Evaluation of the Egg Bank of Two Small Himalayan Lakes
Abstract
1. Introduction
2. Study Sites
3. Materials and Methods
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Battarbee, R.W.; Grytnes, J.A.; Thompson, R.; Appleby, P.G.; Catalan, J.; Korhola, A.; Birks, H.J.B.; Heegaard, E.; Lami, A. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J. Paleolimnol. 2002, 28, 161–179. [Google Scholar] [CrossRef]
- Kong, L.; Yang, X.; Kattel, G.; Anderson, N.J.; Hu, Z. The response of Cladocerans to recent environmental forcing in an Alpine Lake on the SE Tibetan Plateau. Hydrobiologia 2017, 784, 171–185. [Google Scholar] [CrossRef]
- Catalan, J.; Ninot, J.M.; Aniz, M.M. (Eds.) High mountain conservation in a changing world. In Advances in Global Change Research; Springer International Publishing AG: Basel, Switzerland, 2017; p. 413. [Google Scholar] [CrossRef]
- Kořínek, V.; Villalobos, L. Two South American endemic species of Daphnia from high Andean lakes. Hydrobiologia 2003, 490, 107–123. [Google Scholar] [CrossRef]
- Herbert, P.D.N.; Emery, C.J. The adaptive significance of cuticular pigmentation in Daphnia. Funct. Ecol. 1990, 4, 703–710. [Google Scholar] [CrossRef]
- Hessen, D.O. Competitive trade-off strategies in Arctic Daphnia linked to melanism and UV-B stress. Polar Biol. 1996, 16, 573–579. [Google Scholar] [CrossRef]
- Ringelberg, J. Aspects of red pigmentation in zooplankton, especially copepods. In Ecology and Evolution of Zooplankton Communities; Kerfoot, W.C., Ed.; University Press of New England: Lebanon, NH, USA, 1980; pp. 91–97. [Google Scholar]
- Moeller, R.E.; Gilroy, S.; Williamson, C.E.; Grad, G.; Sommaruga, R. Dietary acquisition of photoprotective compounds (mycosporine-like amino acids, carotenoids) and acclimation to ultraviolet radiation in a freshwater copepod. Limnol. Oceanogr. 2005, 50, 427–439. [Google Scholar] [CrossRef]
- Cáceres, C.E. Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 1998, 79, 1699–1710. [Google Scholar] [CrossRef]
- Pérez-Martínez, C.; Barea-Arco, J.; Conde-Porcuna, J.M.; Morales-Baquero, R. Reproduction strategies of Daphnia pulicaria population in a high mountain lake of Southern Spain. Hydrobiologia 2007, 594, 75–82. [Google Scholar] [CrossRef]
- De Stasio, B.T. The seed bank of a freshwater crustacean: Copepodology for the plant ecologist. Ecology 1989, 70, 1377–1389. [Google Scholar] [CrossRef]
- Hairston, N.G., Jr. Zooplankton egg banks as biotic reservoirs in changing environments. Limnol. Oceanogr. 1996, 41, 1087–1092. [Google Scholar] [CrossRef]
- De Meester, L.; Gómez, A.; Okamura, B.; Schwenk, K. The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecol. 2002, 23, 121–135. [Google Scholar] [CrossRef]
- Dupuis, A.P.; Hann, B.J. Climate change, diapause termination and zooplankton population dynamics: An experimental and modelling approach. Freshw. Biol. 2009, 54, 221–235. [Google Scholar] [CrossRef]
- Jones, N.T.; Gilbert, B. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes. J. Anim. Ecol. 2016, 85, 559–569. [Google Scholar] [CrossRef]
- Brendonck, L.; De Meester, L. Egg banks in freshwater zooplankton: Evolutionary and ecological archives in the sediment. In Recent Developments in Fundamental and Applied Plankton Research; Van Donk, E., Spaak, P., Boersma, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; Volume 491, pp. 65–84. [Google Scholar] [CrossRef]
- Lami, A.; Giussani, G. (Eds.) Limnology of high altitude lakes in the Mt. Everest Region (Nepal). Mem. Ist. Ital. Idrobiol. 1998, 57, 1–235. [Google Scholar]
- Nevalainen, L.; Lami, A.; Luoto, T.P.; Manca, M. Fossil cladoceran record from Lake Piramide Inferiore (5067 m asl) in the Nepalese Himalayas: Biogeographical and paleoecological implications. J. Limnol. 2014, 73. [Google Scholar] [CrossRef][Green Version]
- Tartari, G.A.; Panzani, P.; Adreani, L.; Ferrero, A.; De Vito, C. Lake cadastre of Khumbu Himal Region: Geographical-geological-limnological data base. Limnology of high altitude lakes in the Mt Everest Region (Nepal). Mem. Ist. Ital. Idrobiol. 1998, 57, 151–235. [Google Scholar]
- Tartari, G.A.; Tartari, G.; Mosello, R. Water chemistry of high altitude lakes in the Khumbu and Imja Kola valleys (Nepalese Himalayas). Mem. Ist. Ital. Idrobiol. 1998, 57, 51–76. [Google Scholar]
- Löffler, H. High altitude lakes in Mt. Everest region. Verh. Int. Ver. Limnol. 1969, 17, 373–385. [Google Scholar] [CrossRef]
- Manca, M.; Nocentini, A.M.; Ruggiu, D.; Panzani, P.; Bonardi, M.; Cammarano, P.; Spagnuolo, T. Observations on plankton and macrobenthic fauna of some high altitude Himalayan lakes. Mem. Ist. Ital. Idrobiol. 1995, 53, 17–25. [Google Scholar]
- Manca, M.; Ruggiu, D.; Panzani, P.; Asioli, A.; Mura, G.; Nocentini, A.M. Report on a collection of aquatic organisms from high mountain lakes in the Khumbu Valley (Nepalese Himalayas). J. Limnol. 1998, 57, 77–98. [Google Scholar]
- Baudo, R.; Tartari, G.; Munawar, M. (Eds.) Top of the world environmental research: Mount Everest-Himalayan ecosystem. In Ecovision World Monograph Series; Schweizerbart Science Publishers: Stuttgart, Germany, 1998; pp. 1–294. [Google Scholar]
- Daems, G.; Dumont, H.J. Rotifers from Nepal, with the description of a new species of Scaridium and a discussion of the Nepalese representatives of the genus Hexarthra. Biol. Jb. Dodonaea 1974, 42, 61–81. [Google Scholar]
- Löffler, H. Diaptomus (Arctodiaptomus) jurisowitchi nov. spec. aus dem Khumbu—gebiet (Nepal). Khumbu Himal. 1968, 3, 9–16. [Google Scholar]
- Forbes, S.A. A preliminary report on the aquatic invertebrate fauna of the Yellowstone National Park, Wyoming, and the Flathead Region of Montana. US Fish. Comm. Bull. 1893, 11, 207–256. [Google Scholar]
- Gurney, R. On some freshwater Entomostraca in the collection of the Indian Museum, Calcutta. J. Asia. Soc. Bengal 1906, 2, 273–281. [Google Scholar]
- Sinev, A.Y. Alona werestschagini sp., a new species of the genus Alona Baird, 1843 related to A. guttata Sars, 1862 (Anomopoda: Chydoridae). Arthropoda Sel. 1999, 8, 23–30. [Google Scholar]
- Werestschagin, G. K faune Cladocera Kavkaza (The Caucasian Fauna of Cladocera). Raboty laboratorii zoologicheskogo kabineta Imeratorskogo Varshavskogo Universtiteta; University of Warsaw: Warsaw, Poland, 1911; pp. 1–17. [Google Scholar]
- Dumont, H.J.; Coussement, M.; Anderson, R.S. An examination of some Hexarthra species (Rotatoria) from western Canada and Nepal. Can. J. Zool. 1978, 56, 440–445. [Google Scholar] [CrossRef]
- Sars, G.O. Contributions to the Knowledge of the Fresh-water “Entomostraca” of South America, as Shown by Artificial Hatching from Dried Material, by GO Sars. Part II. “Copepoda-Ostracoda”. Arch. Mat. Nat. 1901, 23, 1–101. [Google Scholar]
- Manca, M.; Martin, P.; Peñalva-Arana, D.C.; Benzie, J.A. Re-description of Daphnia (Ctenodaphnia) from lakes in the Khumbu Region, Nepalese Himalayas, with the erection of a new species, Daphnia himalaya, and a note on an intersex individual. J. Limnol. 2006, 65, 132–140. [Google Scholar] [CrossRef]
- Manca, M.; Cammarano, P.; Spagnuolo, T. Notes on Cladocera and Copepoda from high altitude lakes in the Mount Everest Region (Nepal). Hydrobiologia 1994, 287, 225–231. [Google Scholar] [CrossRef]
- Manca, M.; Mura, G. On Branchinecta orientalis Sars (Anostraca) in the Himalayas. Hydrobiologia 1997, 356, 111–116. [Google Scholar] [CrossRef]
- Lami, A.; Guilizzoni, P.; Marchetto, A.; Bettinetti, R.; Smith, D.J. Palaeolimnological evidence of environmental changes in some high altitude Himalayan lakes (Nepal). Mem. Istit. Ital. Idrobiol. 1998, 57, 130–131. [Google Scholar]
- Lami, A.; Marchetto, A.; Musazzi, S.; Salerno, F.; Tartari, G.; Guilizzoni, P.; Rogora, M.; Tartari, G.A. Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods. Hydrobiologia 2010, 648, 189–205. [Google Scholar] [CrossRef]
- Cousyn, C.; De Meester, L. The vertical profile of resting egg banks in natural populations of the pond-dwelling cladoceran Daphnia magna Straus. Arch. Hydrobiol. 1998, 52, 127–139. [Google Scholar]
- Guerrero-Jiménez, G.; Ramos-Rodríguez, E.; Silva-Briano, M.; Adabache-Ortiz, A.; Conde-Porcuna, J.M. Analysis of the morphological structure of diapausing propagules as a potential tool for the identification of rotifer and cladoceran species. Hydrobiologia 2019, 847, 1–24. [Google Scholar] [CrossRef]
- Suzduki, M. New systematical approach to the Japanese planktonic Rotatoria. Hydrobiologia 1964, 23, 1–124. [Google Scholar]
- Koste, W. Rotatoria. Die Rädertiere Mitteleuropas (Überordnung Monogononta). In Bestimmugswerk Begründet von Max Voigt; Gebrüder Borntraeger: Stuttgart, Germany, 1978; Volume 2, p. 234. [Google Scholar]
- Mura, G. SEM morphological survey on the egg shell in the Italian anostracans (Crustacea, Branchiopoda). Hydrobiologia 1986, 134, 273–286. [Google Scholar] [CrossRef]
- Mura, G. SEM morphology of resting eggs in the species of the genus Branchinecta from North America. J. Crustac. Biol. 1991, 11, 432–436. [Google Scholar] [CrossRef]
- Fugate, M. Branchinecta sandiegonensis, a new species of fairy shrimp (Crustacea: Anostraca) from western North America. Proc. Biol. Soc. Wash. 1993, 106, 296. [Google Scholar]
- Onbe, T. Sugar flotation method for the sorting the resting eggs of marine cladocerans and copepods from sea-bottom sediment. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 1411. [Google Scholar] [CrossRef]
- García-Roger, E.M.; Carmona, M.J.; Serra, M. Deterioration patterns in diapausing egg banks of Brachionus (Müller, 1786) rotifer species. J. Exp. Mar. Biol. Ecol. 2005, 314, 149–161. [Google Scholar] [CrossRef]
- Moest, M.; Petrusek, A.; Sommaruga, R.; Juračka, P.J.; Slusarczyk, M.; Manca, M.; Spaak, P. At the edge and on the top: Molecular identification and ecology of Daphnia dentifera and D. longispina in high-altitude Asian lakes. Hydrobiologia 2013, 715, 51–62. [Google Scholar] [CrossRef]
- Sudzuki, M. Intraspecific variability of Brachionus plicatilis. Hydrobiologia 1987, 147, 45–47. [Google Scholar] [CrossRef]
- Piscia, R.; Guilizzoni, P.; Fontaneto, D.; Vignati, D.A.; Appleby, P.G.; Manca, M. Dynamics of rotifer and cladoceran resting stages during copper pollution and recovery in a subalpine lake. Ann. Limnol. Int. J. Lim. 2012, 48, 151–160. [Google Scholar] [CrossRef][Green Version]
- Latta, L.C.; Fisk, D.L.; Knapp, R.A.; Pfrender, M.E. Genetic resilience of Daphnia populations following experimental removal of introduced fish. Conserv. Genet. 2010, 11, 1737–1745. [Google Scholar] [CrossRef]
- García-Roger, E.M.; Lubzens, E.; Fontaneto, D.; Serra, M. Facing Adversity: Dormant Embryos in Rotifers. Biol. Bull. 2019, 237, 119–144. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.; Comoli, P. Reconstructing long-term changes in Daphnia’s body size from subfossil remains in sediments of a small lake in the Himalayas. J. Paleol. 2004, 32, 95–107. [Google Scholar] [CrossRef]
- Colbourne, J.K.; Hebert, P.D. The systematics of North American Daphnia (Crustacea: Anomopoda): A molecular phylogenetic approach. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 349–360. [Google Scholar]
- Green, J. Growth, size and reproduction in Daphnia (Crustacea: Cladocera). Proc. Zool. Soc. Lond. 1956, 126, 173–204. [Google Scholar] [CrossRef]
- Arbačiauskas, K. Seasonal phenotypes of Daphnia: Post-diapause and directly developing offspring. J. Limnol. 2004, 63, 7–15. [Google Scholar] [CrossRef]
- Jeppesen, E.; Jensen, J.P.; Amsinck, S.; Landkildehus, F.; Lauridsen, T.; Mitchell, S.F. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. J. Paleolimnol. 2002, 27, 133–143. [Google Scholar] [CrossRef]
- Manca, M.; Comoli, P. Reconstructing population size structure in Cladocera by measuring their body remains. Mem. Ist. Ital. Idrobiol. 1995, 54, 61–68. [Google Scholar]
- Cammarano, P.; Manca, M. Studies on zooplankton in two acidified high mountain lakes in the Alps. Hydrobiologia 1997, 356, 97–109. [Google Scholar] [CrossRef]
- Manca, M.; Comoli, P. Studies on zooplankton of Lago Paione Superiore. J. Limnol. 1999, 58, 131–135. [Google Scholar] [CrossRef]
- Larsson, P.; Wathne, I. Swim or rest during the winter–what is best for an alpine daphnid? Arch. Hydrobiol. 2006, 167, 265–280. [Google Scholar] [CrossRef]
- Guilizzoni, P.; Lami, A.; Manca, M.; Musazzi, S.; Marchetto, A. Palaeoenvironmental changes inferred from biological remains in short lake sediment cores from the Central Alps and Dolomites. Hydrobiologia 2006, 562, 167–191. [Google Scholar] [CrossRef]
- Marková, S.; Černý, M.; Rees, D.; Stuchlík, E. Are they still viable? Physical conditions and abundance of Daphnia pulicaria resting eggs in sediment cores from lakes in the Tatra Mountains. Biologia 2006, 61, S135–S146. [Google Scholar] [CrossRef]
- Sars, G.O. An Account of the Crustacea of Norway, with Short Descriptions and Figures of all the Species: IV. Copepoda Calanoida; Compilation, Ed.; Bergens Museum: Bergen, Germany, 1903; Volume 171. [Google Scholar]
- Rylov, W.M. The Fresh-Water Calanoids of the U.S.S.R. Keys to Determination of Fresh-Water Organism of the U.S.S.R. A Fresh-Water Fauna; Institute Fisheries and Science Explorations: Leningrad, Russia, 1930; pp. 1–288. [Google Scholar]
- Wagler, E. Die Systematik und geographische Verbreitung des Genus Daphnia O.F. Müller mit besonderer Berucksichtigung des sudafrikanischen Arten. Arch. Hydrobiol. 1936, 30, 505–556. [Google Scholar]
- Hutchinson, G. Limnological studies in Indian Tibet. Int. Rev. Gesamten Hydrobiol. 1937, 35, 134–177. [Google Scholar] [CrossRef]
- Müller, O.F. Zoologiæ Danicæ Prodromus, seu Animalium Daniæ et Norvegiæ indigenarum characteres, nomina, et synonyma imprimis popularium; Hallageri: Copenhagen, Denmark, 1776; p. 274. [Google Scholar]
- Manca, M.; Comoli, P.; Margaritora, F.G. An unusual type of Daphnia head shields from plankton and sediments of Himalayan lakes. J. Limnol. 1999, 58, 29–32. [Google Scholar] [CrossRef]
- Geller, W.; Müller, H. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia 1981, 49, 316–321. [Google Scholar] [CrossRef]
- Gliwicz, Z.M. Food thresholds and body size in cladocerans. Nature 1990, 343, 638–640. [Google Scholar] [CrossRef]
- Wiszniewski, J. Un nouveau rotifere du genre Pedalia habitant les lacs des hautes montagnes. Int. Rev. Ges. Hydrobiol. Hydrogr. 1933, 29, 229–236. [Google Scholar] [CrossRef]
- Tonolli, V.; Tonolli, L. Osservazioni sulla biologia ed ecologia di 170 popolamenti zooplanctonici di laghi italiani de alta quota. Mem. 1st Ital. Idrobiol. 1951, 6, 53–136. [Google Scholar]
- Ferrari, I. Notes on the dynamics of the reproductive activity of Arctodiaptomus bacillifer in high altitude alpine lakes. Boll. Zool. 1971, 38, 221–235. [Google Scholar] [CrossRef][Green Version]
- Edmondson, W.T.; Hutchinson, G.E. Report on Rotatoria. Mem. Conn. Acad. Arts Sci. 1934, 10, 153–186. [Google Scholar]
- Ruttner-Kolisko, A. Plankton Rotifers, biology and taxonomy. Binnengewässer 1974, 26, 146. [Google Scholar]
- Modenutti, B.E. Summer population of Hexarthra bulgarica in a high elevation lake of south Andes. Hydrobiologia 1993, 259, 33–37. [Google Scholar] [CrossRef]
- Zagarese, H.E.; Diaz, M.; Pedrozo, F.; Ubeda, C. Mountain lakes in northwestern Patagonia. Int. Ver. Angew. Limnol. Verh. 2000, 27, 533–538. [Google Scholar] [CrossRef]
- Cruz-Pizarro, L.; Morales, R. Taxonomic and ecological notes on Hexarthra bulgarica from high mountain lakes and ponds in the Sierra Nevada (Spain). Hydrobiologia 1987, 147, 91–95. [Google Scholar] [CrossRef]
- Brehm, V.; Woltereck, R. Die Daphniden der Yale-Northindia-Expedition. Int. Rev. Gesamten Hydrobiol. Hydrograp. 1939, 39, 1–19. [Google Scholar] [CrossRef]
- Benzie, J.A. The genus Daphnia (including Daphniopsis) (anomopoda: Daphniidae). In Guides to the Identification of the Microinvertebrates of the Continental Waters of the World; Kenobi Productions: Grant Pass, OR, USA, 2005; Volume 21, pp. 1–376. [Google Scholar]
- Baird, W. Description of some new recent Entomostraca from Nagpur, collected by the Rev. S. Hislop. Proc. Zool. Soc. Lond. 1859, 27, 231–234. [Google Scholar]
- Alonso, M. Daphnia (Ctenodaphnia) Mediterranea: A new species of hyperhaline waters, long confused with D. (C.) Dolichocephala Sars, 1895. Hydrobiologia 1985, 128, 217–228. [Google Scholar] [CrossRef]
- Ishida, S.; Taylor, D.J. Mature habitats associated with genetic divergence despite strong dispersal ability in an arthropod. BMC Evol. Biol. 2007, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Petrusek, A.; Hobæk, A.; Nilssen, J.P.; Skage, M.; Černý, M.; Brede, N.; Schwenk, K. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool. Scr. 2008, 37, 507–519. [Google Scholar] [CrossRef]
- Xu, L.; Lin, Q.; Xu, S.; Gu, Y.; Hou, J.; Liu, Y.; Dumont, H.J.; Han, B.P. Daphnia diversity on the Tibetan Plateau measured by DNA taxonomy. Ecol. Evol. 2018, 8, 5069–5078. [Google Scholar] [CrossRef]
- Gilbert, J.J. Timing of diapause in monogonont rotifers: Mechanisms and strategies. In Diapause in Aquatic Invertebrates Theory and Human Use; Alekseev, V.R., de Stasio, B.T., Gilbert, J.J., Eds.; Springer: Dordrecht, Germany, 2007; pp. 11–27. [Google Scholar]
- Schröder, T.; Howard, S.; Arroyo, M.L.; Walsh, E.J. Sexual reproduction and diapause of Hexarthra sp. (Rotifera) in short-lived ponds in the Chihuahuan Desert. Freshw. Biol. 2007, 52, 1033–1042. [Google Scholar] [CrossRef]
- Vandekerkhove, J.; Declerck, S.; Brendonck, L.; Conde-Porcuna, J.M.; Jeppesen, E.; Meester, L.D. Hatching of cladoceran resting eggs: Temperature and photoperiod. Freshw. Biol. 2005, 50, 96–104. [Google Scholar] [CrossRef]
- Gilbert, J.J.; Schröder, T. Rotifers from diapausing, fertilized eggs: Unique features and emergence. Limnol. Oceanogr. 2004, 49, 1341–1354. [Google Scholar] [CrossRef]
- Gilbert, J.J. Resting-egg hatching and early population development in rotifers: A review and a hypothesis for differences between shallow and deep waters. Hydrobiologia 2017, 796, 235–243. [Google Scholar] [CrossRef]
- Bozelli, R.L.; Tonsi, M.; Sandrini, F.; Manca, M. A Big Bang or small bangs? Effects of biotic environment on hatching. J. Limnol. 2008, 67, 100–106. [Google Scholar] [CrossRef]
- Cáceres, C.E.; Hairston, N.G. Benthic-pelagic coupling in planktonic crustaceans: The role of the benthos. Ergeb. Limnol. 1998, 52, 163–174. [Google Scholar]
- Marcus, N.H.; Lutz, R.; Burnett, W.; Cable, P. Age, viability, and vertical distribution of zooplankton resting eggs from an anoxic basin: Evidence of an egg bank. Limnol. Oceanogr. 1994, 39, 154–158. [Google Scholar] [CrossRef]
- Hairston, N.G., Jr.; Van Brunt, R.A.; Kearns, C.M.; Engstrom, D.R. Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 1995, 76, 1706–1711. [Google Scholar] [CrossRef]
- Franch-Gras, L.; García-Roger, E.M.; Serra, M.; José Carmona, M. Adaptation in response to environmental unpredictability. Proc. R. Soc. Lond. B Biol. Sci. 2017, 284, 2017.0427. [Google Scholar] [CrossRef]
- Herzig, A. Resting eggs—A significant stage in the life cycle of crustaceans Leptodora kindtii and Bythotrephes longimanus. Int. Ver. Angew. Limnol. Verh. 1985, 22, 3088–3098. [Google Scholar]
- Carvalho, G.R.; Wolf, H.G. Resting eggs of lake-Daphnia, I. Distribution, abundance and hatching of eggs collected from various depths in lake sediments. Freshwat. Biol. 1989, 22, 459–470. [Google Scholar] [CrossRef]
- Hairston, N.G.; Van Brunt, R.A. Diapause dynamics of two diaptomid copepod species in a large lake. Hydrobiologia 1994, 292, 209–218. [Google Scholar] [CrossRef]
- García-Roger, E.M.; Carmona, M.J.; Serra, M. Hatching and viability of rotifer diapausing eggs collected from pond sediments. Freshw. Biol. 2006, 51, 1351–1358. [Google Scholar] [CrossRef]
- García-Roger, E.M.; Carmona, M.J.; Serra, M. Patterns in rotifer diapausing egg banks: Density and viability. J. Exp. Mar. Biol. Ecol. 2006, 336, 198–210. [Google Scholar] [CrossRef]
- Piscia, R.; Tabozzi, S.; Bettinetti, R.; Nevalainen, L.; Manca, M.M. Unexpected increases in rotifer resting egg abundances during the period of contamination of Lake Orta. J. Limnol. 2016, 75, 76–85. [Google Scholar] [CrossRef][Green Version]
- García-Roger, E.M.; Ortells, R. Trade-offs in rotifer diapausing egg traits: Survival, hatching, and lipid content. Hydrobiologia 2018, 805, 339–350. [Google Scholar] [CrossRef]
- Gabaldón, C.; Serra, M.; Carmona, M.J.; Montero-Pau, J. Life-history traits, abiotic environment and coexistence: The case of two cryptic rotifer species. J. Exp. Mar. Biol. Ecol. 2015, 465, 142–152. [Google Scholar] [CrossRef]
- King, C.E.; Serra, M. Seasonal variation as a determinant of population structure in rotifers reproducing by cyclical parthenogenesis. Hydrobiologia 1998, 387, 361–372. [Google Scholar] [CrossRef]
- Kotani, T.; Ozaki, M.; Matsuoka, K.; Snell, T.W.; Hagiwara, A. Reproductive isolation among geographically and temporally isolated marine Brachionus strains. Hydrohiologia 2001, 446, 283–290. [Google Scholar] [CrossRef]
- Forbes, S.A. List of Illinois Crustacea. Bull. Iii Mus. Nat. Hist. 1876, 1, 3–76. [Google Scholar]
- Raikow, D.F.; Reid, D.F.; Blatchley, E.R., III; Jacobs, G.; Landrum, P.F. Effects of proposed physical ballast tank treatments on aquatic invertebrate resting eggs. Environ. Toxicol. Chem. Int. J. 2007, 26, 717–725. [Google Scholar] [CrossRef]
- Ruggiu, D.; Bertoni, R.; Callieri, C.; Manca, M.; Nocentini, A. Assessment of biota in lakes form the Khumbu Valley, high Hiamalayas. In Top of the World Environmental Research: Mount Everest-Himalayan Ecosystem; Baudo, R., Tartari, G., Munawar, M., Eds.; Blackhuys Publishers: Leiden, The Netherlands, 1998; pp. 219–233. [Google Scholar]
- Fernandez, P.; Carrera, G.; Grimalt, J. Persistent organic pollutants in remote freshwater ecosystems. Aquat. Sci. 2005, 67, 263–273. [Google Scholar] [CrossRef]
- Schmid, P.; Bogdal, C.; Blüthgen, N.; Anselmetti, F.S.; Zwyssig, A.; Hungerbühler, K. The missing piece: Sediment records in remote mountain lakes confirm glaciers being secondary sources of persistent organic pollutants. Environ. Sci. Technol. 2011, 45, 203–208. [Google Scholar] [CrossRef]
- Guzzella, L.; Salerno, F.; Freppaz, M.; Roscioli, C.; Pisanello, F.; Poma, G. POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long-range atmospheric transport, glacier shrinkage, or local impact of tourism? Sci. Total Environ. 2016, 544, 382–390. [Google Scholar] [CrossRef]
LCN10 | LCN70 | |
---|---|---|
Latitude | 27°57′45′′ N | 27°53′36′′ N |
Longitude | 86°48′56′′ E | 86°46′26′′ E |
Altitude | 5067 m | 4830 m |
Area | 1.67 ha | 0.63 ha |
Maximum depth | 14.8 m | 2 m |
Comparison | Difference of Means | t | Unadjusted p |
---|---|---|---|
4–5 cm vs. 2–3 cm | 135.724 | 4.855 | <0.001 |
3–4 cm vs. 2–3 cm | 90.405 | 2.467 | 0.016 |
4–5 cm vs. 3–4 cm | 45.319 | 1.338 | 0.186 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piscia, R.; Bovio, S.; Manca, M.; Lami, A.; Guilizzoni, P. Evaluation of the Egg Bank of Two Small Himalayan Lakes. Water 2020, 12, 491. https://doi.org/10.3390/w12020491
Piscia R, Bovio S, Manca M, Lami A, Guilizzoni P. Evaluation of the Egg Bank of Two Small Himalayan Lakes. Water. 2020; 12(2):491. https://doi.org/10.3390/w12020491
Chicago/Turabian StylePiscia, Roberta, Sara Bovio, Marina Manca, Andrea Lami, and Piero Guilizzoni. 2020. "Evaluation of the Egg Bank of Two Small Himalayan Lakes" Water 12, no. 2: 491. https://doi.org/10.3390/w12020491
APA StylePiscia, R., Bovio, S., Manca, M., Lami, A., & Guilizzoni, P. (2020). Evaluation of the Egg Bank of Two Small Himalayan Lakes. Water, 12(2), 491. https://doi.org/10.3390/w12020491