Characterizing the Regional Differences in Carbon Dioxide Concentration Based on Satellite Observations in the Beijing-Tianjin-Hebei Region during 2015–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. OCO-2 Satellite Data
2.3. Land Use Remote Sensing Monitoring Data
2.4. In Situ Data
2.5. Population and Gross Domestic Product Density Datasets
3. Results and Discussion
3.1. Validation of Satellite Data
3.2. Spatiotemporal Variations of CO2 over Jing-Jin-Ji
3.3. Regional Differences in CO2 Concentration at the City Level
3.4. Correlation between Land-Type Structure and CO2 Concentration in Different Cities
3.5. Correlation between Population Economy and CO2 Concentration in Different Cities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kunchala, R.K.; Patra, P.K.; Kumar, K.N.; Chandra, N.; Attada, R.; Rama Karumuri, R.K. Spatio-temporal variability of XCO2 over Indian region inferred from Orbiting Carbon Observatory (OCO-2) satellite and Chemistry Transport Model. Atmos. Res. 2022, 269, 106044. [Google Scholar] [CrossRef]
- Das, C.; Kunchala, R.K.; Chandra, N.; Chhabra, A.; Pandya, M.R. Characterizing the regional XCO2 variability and its association with ENSO over India inferred from GOSAT and OCO-2 satellite observations. Sci. Total Environ. 2023, 902, 166176. [Google Scholar] [CrossRef]
- WMO. Greenhouse Gas Bulletins: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2021, No. 18, 26 October 2022. Available online: https://gaw.kishou.go.jp/ (accessed on 9 March 2024).
- Schneising, O.; Buchwitz, M.; Reuter, M.; Heymann, J.; Bovensmann, H.; Burrows, J.P. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmos. Chem. Phys. 2011, 11, 2863–2880. [Google Scholar] [CrossRef]
- Cai, B.F.; Li, W.X.; Dhakal, S.; Wang, J.H. Source data supported high resolution carbon emissions inventory for urban areas of the Beijing-Tianjin-Hebei region: Spatial patterns, decomposition and policy implications. J. Environ. Manag. 2018, 206, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, K.; Fan, J. County-level carbon emission accounting and Major Function Oriented Zones in western regions: Taking Sichuan Province as an example. Acta Ecol. Sin. 2022, 42, 8664–8674. [Google Scholar]
- Jin, J.; Ma, J.; Lin, W.; Zhao, H.; Shaiganfar, R.; Beirle, S.; Wagner, T. MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China. Atmos. Environ. 2016, 133, 12–25. [Google Scholar] [CrossRef]
- Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noäel, S.; Rozanov, V.V.; Chance, K.V.; Goede, A.P.H. SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci. 1999, 56, 127–150. [Google Scholar] [CrossRef]
- Buchwitz, M.; de Beek, R.; Burrows, J.P.; Bovensmann, H.; Warneke, T.; Notholt, J.; Meirink, J.F.; Goede, A.P.H.; Bergamaschi, P.; Körner, S.; et al. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models. Atmos. Chem. Phys. 2005, 5, 941–962. [Google Scholar] [CrossRef]
- Barkley, M.P.; Monks, P.S.; Hewitt, A.J.; Machida, T.; Desai, A.; Vinnichenko, N.; Nakazawa, T.; Yu Arshinov, M.; Fedoseev, N.; Watai, T. Assessing the Near Surface Sensitivity of SCIAMACHY atmospheric CO2 Retrieved Using (FSI) WFM-DOAS. Atmos. Chem. Phys. 2007, 7, 3597–3619. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.M.; He, L.M.; Sun, Y.; Rogers, C.; Liu, J. Exploring SMAP and OCO-2 observations to monitor soil moisture control on photosynthetic activity of global drylands and croplands. Remote Sens. Environ. 2019, 232, 111314. [Google Scholar] [CrossRef]
- Kiel, M.; Eldering, A.; Roten, D.D.; Lin, J.C.; Feng, S.; Lei, R.X.; Lauvaux, T.; Oda, T.; Roehl, C.M.; Blavier, J.F.; et al. Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: A first look at the Los Angeles megacity. Remote Sens. Environ. 2021, 258, 112314. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Liu, Y.; Xu, X.G.; Cai, Z.N.; Yang, D.X.; Yan, C.X.; Feng, L. Angular dependence of aerosol information content in CAPI/TanSat observation over land: Effect of polarization and synergy with A-train satellites. Remote Sens. Environ. 2017, 196, 163–177. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, L.; Wang, W.H.; Cao, D.J.; Wang, X.; Ye, D.X. Long-term trend and spatiotemporal variations of haze over China by satellite observations from 1979 to 2013. Atmos. Environ. 2015, 119, 362–373. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, H.; Zhang, S.; Xu, J.; Lu, X.; Jin, J.; Wang, C. Estimating and Source Analysis of Surface PM2.5 Concentration in the Beijing–Tianjin–Hebei Region Based on MODIS Data and Air Trajectories. Int. J. Remote Sens. 2016, 37, 4799–4817. [Google Scholar] [CrossRef]
- Han, P.F.; Zeng, N.; Oda, T.; Zhang, W.; Lin, X.H.; Liu, D.; Cai, Q.X.; Ma, X.L.; Meng, W.J.; Wang, G.C.; et al. A city-level comparison of fossil-fuel and industry processes-induced CO2 emissions over the Beijing-Tianjin-Hebei region from eight emission inventories. Carbon Balance Manag. 2020, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.X.; Feng, S.; Danjou, A.; Broquet, G.; Wu, D.; Lin, J.C.; O’Dell, C.W.; Lauvaux, T. Fossil fuel CO2 emissions over metropolitan areas from space: A multi-model analysis of OCO-2 data over Lahore, Pakistan. Remote Sens. Environ. 2021, 264, 112625. [Google Scholar] [CrossRef]
- Morgan, K.; Savtchenko, A. README Document for OCO-2 GEOS L3 XCO2 Products; Goddard Space Flight Center: Greenbelt, MD, USA, 2022.
- Zeng, C.Q.; Zhou, Y.; Wang, S.X.; Yan, F.L.; Zhao, Q. Population spatialization in China based on night-time imagery and land use data. Int. J. Remote Sens. 2011, 32, 9599–9620. [Google Scholar] [CrossRef]
- Wang, L.T.; Wang, S.X.; Zhou, Y.; Liu, W.L.; Hou, Y.F.; Zhu, J.F.; Wang, F.T. Mapping population density in China between 1990 and 2010 using remote sensing. Remote Sens. Environ. 2018, 210, 269–281. [Google Scholar] [CrossRef]
- Han, X.D.; Zhou, Y.; Wang, S.X.; Wang, L.T.; Hou, Y.F. Spatialization Approach to 1km grid GDP Based on Remote Sensing. In Proceedings of the IEEE 2011 International Conference on Multimedia Technology (ICMT), Hangzhou, China, 26–28 July 2011; pp. 739–742. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.L.; Ning, Y.D. Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy 2009, 37, 767–773. [Google Scholar] [CrossRef]
Region | 2015 (ppm) | 2018 (ppm) | 2021 (ppm) | Average (ppm) | Increase Rate (%) |
---|---|---|---|---|---|
BJ | 401.19 | 409.18 | 417.14 | 409.16 | 1.98 |
TJ | 401.85 | 409.75 | 417.74 | 409.78 | 1.97 |
SJZ | 401.61 | 409.61 | 417.43 | 409.62 | 1.99 |
TS | 401.42 | 409.32 | 417.25 | 409.34 | 1.97 |
QHD | 401.11 | 409.04 | 416.91 | 409.02 | 1.97 |
HD | 401.55 | 409.61 | 417.27 | 409.59 | 2.00 |
XT | 401.72 | 409.74 | 417.48 | 409.74 | 1.99 |
BD | 401.34 | 409.32 | 417.22 | 409.33 | 1.99 |
ZJK | 399.90 | 407.93 | 415.72 | 407.89 | 1.99 |
CD | 400.03 | 408.03 | 415.86 | 407.99 | 1.98 |
CZ | 401.67 | 409.64 | 417.49 | 409.65 | 1.98 |
LF | 401.94 | 409.86 | 417.87 | 409.90 | 1.97 |
HS | 401.79 | 409.78 | 417.61 | 409.79 | 1.99 |
Jing-Jin-Ji | 401.32 | 409.29 | 417.15 | 409.29 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y.; Liu, W.; Wang, L.; Wang, F.; Zhu, J.; Wang, S. Characterizing the Regional Differences in Carbon Dioxide Concentration Based on Satellite Observations in the Beijing-Tianjin-Hebei Region during 2015–2021. Atmosphere 2024, 15, 816. https://doi.org/10.3390/atmos15070816
Hou Y, Liu W, Wang L, Wang F, Zhu J, Wang S. Characterizing the Regional Differences in Carbon Dioxide Concentration Based on Satellite Observations in the Beijing-Tianjin-Hebei Region during 2015–2021. Atmosphere. 2024; 15(7):816. https://doi.org/10.3390/atmos15070816
Chicago/Turabian StyleHou, Yanfang, Wenliang Liu, Litao Wang, Futao Wang, Jinfeng Zhu, and Shixin Wang. 2024. "Characterizing the Regional Differences in Carbon Dioxide Concentration Based on Satellite Observations in the Beijing-Tianjin-Hebei Region during 2015–2021" Atmosphere 15, no. 7: 816. https://doi.org/10.3390/atmos15070816
APA StyleHou, Y., Liu, W., Wang, L., Wang, F., Zhu, J., & Wang, S. (2024). Characterizing the Regional Differences in Carbon Dioxide Concentration Based on Satellite Observations in the Beijing-Tianjin-Hebei Region during 2015–2021. Atmosphere, 15(7), 816. https://doi.org/10.3390/atmos15070816