Climatic Suitability for Outdoor Tourism in Romania’s Big Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
Weather Station * | Lat (N) | Long (E) | Elev (m) | T (°C) | RH (%) | PP (mm) | SS (h) | W (m/s) |
---|---|---|---|---|---|---|---|---|
Botosani | 47°44′08″ | 26°38′40″ | 161 | 9.6 | 71.7 | 534.5 | 5.6 | 3.6 |
Bucharest-Băneasa | 44°31′00″ | 26°05′00″ | 90 | 10.9 | 69.0 | 573.7 | 5.7 | 3.2 |
Cluj-Napoca | 46°46′39″ | 23°34′17″ | 410 | 8.4 | 75.3 | 578.4 | 5.4 | 3.1 |
Constanța | 44°12′49″ | 28°38′41″ | 13 | 11.6 | 71.3 | 394.4 | 6.2 | 4.9 |
Craiova | 47°18′36″ | 23°52′00″ | 192 | 11.1 | 69.2 | 560.7 | 6.2 | 3.4 |
Galați | 45°28′23″ | 28°01′56″ | 71 | 10.8 | 69.7 | 455.4 | 5.8 | 4.1 |
Iași | 47°10′15″ | 27°37′42″ | 102 | 9.7 | 70.7 | 523.5 | 5.7 | 3.6 |
Oradea | 47°02′10″ | 21°53′51″ | 136 | 10.3 | 72.4 | 551.4 | 5.8 | 3.7 |
Sibiu | 45°47′21″ | 24°05′28″ | 444 | 7.9 | 71.8 | 706.1 | 5.1 | 3.4 |
Timișoara | 45°46′17″ | 21°15′35″ | 86 | 10.9 | 68.9 | 566.9 | 5.8 | 3.6 |
Romania Max | 48°14′09″ | 29°39′34″ | 2544 | |||||
Romania Min | 43°37′12″ | 20°15′44″ | 0 |
2.2. Data Used
2.3. Analytical Procedures
- The index was calculated on a daily scale and then aggregated on 10/11-day periods; each month was divided into three periods (decades): from day 1 to day 10, from day 11 to day 20, and from day 21 to the last day of each month (28, 29, 30, or 31).
- Instead of the daytime and daily comfort index (CId and CIa), daytime and daily Effective Temperature (TEd and TEa) was employed because TE evaluates the common influence of air temperature, relative humidity, and wind speed. The index establishes a relationship between the identical state of the human body’s thermoregulatory capacity (warm and cold perception) and the differing temperature and humidity of the surrounding environment [40,56]. TE general description, advantages, and formula were presented in detail in [40], but for this research, its calculation was tailored [9] to successfully replace CId and CIa in the original TCI formula [7]. Thus, TEd aims to detect the index’s maximum value, calculated based on TX, RHmin, and their corresponding wind speed, W, during the daytime. In contrast, TEa was calculated based on daily mean values of the same variables (TG, RH, and W).
- Daily sums of precipitation higher than 10 mm (heavy precipitation days) and 20 mm (very heavy precipitation days) were given a higher weight in the precipitation reclassification data since it can generate severe disturbance of the open-air tourism and recreation activities. Thus, heavy precipitation days received scores of −1 and very heavy precipitation days of −2 for precipitation.
3. Results
3.1. Duration of the Season
3.2. Frequency Analysis of the Suitability Classes
3.3. Analysis of Parameters
3.4. Trend Analysis
3.5. Outdoor Event Analysis and Correlation with Climatic Conditions
4. Discussions
4.1. City Scale Findings
4.2. Trends and Economic/Tourism Implications
4.3. Recommendations from a Sustainable Development Perspective
5. Conclusions
- -
- The most appropriate weather for open-air tourism usually begins in the last part of April and ends during mid-October;
- -
- The trend analysis revealed a shift of suitable conditions earlier in the year, resulting in a longer duration of the favorable season for open-air events, with significant trends detected mainly in the extra-Carpathian regions;
- -
- There is a big difference among the numbers of open-air events identified in the cities considered;
- -
- Most of the events in the cities considered are concentrated in the summer months despite the favorable conditions over a much more extended period.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oğur, A.A.; Baycan, T. Assessing Climate Change Impacts on Tourism Demand in Turkey. Environ. Dev. Sustain. 2023, 25, 2905–2935. [Google Scholar] [CrossRef]
- Scott, D.; McBoyle, G.; Schwartzentruber, M. Climate Change and the Distribution of Climatic Resources for Tourism in North America. Clim. Res. 2004, 27, 105–117. [Google Scholar] [CrossRef]
- Matei, N.-A.; Garcia Leon, D.; Dosio, A.; Batista e Silva, F.; Ribeiro Barranco, R.; Ciscar Martinez, J.C. Regional Impact of Climate Change on European Tourism Demand; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- International Tourism Highlights; 2020 Edition; World Tourism Organization (UNWTO): Madrid, Spain, 2021.
- de Freitas, C.R. A Review of “Tourism and Climate Change: Risks and Opportunities”. J. Sustain. Tour. 2009, 17, 640–642. [Google Scholar] [CrossRef]
- Craig, C.A.; Feng, S. A Temporal and Spatial Analysis of Climate Change, Weather Events, and Tourism Businesses. Tour. Manag. 2018, 67, 351–361. [Google Scholar] [CrossRef]
- Mieczkowski, Z. The Tourism Climatic Index: A Method of Evaluating World Climates for Tourism. Can. Geogr. 1985, 29, 220–233. [Google Scholar] [CrossRef]
- Perch-Nielsen, S.L.; Amelung, B.; Knutti, R. Future Climate Resources for Tourism in Europe Based on the Daily Tourism Climatic Index. Clim. Chang. 2010, 103, 363–381. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Rus, A.-V.; Man, T.-C.; Malairău, V.; Matei, A. Climate Suitability for Sustainable Economic Growth through Tourism in the Danube Delta. In The Danube River Delta; Springer: Cham, Switzerland, 2022; pp. 291–316. [Google Scholar]
- Noome, K.; Fitchett, J.M. Quantifying the Climatic Suitability for Tourism in Namibia Using the Tourism Climate Index (TCI). Environ. Dev. Sustain. 2022, 24, 5094–5111. [Google Scholar] [CrossRef]
- Kubokawa, H.; Inoue, T.; Satoh, M. Evaluation of the Tourism Climate Index over Japan in a Future Climate Using a Statistical Downscaling Method. J. Meteorol. Soc. Jpn. Ser. II 2014, 92, 37–54. [Google Scholar] [CrossRef]
- Amelung, B.; Nicholls, S. Implications of Climate Change for Tourism in Australia. Tour. Manag. 2014, 41, 228–244. [Google Scholar] [CrossRef]
- Roshan, G.; Yousefi, R.; Fitchett, J.M. Long-Term Trends in Tourism Climate Index Scores for 40 Stations across Iran: The Role of Climate Change and Influence on Tourism Sustainability. Int. J. Biometeorol. 2016, 60, 33–52. [Google Scholar] [CrossRef]
- Fitchett, J.M.; Robinson, D.; Hoogendoorn, G. Climate Suitability for Tourism in South Africa. J. Sustain. Tour. 2017, 25, 851–867. [Google Scholar] [CrossRef]
- Alonso-Pérez, S.; López-Solano, J.; Rodríguez-Mayor, L.; Márquez-Martinón, J.M. Evaluation of the Tourism Climate Index in the Canary Islands. Sustainability 2021, 13, 7042. [Google Scholar] [CrossRef]
- Ma, S.; Craig, C.A.; Feng, S.; Liu, C. Climate Resources at United States National Parks: A Tourism Climate Index Approach. Tour. Recreat. Res. 2023, 48, 710–724. [Google Scholar] [CrossRef]
- Yu, D.D.; Rutty, M.; Scott, D.; Li, S. A Comparison of the Holiday Climate Index:Beach and the Tourism Climate Index across Coastal Destinations in China. Int. J. Biometeorol. 2021, 65, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, A.; Unger, J. Modification of the Tourism Climatic Index ToCentral European Climatic Conditions—Examples. Q. J. Hung. Meteorol. Serv. 2014, 118, 147–166. [Google Scholar]
- Scott, D.; Rutty, M.; Amelung, B.; Tang, M. An Inter-Comparison of the Holiday Climate Index (HCI) and the Tourism Climate Index (TCI) in Europe. Atmosphere 2016, 7, 80. [Google Scholar] [CrossRef]
- Moreno, A.; Amelung, B. Climate Change and Tourist Comfort on Europe’s Beaches in Summer: A Reassessment. Coast. Manag. 2009, 37, 550–568. [Google Scholar] [CrossRef]
- Valizadeh, M.; Khoorani, A. The Impact of Climate Change on the Outdoor Tourism with a Focus on the Outdoor Tourism Climate Index (OTCI) in Hormozgan Province, Iran. Theor. Appl. Climatol. 2022, 150, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Lungu, M.; Panaitescu, L.; Lungu, D. Climatic Suitability for Tourism Activities in Constanta County (Romania). In International Multidisciplinary Scientific GeoConference: SGEM; Surveying Geology & Mining Ecology Management (SGEM): Sofia, Bulgaria, 2013; pp. 585–592. [Google Scholar]
- Mihăilă, D.; Bistricean, P.I. The Suitability of Moldova Climate for Balneary—Climatic Tourism and Outdoor Activities—A Study Based on the Tourism Climate Index. Present Environ. Sustain. Dev. 2018, 12, 263–282. [Google Scholar] [CrossRef]
- Ciobotaru, A.-M.; Andronache, I.; Peptenatu, D.; Diaconu, D.C.; Visan, M.C. Bioclimatic Analysis and Tourism Analysis in Romania. In Public Recreation and Landscape Protection—With Environment Hand in Hand? 2017; pp. 37–43. Available online: http://www.utok.cz/sites/default/files/data/USERS/u24/RaOP_2017.0001.pdf (accessed on 18 March 2024).
- Ciobotaru, A.-M.; Andronache, I.; Dey, N.; Petralli, M.; Daneshvar, M.R.M.; Wang, Q.; Radulovic, M.; Pintilii, R.-D. Temperature-Humidity Index Described by Fractal Higuchi Dimension Affects Tourism Activity in the Urban Environment of Focşani City (Romania). Theor. Appl. Climatol. 2019, 136, 1009–1019. [Google Scholar] [CrossRef]
- Velea, L.; Bojariu, R.; Udristioiu, M.T.; Sararu, S.C.; Gothard, M.; Dascalu, S.I. Assessment of Summer Thermal Comfort Using the Net Effective Temperature Index over Romania. In AIP Conference Proceedings; AIP Publishing: Long Island, NY, USA, 2019; p. 040004. [Google Scholar]
- Mihăilă, D.; Bistricean, P.-I.; Briciu, A.-E. Assessment of the Climate Potential for Tourism. Case Study: The North-East Development Region of Romania. Theor. Appl. Climatol. 2019, 137, 601–622. [Google Scholar] [CrossRef]
- Velea, L.; Gallo, A.; Bojariu, R.; Irimescu, A.; Craciunescu, V.; Puiu, S. Holiday Climate Index: Urban—Application for Urban and Rural Areas in Romania. Atmosphere 2022, 13, 1519. [Google Scholar] [CrossRef]
- Velea, L.; Bojariu, R.; Irimescu, A.; Craciunescu, V.; Puiu, S.; Gallo, A. Climate Suitability for Tourism in Romania Based on HCI: Urban Climate Index in the Near-Future Climate. Atmosphere 2023, 14, 1020. [Google Scholar] [CrossRef]
- Rotmans, J.; Hulme, M.; Downing, T.E. Climate Change Implications for Europe. Glob. Environ. Chang. 1994, 4, 97–124. [Google Scholar] [CrossRef]
- Scott, D.; McBoyle, G. Using a Modified ‘Tourism Climate Index’ to Examine the Implications of Climate Change for Climate as a Natural Resource for Tourism. In First International Workshop on Climate, Tourism and Recreation; Adaptation and Impacts Research Group, Environment Canada, International Society of Biometeorology: Towson, MD, USA, 2001. [Google Scholar]
- Amelung, B.; Blazejczyk, K.; Matzarakis, A. Climate Change and Tourism—Assessment and Copying Strategies; Maastricht: Warsaw, Poland, 2007. [Google Scholar]
- de Freitas, C.R. Recreation Climate Assessment. Int. J. Climatol. 1990, 10, 89–103. [Google Scholar] [CrossRef]
- Gomez-Martin, M.B. Climate Potential and Tourist Demand in Catalonia (Spain) during the Summer Season. Clim. Res. 2006, 31, 75–87. [Google Scholar] [CrossRef]
- Council of the European Union. European Agenda for Tourism 2030—Council Conclusions (Adopted on 01/12/2022). Bruxelles, Belgium, 2022. Available online: https://data.consilium.europa.eu/doc/document/ST-15441-2022-INIT/en/pdf (accessed on 20 March 2024).
- Croitoru, A.-E.; Piticar, A.; Burada, D.C. Changes in Precipitation Extremes in Romania. Quat. Int. 2016, 415, 325–335. [Google Scholar] [CrossRef]
- Croitoru, A.; Piticar, A. Changes in Daily Extreme Temperatures in the Extra-Carpathians Regions of Romania. Int. J. Climatol. 2013, 33, 1987–2001. [Google Scholar] [CrossRef]
- ECA&D. Available online: https://www.ecad.eu/dailydata/index.php (accessed on 6 December 2022).
- On the World Map. Available online: https://ontheworldmap.com/europe/physical-map-of-europe.jpg (accessed on 12 February 2024).
- Banc, S.; Croitoru, A.-E.; David, N.A.; Scripcă, A.-S. Changes Detected in Five Bioclimatic Indices in Large Romanian Cities over the Period 1961–2016. Atmosphere 2020, 11, 819. [Google Scholar] [CrossRef]
- Romanian National Meteorological Administration RO-ADAPT, Romania’s Climate Change Adaptation Platform. Available online: www.roadapt.ro (accessed on 8 August 2024).
- Horvath, C.; Croitoru, A.-E. Analysis of Precipitation Extremes Related to Agriculture and Water Resources Sectors Based on Gridded Daily Data in Romania. Theor. Appl. Climatol. 2023, 151, 355–373. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Piticar, A.; Ciupertea, A.-F.; Roşca, C.F. Changes in Heat Waves Indices in Romania over the Period 1961–2015. Glob. Planet. Chang. 2016, 146, 109–121. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Piticar, A.; Sfîcă, L.; Harpa, G.-V.; Roșca, C.-F.; Tudose, T.; Horvath, C.; Minea, I.; Ciupertea, F.-A.; Scripcă, A.-S. Extreme Temperature and Precipitation Events in Romania; Croitoru, A.-E., Piticar, A., Sfîcâ, L., Eds.; Editura Academiei Române: Bucharest, Romania, 2018; ISBN 978-973-27-2833-8. [Google Scholar]
- Busuioc, A.; Caian, M.; Cheval, S.; Bojariu, R.; Boroneant, C.; Baciu, M.; Dumitrescu, A. Variabilitatea Si Schimbarea Climei in Romania; Pro Universitaria: București, Romania, 2010; ISBN 978-973-129-549-7. [Google Scholar]
- Bojariu, R.; Bîrsan, M.V.; Cică, R.; Velea, L.; Burcea, S.; Dumitrescu, A.; Dascălu, S.I.; Gothard, M.; Dobrinescu, A.; Cărbunaru, F.; et al. Schimbările Climatice-de La Bazele Fizice La Riscuri Și Adaptare; Printech București: Bucuresti, Romania, 2015; ISBN 978-606-23-1275-6. [Google Scholar]
- Marin, L.; Bîrsan, M.-V.; Bojariu, R.; Dumitrescu, A.; Micu, D.M.; Manea, A. An Overview of Annual Climatic Changes in Romania: Trends in Air Temperature, Precipitation, Sunshine Hours, Cloud Cover, Relative Humidity and Wind Speed during the 1961–2013 Period. Carpathian J. Earth Environ. Sci. 2014, 9, 253–258. [Google Scholar]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily Dataset of 20th-century Surface Air Temperature and Precipitation Series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Meteomanz. Available online: www.meteomanz.com (accessed on 12 July 2022).
- Reliable Prognosis 5. Available online: https://rp5.ru/Weather_in_the_world (accessed on 8 December 2022).
- Wind Speed Interpolation. Available online: https://websites.pmc.ucsc.edu/~jnoble/wind/extrap/ (accessed on 15 February 2018).
- de Freitas, C.R. Tourism Climatology: Evaluating Environmental Information for Decision Making and Business Planning in the Recreation and Tourism Sector. Int. J. Biometeorol. 2003, 48, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A. Weather- and Climate-Related Information for Tourism. Tour. Hosp. Plan. Dev. 2006, 3, 99–115. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Scott, D.; McBoyle, G. A Second Generation Climate Index for Tourism (CIT): Specification and Verification. Int. J. Biometeorol. 2008, 52, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Fitchett, J.M.; Grant, B.; Hoogendoorn, G. Climate Change Threats to Two Low-Lying South African Coastal Towns: Risks and Perceptions. S. Afr. J. Sci. 2016, 112, 9. [Google Scholar] [CrossRef] [PubMed]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to Selected Thermal Indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed]
- Kendall, M.G. Rank Correlation Method, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Maurice, G. Kendall; Jean Dickinson Gibbons. In Rank Correlation Methods, 5th ed.; Arnold, E., Ed.; Oxford University Press: London, New York, NY, USA, 1990. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold: New York, NY, USA, 1987. [Google Scholar]
- Efe, B.; Gözet, E.; Özgür, E.; Lupo, A.R.; Deniz, A. Spatiotemporal Variation of Tourism Climate Index for Türkiye during 1981–2020. Climate 2022, 10, 151. [Google Scholar] [CrossRef]
- Cultura La Duba—Untold. Available online: https://culturaladuba.ro/untold-a-inregistrat-un-numar-record-de-participanti-360-000-in-4-zile-de-festival/ (accessed on 6 August 2024).
- HotNews—Electric Castle. Available online: https://hotnews.ro/record-de-participanti-si-momente-unice-la-electric-castle-2024-1753760 (accessed on 6 August 2024).
- Revista Biz—Neversea. Available online: https://www.revistabiz.ro/cati-oameni-au-ajuns-la-neversea-in-2023-artistii-au-fost-impresionati-de-publicul-roman/ (accessed on 6 August 2024).
- IPCC Summary for Policymakers. In Climate Change 2022—Impacts, Adaptation and Vulnerability; Pörtner, H.-O.; Roberts, D.C.; Poloczanska, E.S.; Mintenbeck, K.; Tignor, M.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–34. [Google Scholar]
- Dorta-Antequera, P.; Sánchez-Almodóvar, E.; López-Díez, A.; Díaz-Pacheco, J.; Olcina-Cantos, J. Climate Change and Tourism in Spain. The Case of the Canary Islands and the Costa Blanca (Alicante). In Tourism and Climate Change in the 21st Century. Advances in Spatial 644 Science; Remoaldo, P., Lopes, H., Ribeiro, V., Alves, J., Eds.; Springer Nature: Cham, Switzerland, 2024; ISBN 978-3-031-59430-4. [Google Scholar]
- Dorta Antequera, P.; Díaz Pacheco, J.; López Díez, A.; Bethencourt Herrera, C. Tourism, Transport and Climate Change: The Carbon Footprint of International Air Traffic on Islands. Sustainability 2021, 13, 1795. [Google Scholar] [CrossRef]
- World Tourism Organization and International Transport Forum Transport-Related CO2 Emissions of the Tourism Sector—Modelling Results; World Tourism Organization (UNWTO): Madrid, Spain, 2019; ISBN 9789284416660.
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The Carbon Footprint of Global Tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
ETCI Score | Rating | Comfort Class | Favorability |
---|---|---|---|
90–100 | 9 | Ideal | Suitable for outdoor tourism and open-air events |
80–89 | 8 | Excellent | |
70–79 | 7 | Very Good | |
60–69 | 6 | Good | |
50–59 | 5 | Acceptable | |
40–49 | 4 | Marginal | Unsuitable for outdoor tourism and open-air events |
30–39 | 3 | Unfavorable | |
20–29 | 2 | Very unfavorable | |
10–19 | 1 | Extremely unfavorable | |
<10 | 0 | Impossible |
Average | Comfort Class/City | Botosani | Bucharest | Cluj-Napoca | Constanța | Craiova | Galați | Iași | Oradea | Sibiu | Timișoara |
---|---|---|---|---|---|---|---|---|---|---|---|
FO | Acceptable | 53.1 | 49.6 | 59.2 | 49.0 | 47.7 | 46.9 | 47.8 | 49.1 | 62.4 | 54.2 |
Good | 44.3 | 44.8 | 50.1 | 49.0 | 45.3 | 44.3 | 41.8 | 46.4 | 51.4 | 50.2 | |
Very Good | 35.5 | 37.7 | 40.0 | 37.8 | 36.3 | 33.9 | 35.5 | 33.9 | 37.6 | 38.9 | |
Excellent | 38.5 | 54.2 | 39.9 | 30.8 | 41.9 | 39.4 | 41.3 | 40.5 | 43.9 | 48.3 | |
Ideal | 51.7 | 62.7 | 39.9 | 66.0 | 66.5 | 64.0 | 55.0 | 56.8 | 40.8 | 56.8 | |
DOP | Acceptable | 343.8 | 349.2 | 337.7 | 345.4 | 343.7 | 332.54 | 334.3 | 336.0 | 350.1 | 348.4 |
Good | 295.3 | 310.2 | 272.0 | 300.8 | 297.8 | 264.8 | 277.0 | 282.1 | 296.9 | 305.4 | |
Very Good | 216.5 | 235.2 | 213.7 | 215.8 | 232.3 | 211.4 | 215.5 | 211.2 | 220.0 | 230.6 | |
Excellent | 181.3 | 203.5 | 168.2 | 168.3 | 191.1 | 175.0 | 177.6 | 175.5 | 178.1 | 185.7 | |
Ideal | 147.2 | 162.4 | 127.3 | 131.7 | 153.9 | 141.2 | 142.7 | 143.4 | 137.0 | 151.2 | |
FD | Acceptable | 12.4 | 11.0 | 15.7 | 11.8 | 14.3 | 17.8 | 18.5 | 15.9 | 9.0 | 8.7 |
Good | 37.6 | 33.8 | 49.1 | 37.9 | 36.1 | 58.0 | 49.8 | 44.9 | 37.0 | 31.9 | |
Very Good | 82.7 | 71.8 | 82.2 | 88.6 | 71.2 | 86.9 | 83.3 | 84.8 | 81.3 | 74.8 | |
Excellent | 107.1 | 93.1 | 112.3 | 117.1 | 100.1 | 110.2 | 109.0 | 110.4 | 109.7 | 103.3 | |
Ideal | 122.0 | 113.3 | 135.5 | 136.6 | 119.2 | 127.8 | 125.0 | 126.6 | 130.7 | 120.5 | |
LD | Acceptable | 356.1 | 360.1 | 353.3 | 357.2 | 358.0 | 350.3 | 352.8 | 352.0 | 359.1 | 357.1 |
Good | 333.0 | 344.0 | 321.1 | 338.7 | 333.9 | 322.8 | 326.8 | 327.0 | 334.0 | 337.3 | |
Very Good | 299.2 | 307.0 | 295.8 | 338.7 | 303.5 | 298.2 | 298.9 | 296.0 | 301.3 | 305.4 | |
Excellent | 288.5 | 296.6 | 280.6 | 285.5 | 291.2 | 285.2 | 286.6 | 285.9 | 287.8 | 289.1 | |
Ideal | 269.2 | 275.7 | 262.7 | 268.4 | 273.0 | 269.0 | 267.7 | 270.0 | 267.7 | 271.7 |
Sen’s Slope | Comfort Class/City | Botosani * | Bucharest | Cluj-Napoca | Constanța | Craiova | Galați | Iași | Oradea | Sibiu | Timișoara |
---|---|---|---|---|---|---|---|---|---|---|---|
FO | Acceptable | −0.270 | 1.765 | 0.000 | 1.868 | 1.797 | 2.857 | 1.206 | 0.000 | 0.000 | 0.800 |
Good | 0.674 | 0.694 | 0.440 | 0.445 | 1.559 | 0.960 | 1.650 | 0.435 | 0.000 | 1.500 | |
Very Good | 0.920 | 0.909 | 0.667 | −0.339 | 0.000 | 0.270 | 0.455 | −0.282 | −0.351 | 2.000 | |
Excellent | 0.455 | 1.920 | 0.000 | 0.909 | 1.304 | 4.211 | 1.667 | 0.769 | −0.445 | 0.000 | |
Ideal | 1.786 | −2.168 | 1.357 | 5.789 | −0.960 | −0.231 | 1.684 | 0.952 | 0.649 | −1.667 | |
DOP | Acceptable | 0.000 | 1.250 | 0.000 | 3.086 | 3.000 | 5.251 | 3.889 | −0.340 | −0.769 | 0.678 |
Good | 2.578 | 1.250 | 1.250 | 13.023 | 2.673 | 7.592 | 3.258 | 1.847 | 0.920 | 0.809 | |
Very Good | 0.558 | 1.667 | −1.027 | 6.111 | −0.472 | 3.675 | 2.768 | 1.901 | 0.000 | 1.017 | |
Excellent | 0.408 | 0.000 | −2.500 | 6.815 | −1.111 | 3.402 | 0.412 | 0.354 | −2.158 | −0.736 | |
Ideal | −2.343 | −3.970 | −3.636 | 3.333 | −3.333 | 0.000 | −1.371 | −2.986 | −5.345 | −3.333 | |
FD | Acceptable | 0.000 | −0.811 | −0.208 | −1.304 | −2.000 | −1.868 | −2.754 | 0.000 | 0.000 | 0.000 |
Good | −1.071 | −1.772 | −1.667 | −9.052 | −2.110 | −5.472 | −1.429 | −0.723 | 1.112 | −0.367 | |
Very Good | −1.765 | −2.367 | −0.227 | −4.483 | −0.909 | −3.333 | −2.952 | −1.429 | −1.158 | −0.981 | |
Excellent | −0.805 | 0.000 | 1.579 | −3.371 | 0.000 | −1.266 | 0.000 | 0.000 | 2.727 | 2.000 | |
Ideal | 0.968 | 2.440 | 2.069 | −2.772 | 0.909 | −1.000 | 0.000 | 1.333 | 2.604 | 2.727 | |
LD | Acceptable | −0.192 | 0.000 | 0.000 | 0.686 | 0.588 | 2.174 | 0.667 | 0.000 | −0.694 | 0.000 |
Good | 0.000 | −1.371 | −0.222 | 4.636 | 0.000 | 1.039 | 1.429 | 1.053 | 0.984 | 0.381 | |
Very Good | −1.206 | 0.000 | −1.021 | 2.000 | −1.137 | 0.702 | −0.357 | 1.333 | −0.886 | 0.483 | |
Excellent | 0.000 | −0.440 | −1.176 | 4.508 | −0.645 | 1.830 | 0.000 | 0.000 | 0.729 | 0.000 | |
Ideal | −0.984 | −1.667 | −1.325 | 0.404 | −1.852 | −0.417 | −1.044 | −0.952 | −2.500 | −1.818 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croitoru, A.-E.; Banc, Ș.; Scripcă, A.-S.; Rus, A.-V. Climatic Suitability for Outdoor Tourism in Romania’s Big Cities. Atmosphere 2024, 15, 996. https://doi.org/10.3390/atmos15080996
Croitoru A-E, Banc Ș, Scripcă A-S, Rus A-V. Climatic Suitability for Outdoor Tourism in Romania’s Big Cities. Atmosphere. 2024; 15(8):996. https://doi.org/10.3390/atmos15080996
Chicago/Turabian StyleCroitoru, Adina-Eliza, Ștefana Banc, Andreea-Sabina Scripcă, and Adina-Viorica Rus. 2024. "Climatic Suitability for Outdoor Tourism in Romania’s Big Cities" Atmosphere 15, no. 8: 996. https://doi.org/10.3390/atmos15080996
APA StyleCroitoru, A. -E., Banc, Ș., Scripcă, A. -S., & Rus, A. -V. (2024). Climatic Suitability for Outdoor Tourism in Romania’s Big Cities. Atmosphere, 15(8), 996. https://doi.org/10.3390/atmos15080996