2001, 63, 293–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Hipel, K.W.; Schweizer, V. Strategic insights into the cauvery river dispute in India. Sustainability 2020, 12, 1286. [Google Scholar] [CrossRef] [Green Version]
- Afshar, A.; Najafi, E. Consequence management of chemical intrusion in water distribution networks under inexact scenarios. J. Hydroinform. 2014, 16, 178–188. [Google Scholar] [CrossRef]
- Hipel, K.W.; Ben-Haim, Y. Decision making in an uncertain world: Information-gap modeling in water resources management. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 1999, 29, 506–517. [Google Scholar] [CrossRef]
- Gohari, A.; Bozorgi, A.; Madani, K.; Elledge, J.; Berndtsson, R. Adaptation of surface water supply to climate change in central Iran. J. Water Clim. Change 2014, 5, 391–407. [Google Scholar] [CrossRef]
- Oliveira, R.; Loucks, D.P. Operating rules for multireservoir systems. Water Resour. Res. 1997, 33, 839–852. [Google Scholar] [CrossRef]
- Winz, I.; Brierley, G.; Trowsdale, S. The use of system dynamics simulation in water resources management. Water Resour. Manag. 2009, 23, 1301–1323. [Google Scholar] [CrossRef]
- Moridi, A. A bankruptcy method for pollution load reallocation in river systems. J. Hydroinf. 2019, 21, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Philpot, S.; Hipel, K.; Johnson, P. Strategic analysis of a water rights conflict in the south western United States. J. Environ. Manag. 2016, 180, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Sheikhmohammady, M.; Madani, K. A Descriptive model to analyze Asymmetric multilateral negotiations. In Proceedings of the Universities Council on Water Resources (UCOWR) Conference, Durham, NC, USA, 22–24 July 2008. [Google Scholar]
- Read, L.; Madani, K.; Inanloo, B. Optimality versus stability in water resource allocation. J. Environ. Manag. 2014, 133, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Rouhi Rad, M.; Haacker, E.M.K.; Sharda, V.; Nozari, S.; Xiang, Z.; Araya, A.; Uddameri, V.; Suter, J.F.; Gowda, P. MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions. Agric. Water Manag. 2020, 238, 106194. [Google Scholar] [CrossRef]
- Zeff, H.; Kaczan, D.; Characklis, G.W.; Jeuland, M.; Murray, B.; Locklier, K. Potential implications of groundwater trading and reformed water rights in Diamond Valley, Nevada. J. Water Resour. Plan. Manag. 2019, 145, 1–19. [Google Scholar] [CrossRef]
- Housh, M.; Cai, X.; Ng, T.L.; McIsaac, G.F.; Ouyang, Y.; Khanna, M.; Sivapalan, M.; Jain, A.K.; Eckhoff, S.; Gasteyer, S.; et al. System of systems model for analysis of biofuel development. J. Infrastruct. Syst. 2015, 21, 04014050. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.F.; Müller-Itten, M.C.; Gorelick, S.M. How Jordan and Saudi Arabia are avoiding a tragedy of the commons over shared groundwater. Water Resour. Res. 2017, 53, 5451–5468. [Google Scholar] [CrossRef]
- Madani, K.; Zarezadeh, M.; Morid, S. A new framework for resolving conflicts over transboundary rivers using bankruptcy methods. Hydrol. Earth Syst. Sci. 2014, 18, 3055–3068. [Google Scholar] [CrossRef] [Green Version]
- Hassanzadeh, E.; Strickert, G.; Morales-Marin, L.; Noble, B.; Baulch, H.; Shupena-Soulodre, E.; Lindenschmidt, K.E. A framework for engaging stakeholders in water quality modeling and management: Application to the Qu’Appelle river basin, Canada. J. Environ. Manag. 2019, 231, 1117–1126. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Verma, R. A new methodology for water resources multicriteria decision making under uncertainty. Phys. Chem. Earth 2008, 33, 322–329. [Google Scholar] [CrossRef]
- Parsapour-Moghaddam, P.; Abed-Elmdoust, A.; Kerachian, R. A Heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources. Water Resour. Manag. 2015, 29, 3905–3918. [Google Scholar] [CrossRef]
- Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X. Multiagent systems and distributed constraint reasoning for regulatory mechanism design in water management. J. Water Resour. Plan. Manag. 2015, 141, 1–12. [Google Scholar] [CrossRef]
- Hu, Y.; Quinn, C.J.; Cai, X.; Garfinkle, N.W. Combining human and machine intelligence to derive agents’ behavioral rules for groundwater irrigation. Adv. Water Resour. 2017, 109, 29–40. [Google Scholar] [CrossRef]
- Noël, P.H.; Cai, X. On the role of individuals in models of coupled human and natural systems: Lessons from a case study in the Republican River Basin. Environ. Model. Softw. 2017, 92, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zekri, S.; Madani, K.; Bazargan-Lari, M.R.; Kotagama, H.; Kalbus, E. Feasibility of adopting smart water meters in aquifer management: An integrated hydro-economic analysis. Agric. Water Manag. 2017, 181, 85–93. [Google Scholar] [CrossRef]
- Giuliani, M.; Herman, J.D. Modeling the behavior of water reservoir operators via eigenbehavior analysis. Adv. Water Resour. 2018, 122, 228–237. [Google Scholar] [CrossRef]
- Loáiciga, H.A. Analytic game—Theoretic approach to ground-water extraction. J. Hydrol. 2004, 297, 22–33. [Google Scholar] [CrossRef]
- Madani, K.; Dinar, A. Exogenous regulatory institutions for sustainable common pool resource management: Application to groundwater. Water Resour. Econ. 2013, 2, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Kanta, L.; Zechman, E. Complex adaptive systems framework to assess supply-side and demand-side management for urban water resources. J. Water Resour. Plan. Manag. 2014, 140, 75–85. [Google Scholar] [CrossRef]
- Akhbari, M.; Grigg, N.S. Water management trade-offs between agriculture and the environment: A multiobjective approach and application. J. Irrig. Drain. Eng. 2014, 140, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Madani, K. The value of extreme events: What doesn’t exterminate your water system makes it more resilient. J. Hydrol. 2019, 575, 269–272. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.F.; Levy, M.C. Complementary vantage points: Integrating hydrology and economics for sociohydrologic knowledge generation. Water Resour. Res. 2019, 55, 2549–2571. [Google Scholar] [CrossRef]
- Rahmandad, H.; Sterman, J. Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models. Manag. Sci. 2008, 54, 998–1014. [Google Scholar] [CrossRef] [Green Version]
- Madani, K. Iran Statement, Statements by Heads of State and Government, High Level Segment Statements of COP23/CMP13/CMA1.2. In Proceedings of the 23rd Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC), Bonn, Germany, 16 November 2017; Available online: http://unfccc.int/files/meetings/bonn_nov_2017/statements/application/pdf/iran_cop23cmp13cma1-2_hls.pdf (accessed on 7 July 2020).
- Ishtiaque, A.; Sangwan, N.; Yu, D.J. Robust-yet-fragile nature of partly engineered social-ecological systems: A case study of coastal Bangladesh. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, D.E.; Madani, K. Water resources systems analysis: A bright past and a challenging but promising future. J. Water Resour. Plan. Manag. 2014, 140, 407–409. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.M.; Lund, J.R.; Cai, X.; Reed, P.M.; Zagona, E.A.; Ostfeld, A.; Hall, J.; Characklis, G.W.; Yu, W.; Brekke, L. The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resour. Res. 2015, 51, 6110–6124. [Google Scholar] [CrossRef]
- Vogel, R.M.; Lall, U.; Cai, X.; Rajagopalan, B.; Weiskel, P.K.; Hooper, R.P.; Matalas, N.C. Hydrology: The interdisciplinary science of water. Water Resour. Res. 2015, 51, 4409–4430. [Google Scholar] [CrossRef]
- Kasprzyk, J.R.; Smith, R.M.; Stillwell, A.S.; Madani, K.; Ford, D.; McKinney, D.; Sorooshian, S. Defining the role of water resources systems analysis in a changing future. J. Water Resour. Plan. Manag. 2018, 144, 01818003. [Google Scholar] [CrossRef] [Green Version]
- Loucks, D.P. From analyses to implementation and innovation. Water 2020, 12, 974. [Google Scholar] [CrossRef] [Green Version]
- Hornberger, G.M.; Perrone, D. Water Resources: Science and Society; Johns Hopkins University Press: Baltimore, MD, USA, 2019. [Google Scholar]
- Ringler, C.; Cai, X. Valuing fisheries and wetlands using integrated economic-hydrologic modeling—Mekong river basin. J. Water Resour. Plan. Manag. 2006, 132, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.C.E.; Cai, X. Reservoir reoperation for fish ecosystem restoration using daily inflows—Case study of Lake Shelbyville. J. Water Resour. Plan. Manag. 2011, 137, 470–480. [Google Scholar] [CrossRef]
- Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M.; Hui, R.; Medellín-Azuara, J. Developing a water-energy-GHG emissions modeling framework: Insights from an application to California’s water system. Environ. Model. Softw. 2018, 109, 54–65. [Google Scholar] [CrossRef]
- Liu, B.; Lund, J.R.; Liao, S.; Jin, X.; Liu, L.; Cheng, C. Optimal power peak shaving using hydropower to complement wind and solar power uncertainty. Energy Convers. Manag. 2020, 209, 112628. [Google Scholar] [CrossRef]
- Shen, J.; Cheng, C.; Cheng, X.; Lund, J.R. Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid. Energy 2016, 95, 433–446. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, Z.; Cai, X.; Yin, X.; Cai, Y. Modeling framework for reservoir capacity planning accounting for fish migration. J. Water Resour. Plan. Manag. 2020, 146, 04020006. [Google Scholar] [CrossRef]
- Shafiee-Jood, M.; Housh, M.; Cai, X. Hierarchical decision-modeling framework to meet environmental objectives in biofuel development. J. Water Resour. Plan. Manag. 2018, 144, 04018030. [Google Scholar] [CrossRef]
- Housh, M.; Yaeger, M.A.; Cai, X.; McIsaac, G.F.; Khanna, M.; Sivapalan, M.; Ouyang, Y.; Al-Qadi, I.; Jain, A.K. Managing multiple mandates: A system of systems model to analyze strategies for producing cellulosic ethanol and reducing riverine nitrate loads in the upper Mississippi river basin. Environ. Sci. Technol. 2015, 49, 11932–11940. [Google Scholar] [CrossRef]
- Cai, X.; Wallington, K.; Shafiee-Jood, M.; Marston, L. Understanding and managing the food-energy-water nexus—Opportunities for water resources research. Adv. Water Resour. 2018, 111, 259–273. [Google Scholar] [CrossRef]
- Su, Y.; Kern, J.D.; Denaro, S.; Hill, J.; Reed, P.; Sun, Y.; Cohen, J.; Characklis, G.W. An open source model for quantifying risks in bulk electric power systems from spatially and temporally correlated hydrometeorological processes. Environ. Model. Softw. 2020, 126, 104667. [Google Scholar] [CrossRef]
- Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M. Optimal residential water conservation strategies considering related energy in California. Water Resour. Res. 2015, 51, 4482–4498. [Google Scholar] [CrossRef] [Green Version]
- Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M. Saving energy from urban water demand management. Water Resour. Res. 2018, 54, 4265–4276. [Google Scholar] [CrossRef]
- Wade, R. The The management of irrigation systems: How to evoke trust and avoid prisoner’s dilemma. World Dev. 1988, 16, 489–500. [Google Scholar] [CrossRef]
- Ferdon, H.R. Game Theory Analysis of Intra-District Water Transfers; Case Study of the Berrenda Mesa Water Disctrict. Master’s Thesis, California State Polytechnic University, San Luis Obispo, CA, USA, 2016. [Google Scholar]
- Ert, E.; Cohen-Amin, S.; Dinar, A. The effect of issue linkage on cooperation in bilateral conflicts: An experimental analysis. J. Behav. Exp. Econ. 2019, 79, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Tayloer, A.C. A Planning Model for a Water Quality Management Agency. Manag. Sci. 1973, 20, 675–685. [Google Scholar] [CrossRef]
- Pittel, K.; Rübbelke, D.T.G. Transitions in the negotiations on climate change: From prisoner’s dilemma to chicken and beyond. Int. Environ. Agreem. Polit. Law Econ. 2012, 12, 23–39. [Google Scholar] [CrossRef]
- Soroos, M.S. Global Change, environmental security, and the prisoner’s dilemma. J. Peace Res. 1994, 31, 317–332. [Google Scholar] [CrossRef]
- Madani, K. Modeling international climate change negotiations more responsibly: Can highly simplified game theory models provide reliable policy insights? Ecol. Econ. 2013, 90, 68–76. [Google Scholar] [CrossRef]
- Quinn, N.; Blöschl, G.; Bárdossy, A.; Castellarin, A.; Clark, M.; Cudennec, C.; Koutsoyiannis, D.; Lall, U.; Lichner, L.; Parajka, J.; et al. Invigorating hydrological research through journal publications. Water Resour. Res. 2020, 56, 257–260. [Google Scholar] [CrossRef]
- Hjorth, P.; Madani, K. Systems Analysis to Promote Frames and Mental Models for Sustainable Water Management. In Proceedings of the 3rd World Sustainability Forum, Basel, Switzerland, 1–30 November 2013; p. f003. [Google Scholar] [CrossRef] [Green Version]
- Ackoff, R.L. Strategies, systems, and organizations: An interview with Russell, L. Ackoff. Strateg. Leadersh. 1997, 25, 22–27. [Google Scholar] [CrossRef]
- Madani, K.; Khatami, S. Water for energy: Inconsistent assessment standards and inability to judge properly. Curr. Sustain. Energy Rep. 2015, 2, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Lund, J.R. Integrating social and physical sciences in water management. Water Resour. Res. 2015, 51, 5905–5918. [Google Scholar] [CrossRef]
- Kurtz, C.F.; Snowden, D.J. The new dynamics of strategy: Sense-making in a complex and complicated world. IBM Syst. J. 2003, 42, 462–483. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madani, K.; Shafiee-Jood, M. Socio-Hydrology: A New Understanding to Unite or a New Science to Divide? Water 2020, 12, 1941. https://doi.org/10.3390/w12071941
Madani K, Shafiee-Jood M. Socio-Hydrology: A New Understanding to Unite or a New Science to Divide? Water. 2020; 12(7):1941. https://doi.org/10.3390/w12071941
Chicago/Turabian StyleMadani, Kaveh, and Majid Shafiee-Jood. 2020. "Socio-Hydrology: A New Understanding to Unite or a New Science to Divide?" Water 12, no. 7: 1941. https://doi.org/10.3390/w12071941