Simulation of Submicron Particulate Matter (PM1) Dispersion Due to Traffic Rerouting to Establish a Walkable Cultural Tourism Route in Ratchaburi’s Old Town, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Application
2.2.1. Traffic Activities and Emissions
2.2.2. Meteorological Data
2.2.3. Model Performance Evaluation
2.3. Scenario Study
3. Results and Discussion
3.1. Traffic Activities and Emissions
3.1.1. Traffic Activities
3.1.2. Vehicle Particulate Emission Factors
3.1.3. Temporal Variations in Traffic Emissions
3.2. Evaluation of R-LINE
3.3. Comparisons with Similar Studies
3.4. Changes of Vehicles in Our Case Studies’ Road Network
3.5. Spatial Distribution of PM1 in the Case Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Travel & Tourism Council (WTTC). Economic Impact Research. 2023. Available online: https://wttc.org/research/economic-impact (accessed on 7 December 2023).
- Eslami, F.; Namdar, R. Social, Environmental and Economic Impact Assessment of COVID-19 on Rural Tourism. Front. Public Health 2022, 10, 883277. [Google Scholar] [CrossRef] [PubMed]
- Istoc, E. Urban cultural tourism and sustainable development. Int. J. Responsible Tour. 2012, 1, 38–57. [Google Scholar]
- World Tourism Organization (UNWTO). Cultural Tourism and COVID-19. 2020. Available online: https://www.unwto.org/cultural-tourism-covid-19 (accessed on 18 December 2023).
- The Royal Thai Government Gazette. Regulation of the Prime Minister’s Office on the Conservation and Development of Rattanakosin Area and Old Towns 2021. 2021. Available online: https://dl.parliament.go.th/handle/20.500.13072/584997 (accessed on 18 December 2023). (In Thai).
- Office of Natural Resources and Environmental Policy and Planning (ONEP). Environmental Quality Situation in 2022 (Infographic Edition). 2023. Available online: https://www.onep.go.th/book/info-soe2565/ (accessed on 26 July 2023).
- Chaiyapotpanit, A.; Khaokhiew, C.; Thamrungraeng, R.; Chantaruphan, P.; Sinvuttaya, S.; Preamkulanan, P.; Tangcharatwong, K.; Jitpaisarnwattana, N.; Maneechote, M.; Rujirotvarangkul, C. Cultural capital for the development and conservation of ancient cities in western Thailand: A case study of the Ratchaburi and Phetchaburi provinces. Humanit. Arts Soc. Sci. Stud. 2023, 23, 528–538. [Google Scholar] [CrossRef]
- Preyawanit, N. Ratchaburi old town: A preservation and development study. NAJUA Hist. Archit. Thai Archit. 2023, 20, 160–197. (In Thai) [Google Scholar]
- Silpakorn University. The Conservation and Development of Ratchaburi Old Town Towards Creative and Livable City for Cultural-Based Economic Advancement and Sustainable Living; Silpakorn University Research, Innovation and Creativity (SURIC) Administration Office: Phetchaburi, Thailand, 2020. (In Thai) [Google Scholar]
- Sunlu, U. Environmental impacts of tourism. In Local Resources and Global Trades: Environments and Agriculture in the Mediterranean Region; Camarda, D., Grassini, L., Eds.; CIHEAM: Bari, Italy, 2003; pp. 263–270. [Google Scholar]
- Belsoy, J.; Korir, J.; Yego, J. Environmental Impacts of Tourism in Protected Areas. J. Environ. Earth Sci. 2012, 10, 64–73. [Google Scholar]
- Eusébio, C.; Carneiro, M.J.; Madaleno, M.; Robaina, M.; Rodrigues, V.; Russo, M.; Relvas, H.; Gama, C.; Lopes, M.; Seixas, V.; et al. The impact of air quality on tourism: A systematic literature review. J. Tour. Futures 2020, 7, 111–130. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Q.; Kong, Y.; Chen, X. The coupling relationship between tourism economy and air quality in China: A province-level analysis. J. Environ. Econ. Manag. 2023, 11, 1111828. [Google Scholar] [CrossRef]
- Oliveira, M.L.; Neckel, A.; Pinto, D.; Maculan, L.S.; Dotto, G.L.; Silva, L.F. The impact of air pollutants on the degradation of two historic buildings in Bordeaux, France. Urban Clim. 2021, 39, 100927. [Google Scholar] [CrossRef]
- Daengprathum, N.; Onchang, R.; Nakhapakorn, K.; Robert, O.; Tipayarom, A.; Sturm, P.J. Estimation of Effects of Air Pollution on the Corrosion of Historical Buildings in Bangkok. Environ. Nat. Resour. J. 2022, 20, 505–545. [Google Scholar] [CrossRef]
- Baobeid, A.; Koç, M.; Al-Ghamdi, S.G. Walkability and its relationships with health, sustainability, and livability: Elements of physical environment and evaluation frameworks. Front. Built Environ. 2021, 7, 721218. [Google Scholar] [CrossRef]
- Jeong, I.; Choi, M.; Kwak, J.; Ku, D.; Lee, S. A comprehensive walkability evaluation system for promoting environmental benefits. Sci. Rep. 2023, 13, 16183. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wu, M.; Li, Y.; Liu, X. Influence of PM1 exposure on total and cause-specific respiratory diseases: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2022, 29, 15117–15126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, Z.; Xiang, Q.; Wang, W.; Huang, L.; Mao, F. Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. Int. J. Hyg. Environ. Health 2020, 224, 113418. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Squizzato, S.; Masiol, M.; Agostini, C.; Visin, F.; Formenton, G.; Harrison, R.M.; Rampazzo, G. Factors, origin and sources affecting PM1 concentrations and composition at an urban background site. Atmos. Res. 2016, 180, 262–273. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P.; Ntziachristos, L. Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. Atmosphere 2022, 13, 155. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Grivas, G.; Stavroulas, I.; Liakakou, E.; Kaskaoutis, D.G.; Bougiatioti, A.; Paraskevopoulou, D.; Gerasopoulos, E.; Mihalopoulos, N. Measuring the Spatial Variability of Black Carbon in Athens during Wintertime. Air Qual. Atmos. Health 2019, 12, 1405–1417. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Diesel and Gasoline Engine Exhausts and Some Nitroarenes. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2014; Volume 105, ISBN 13-978-9283213284. [Google Scholar]
- Fanick, E.R.; Whitney, A.K.; Bailey, K.B. Particulate Characterization Using Five Fuels. J. Fuels Lubr. 1996, 105, 647–655. [Google Scholar]
- Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D. Particle emissions from compressed natural gas engines. J. Aerosol Sci. 2000, 31, 403–413. [Google Scholar] [CrossRef]
- Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M. Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel. Sci. Total Environ. 2005, 345, 93–98. [Google Scholar] [CrossRef]
- Kwak, J.H.; Kim, H.S.; Lee, J.H.; Lee, S.H. On-road chasing measurement of exhaust particle emissions from diesel, CNG, LPG, and DME-fueled vehicles using a mobile emission laboratory. Int. J. Automot. Technol. 2014, 15, 543–551. [Google Scholar] [CrossRef]
- Karjalainen, P.; Pirjola, L.; Heikkilä, J.; Lähde, T.; Tzamkiozis, T.; Ntziachristos, L.; Keskinen, J.; Rönkkö, T. Exhaust particles of modern gasoline vehicles: A laboratory and an on-road study. Atmos. Environ. 2014, 97, 262–270. [Google Scholar] [CrossRef]
- Stavroulas, I.; Grivas, G.; Liakakou, E.; Kalkavouras, P.; Bougiatioti, A.; Kaskaoutis, D.G.; Lianou, M.; Papoutsidaki, K.; Tsagkaraki, M.; Zarmpas, P.; et al. Online Chemical Characterization and Sources of Submicron Aerosol in the Major Mediterranean Port City of Piraeus, Greece. Atmosphere 2021, 12, 1686. [Google Scholar] [CrossRef]
- Biró, N.; Kiss, P. Euro VI-d Compliant Diesel Engine’s Sub-23 nm Particle Emission. Sensors 2023, 23, 590. [Google Scholar] [CrossRef] [PubMed]
- Snyder, M.G.; Venkatram, A.; Heist, D.K.; Perry, S.G.; Petersen, W.B.; Isakov, V. RLINE: A line source dispersion model for near-surface releases. Atmos. Environ. 2013, 77, 748–756. [Google Scholar] [CrossRef]
- Park, Y.M. Assessing personal exposure to traffic-related air pollution using individual travel-activity diary data and an on-road source air dispersion model. Health Place 2020, 63, 102352. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rey, D.; Guevara, M.; Linares, M.P.; Casanovas, J.; Armengol, J.M.; Benavides, J.; Soret, A.; Jorba, O.; Tena, C.; García-Pando, C.P. To What Extent the Traffic Restriction Policies Applied in Barcelona City Can Improve Its Air Quality? Sci. Total Environ. 2022, 807, 150743. [Google Scholar] [CrossRef]
- Ma, T.; Li, C.; Luo, J.; Frederickson, C.; Tang, T.; Durbin, T.D.; Johnson, K.C.; Karavalakis, G. In-Use NOx and Black Carbon Emissions from Heavy-Duty Freight Diesel Vehicles and near-Zero Emissions Natural Gas Vehicles in California’s San Joaquin Air Basin. Sci. Total Environ. 2024, 907, 168188. [Google Scholar] [CrossRef]
- Choi, K.; Chong, K. Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping. Atmosphere 2022, 13, 846. [Google Scholar] [CrossRef]
- Kupiainen, K.; Klimont, Z. Primary Emissions of Submicron and Carbonaceous Particles in Europe and the Potential for their Control; International Institute for Applied Systems Analysis: Luxembourg, 2004. [Google Scholar]
- European Environment Agency (EEA). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019 Technical Guidance to Prepare National Emission Inventories; European Environment Agency: Kongens Nytorv, Denmark, 2019; Volume 13, ISSN 1977-8449. [Google Scholar]
- Department of Land Transport (DLT). Transport Statistic Report 2022. 2023. Available online: https://web.dlt.go.th/statistics/ (accessed on 24 December 2023).
- Thai Meteorological Department (TMD). Meteorological Measurement and Statistics Service. 2019. Available online: https://www.tmd.go.th/service/tmdData (accessed on 9 December 2021).
- Meteoblue AG. Historical Weather Data 2019. 2021. Available online: https://www.meteoblue.com/weather/archive/export (accessed on 12 December 2021).
- Pace, T.G. Chapter 8—Receptor Modeling in the Context of Ambient Air Quality Standard for Particulate Matter. Data Handl. Sci. Technol. 1991, 7, 255–297. [Google Scholar] [CrossRef]
- Bigi, A.; Ghermandi, G. Particle Number Size Distribution and Weight Concentration of Background Urban Aerosol in a Po Valley Site. Water Air Soil Pollut. 2011, 220, 265–278. [Google Scholar] [CrossRef]
- Department of Land Transport (DLT). Transport Statistic Report Fiscal Year 2019–2023. 2023. Available online: https://web.dlt.go.th/statistics/plugins/UploadiFive/uploads/6f6897ce35cd1d6a488eab4c29a548a0b5d0973421176078322eff0d7d61b5a5.pdf (accessed on 24 December 2023).
- Oliveira, L.K.D.; Cordeiro, C.H.D.O.L.; Oliveira, I.K.D.; Andrade, M. Exploring the relationship between socioeconomic and delivery factors, traffic violations, and crashes involving motorcycle couriers. Case Stud. Transp. Policy 2024, 15, 101111. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, W.; Hu, Q.; Wu, Z.; Yang, W.; Zhang, H.; Wang, Z.; Fang, Z.; Zhu, M.; Li, S.; et al. Comparison between idling and cruising gasoline vehicles in primary emissions and secondary organic aerosol formation during photochemical ageing. Sci. Total Environ. 2020, 722, 137934. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, R.; Sun, S.; Gao, M.; Zheng, B.; Zhang, D.; Zhang, Y.; Carmichael, G.R.; Zhang, H. Aggravated air pollution and health burden due to traffic congestion in urban China. Atmos. Chem. Phys. 2023, 23, 2983–2996. [Google Scholar] [CrossRef]
- Onchang, R.; Noisopa, K.; Pawarmart, I. Changes of Air Pollution and Climate Forcing Emissions due to Fuel Switching to Gasohol in Motorcycle Fleet in an Urban Area of Thailand. EnvironmentAsia 2017, 10, 94–104. [Google Scholar] [CrossRef]
- Naiudomthum, S.; Winijkul, E.; Sirisubtawee, S. Near Real-Time Spatial and Temporal Distribution of Traffic Emissions in Bangkok Using Google Maps Application Program Interface. Atmosphere 2022, 13, 94–104. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Yu, S.; Chang, C.T.; Ma, C.M. Simulation and Measurement of Air Quality in the Traffic Congestion Area. Sustain. Environ. Res. 2021, 31, 26. [Google Scholar] [CrossRef]
- Ling, H.; Candice Lung, S.-C.; Uhrner, U. Micro-Scale Particle Simulation and Traffic-Related Particle Exposure Assessment in an Asian Residential Community. Environ. Pollut. 2020, 266, 115046. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Valiantis, M.; Milner, J.; ApSimon, H. Operational Air Pollution Modelling in the UK-Street Canyon Applications and Challenges. Atmos. Environ. 2007, 41, 4622–4637. [Google Scholar] [CrossRef]
- Batterman, S.A.; Berrocal, V.J.; Milando, C.; Gilani, O.; Arunachalam, S.; Zhang, K.M. Enhancing models and measurements of traffic-related air pollutants for health studies using dispersion modeling and Bayesian data fusion. Health Eff. Inst. 2020, 202, 7313251. [Google Scholar]
- Srimuruganandam, B.; Shiva Nagendra, S.M. Analysis and Interpretation of Particulate Matter—PM10, PM2.5 and PM1 Emissions from the Heterogeneous Traffic near an Urban Roadway. Atmos. Pollut. Res. 2010, 1, 184–194. [Google Scholar] [CrossRef]
- Shelton, S.; Liyanage, G.; Jayasekara, S.; Pushpawela, B.; Rathnayake, U.; Jayasundara, A.; Jayasooriya, L.D. Seasonal Variability of Air Pollutants and Their Relationships to Meteorological Parameters in an Urban Environment. Adv. Meteorol. 2022, 2022, 5628911. [Google Scholar] [CrossRef]
- Polednik, B. COVID-19 lockdown and particle exposure of road users. J. Transp. Health 2021, 22, 101233. [Google Scholar] [CrossRef]
- Talbi, A.; Kerchich, Y.; Kerbachi, R.; Boughedaoui, M. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environ. Pollut. 2018, 232, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Lyu, X.; Lu, H.; Zeng, L.; Liu, T.; Chan, C.K.; Guo, H. Characteristics, sources and evolution processes of atmospheric organic aerosols at a roadside site in Hong Kong. Atmos. Environ. 2021, 252, 118298. [Google Scholar] [CrossRef]
- Fang, G.C.; Peng, Y.P.; Zhuang, Y.J.; Huang, L.C. Monitoring ambient air particulates, VOC and CO2 pollutants concentrations, particulates numbers by AQ Guard Ambient sampler. Environ. Forensics 2022, 24, 218–225. [Google Scholar] [CrossRef]
- Chen, G.; Morawska, L.; Zhang, W.; Li, S.; Cao, W.; Ren, H.; Wang, B.; Wang, H.; Knibbs, L.D.; Williams, G.; et al. Spatiotemporal variation of PM1 pollution in China. Atmos. Environ. 2018, 178, 198–205. [Google Scholar] [CrossRef]
- Chen, G.; Canonaco, F.; Tobler, A.; Aas, W.; Alastuey, A.; Allan, J.; Atabakhsh, S.; Aurela, M.; Baltensperger, U.; Bougiatioti, A.; et al. European aerosol phenomenology—8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environ. Int. 2022, 166, 107325. [Google Scholar] [CrossRef]
- Gomišček, B.; Hauck, H.; Stopper, S.; Preining, O. Spatial and Temporal Variations of PM1, PM2.5, PM10 and Particle Number Concentration during the AUPHEP—Project. Atmos. Environ. 2004, 38, 3917–3934. [Google Scholar] [CrossRef]
- Onat, B.; Sahin, U.A.; Akyuz, T. Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmos. Pollut. Res. 2013, 4, 101–105. [Google Scholar] [CrossRef]
- Chauhan, P.K.; Kumar, A.; Pratap, V.; Singh, A.K. Seasonal Characteristics of PM1, PM2.5, and PM10 over Varanasi during 2019–2020. Front. Sustain. Cities 2022, 4, 101–105. [Google Scholar] [CrossRef]
- Askariyeh, M.H.; Zietsman, J.; Autenrieth, R. Traffic contribution to PM2.5 increment in the near-road environment. Atmos. Environ. 2020, 224, 117113. [Google Scholar] [CrossRef]
- Kamińska, J.A.; Turek, T.; Van Poppel, M.; Peters, J.; Hofman, J.; Kazak, J.K. Whether Cycling around the City Is in Fact Healthy in the Light of Air Quality-Results of Black Carbon. J. Environ. Manag. 2023, 337, 117694. [Google Scholar] [CrossRef]
- Huang, S.; Lawrence, J.; Kang, C.M.; Li, J.; Martins, M.; Vokonas, P.; Gold, D.R.; Schwartz, J.; Coull, B.A.; Koutrakis, P. Road proximity influences indoor exposures to ambient fine particle mass and components. Environ. Pollut. 2018, 243, 978–987. [Google Scholar] [CrossRef]
- Zhu, C.; Fu, Z.; Liu, L.; Shi, X.; Li, Y. Health risk assessment of PM2.5 on walking trips. Sci. Rep. 2021, 11, 19249. [Google Scholar] [CrossRef]
- Srinamphon, P.; Chernbumroong, S.; Tippayawong, K.Y. The effect of small particulate matter on tourism and related SMEs in Chiang Mai, Thailand. Sustainability 2022, 14, 8147. [Google Scholar] [CrossRef]
- Asia-Pacific Economic Cooperation. Understanding the Bio-Circular-Green (BCG) Economy Model. 2022. Available online: https://www.apec.org/publications/2022/08/understanding-the-bio-circular-green-(bcg)-economy-model (accessed on 25 February 2023).
Location | Coordinates | Characteristics | Monitoring Date |
---|---|---|---|
Point 1 | 47P 589142 1496921 | T-junction, 11.8 m in width, the main entrance to Ratchaburi’s old town on the eastern side. High traffic flows due to connecting to a highway. | 14 October 2021 |
Point 2 | 47P 588413 1497270 | T-junction, 7.5 m in width, the minor entrance to the old town on the western side. | 28 October 2021 |
Point 3 | 47P 588720 1496981 | Crossroad, 16.1 m in width, the main entrance to the middle part of the old town. | 4–5 and 13–14 November 2021 |
Point 4 | 47P 588949 1497045 | T-junction, 9.1 m in width, the middle part of the walking street. Adjoined to tourist attractions, e.g., old markets and the river embarkment. | 11 November 2021 |
Point 5 | 47P 588539 1497011 | T-junction, 9.9 m in width, a minor road located in the residential area of the old town. | 20 October 2021 |
Vehicle Category | Fuel | PM1 |
---|---|---|
Motorcycle (MC) | Gasoline | 0.09608 b |
Passenger car (PC) | Gasoline | 0.02312 a |
Diesel | 0.20325 a | |
LPG | 0.01301 b | |
CNG | 0.01235 b | |
Light-duty vehicle (LDV) | Gasoline | 0.01156 a |
Diesel | 0.10162 a | |
CNG | 0.01125 b | |
Heavy-duty vehicle (HDV) | Diesel | 0.67150 a |
CNG | 0.02250 b |
Location | Source | PM1 (µg m−3) * | PM1/PM2.5 Ratio | Monitoring Period | Temporal Basis |
---|---|---|---|---|---|
Thailand (Ratchaburi old town/roadside) | This study | 8.7 ± 0.8 a (7.8–9.7) | 0.69 | 18 May 2022 (08:00–15:00, 7 h in total) | 7 h average |
8.8 ± 0.7 b (8.2–10.1) | NA | ||||
Italy (Venice) | [21] | 34 ± 24 a (winter) 6.4 ± 2.2 a (summer) | NA | December 2013–February 2014 (winter) May–July 2014 (summer) | Seasonal average |
Algeria (Algiers/roadside) | [59] | 5.93–46.08 a | 0.55 | 1 January– 30 September 2015 | Daily average |
China (Hong Kong/roadside) | [60] | 26.1 ± 0.7 a | NA | 2 November– 13 December 2017 | Daily average |
China (Taichung, Taiwan) | [61] | 11.05 ± 5.03 a (3.96–23.32) | 0.73 | 15–22 April 14–23 May 2021 | Daily average |
China (73 cities across the entire mainland) | [62] | 4.8–84.0 a | 0.75–0.88 | 1 November 2013– 31 December 2014 | Daily average |
Europe (12 cities) | [63] | 12.2 ± 9.3 a | NA | October 2015–April 2019 | Average of different periods in each city |
Austria (Graz) | [64] | 20 ± 11.9 a (winter) 14.1 ± 6.5 a (summer) | 0.78 (winter) 0.91 (summer) | October 2000–March 2001 (winter) April–September 2001 (summer) | Seasonal average |
Turkey (Istanbul) | [65] | 22.1 ± 6.4 a (7.6–30.2) | 0.55 | 11 December 2009–9 April 2010 | Daily average |
India (Varanasi) | [66] | 89.9 ± 44.4 a | 0.84 | April 2019–March 2020 | Over the monitoring period |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Innurak, O.; Onchang, R.; Bohuwech, D.; Pongkiatkul, P. Simulation of Submicron Particulate Matter (PM1) Dispersion Due to Traffic Rerouting to Establish a Walkable Cultural Tourism Route in Ratchaburi’s Old Town, Thailand. Atmosphere 2024, 15, 377. https://doi.org/10.3390/atmos15030377
Innurak O, Onchang R, Bohuwech D, Pongkiatkul P. Simulation of Submicron Particulate Matter (PM1) Dispersion Due to Traffic Rerouting to Establish a Walkable Cultural Tourism Route in Ratchaburi’s Old Town, Thailand. Atmosphere. 2024; 15(3):377. https://doi.org/10.3390/atmos15030377
Chicago/Turabian StyleInnurak, Orachat, Rattapon Onchang, Dirakrit Bohuwech, and Prapat Pongkiatkul. 2024. "Simulation of Submicron Particulate Matter (PM1) Dispersion Due to Traffic Rerouting to Establish a Walkable Cultural Tourism Route in Ratchaburi’s Old Town, Thailand" Atmosphere 15, no. 3: 377. https://doi.org/10.3390/atmos15030377
APA StyleInnurak, O., Onchang, R., Bohuwech, D., & Pongkiatkul, P. (2024). Simulation of Submicron Particulate Matter (PM1) Dispersion Due to Traffic Rerouting to Establish a Walkable Cultural Tourism Route in Ratchaburi’s Old Town, Thailand. Atmosphere, 15(3), 377. https://doi.org/10.3390/atmos15030377