Long-Term Trends of Extreme Climate Indexes in the Southern Part of Siberia in Comparison with Those of Surrounding Regions
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Problems of Previous Studies and Objective of This Study
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results
3.1. The Trends of Annual Extreme Indexes in Siberia and the Whole of Russia
3.2. The Trends of Monthly Extreme Indexes in Siberia and in Other Regions of Russia
3.3. The Trends of Monthly Extreme Indexes in the Interior of Siberia
4. Discussion
4.1. Comparison of Trends of Extreme Indexes in Siberia with Previous Studies
4.2. The Trends of Extreme Indexes in the Interior of Siberia
4.3. The Trends of Extreme Indexes in Siberia and the Surrounding Regions
5. Conclusions
- The trends in climatic extremes related to air temperature showed that global warming is progressing in Siberia and the surrounding regions. Comparing the trends of the temperature-related indexes between Siberia and other regions, the frequency of high-temperature events in Siberia was not significantly different from that in other regions. In terms of monthly trends, a substantial increase in the frequency of high-temperature events during spring was observed. In contrast, the increasing trends of temperature-related indexes in Siberia were lower than those in northwestern China and Central Asia.
- Regarding the trends of the precipitation-related indexes, precipitation generally increased in Siberia and the surrounding regions, although there were variations in the positive and negative trends among the meteorological stations. However, Siberia is one of the regions in Russia where heavy precipitation is less likely to occur, and the monthly trend of precipitation showed an increase except for in summer. Snowmelt and precipitation, combined with an increase in the number of high-temperature events in spring, may influence the occurrence of flooding. Therefore, there is concern that heavy rainfall and flooding will increase in Siberia in the future.
- Regarding the cluster analysis based on the trends of the temperature-related indexes in the interior of Siberia, it is clear that climatically homogeneous regions are clustered together. In particular, all regions showed marked warming trends in March. However, with respect to the cluster analysis based on trends in the precipitation-related indexes in the interior of Siberia, climatically homogeneous regions were scattered. Although precipitation tends to increase throughout the year in Siberia, several regions show decreasing trends in precipitation during summer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021.
- Horton, E.B.; Folland, C.K.; Parker, D.E. The Changing Incidence of Extremes in Worldwide and Central England Temperatures to the End of the Twentieth Century. Clim. Chang. 2001, 50, 267–295. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Dole, R.; Hoerling, M.; Perlwitz, J.; Eischeid, J.; Pegion, P.; Zhang, T.; Quan, X.W.; Xu, T.; Murray, D. Was There a Basis for Anticipating the 2010 Russian Heat Wave? Geophys. Res. Lett. 2011, 38, L06702. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.M.; Kim, K.M. The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes. J. Hydrometeorol. 2012, 13, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T. Climate Extremes and Climate Change: The Russian Heat Wave and Other Climate Extremes of 2010. J. Geophys. Res. Atmos. 2012, 117, D17103. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Shirokova, L.S.; Kirpotin, S.N.; Kulizhsky, S.P.; Vorobiev, S.N. Impact of Western Siberia Heat Wave 2012 on Greenhouse Gases and Trace Metal Concentration in Thaw Lakes of Discontinuous Permafrost Zone. Biogeosciences 2013, 10, 5349–5365. [Google Scholar] [CrossRef] [Green Version]
- Ryazanova, A.A.; Voropay, N.N. Comparative Analysis of Hydrothermal Conditions of Tomsk Region by Using Different Drought Coefficients. IOP Conf. Ser. Earth Environ. Sci. 2019, 386, 012008. [Google Scholar] [CrossRef]
- Sukhova, M.G.; Zhuravleva, O.V.; Karanin, A.V.; Kharlamova, N.F. Climatic Causes of Dangerous Hydrological Phenomena in the Altai Region. Air Qual. Atmos. Health 2020, 13, 1211–1222. [Google Scholar] [CrossRef]
- Makarieva, O.M.; Nesterova, N.V.; Fedorova, A.D.; Shikhovd, A.N.; Vinogradova, T.A. Modeling of the Summer 2019 Disastrous Floods on the Iya River (Irkutsk Oblast). Geogr. Nat. Resour. 2020, 41, 354–363. [Google Scholar] [CrossRef]
- Degefie, D.T.; Fleischer, E.; Klemm, O.; Soromotin, A.V.; Soromotina, O.V.; Tolstikov, A.V.; Abramov, N.V. Climate Extremes in South Western Siberia: Past and Future. Stoch. Environ. Res. Risk Assess 2014, 28, 2161–2173. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Zwiers, F.W.; Zhang, X. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation. Available online: https://library.wmo.int/doc_num.php?explnum_id=9419 (accessed on 26 October 2022).
- Bulygina, O.N.; Razuvaev, V.N.; Korshunova, N.N.; Groisman, P.Y. Climate Variations and Changes in Extreme Climate Events in Russia. Environ. Res. Lett. 2007, 2, 045020. [Google Scholar] [CrossRef]
- Kharyutkina, E.V.; Loginov, S.V.; Moraru, E.I.; Pustovalov, K.N.; Martynova, Y.V. Dynamics of Extreme Climatic Characteristics and Trends of Dangerous Meteorological Phenomena over the Territory of Western Siberia. Atmos. Ocean. Opt. 2022, 35, 394–401. [Google Scholar] [CrossRef]
- Kuzhevskaia, I.V.; Nechepurenko, O.E.; Chursin, V.V.; Matsuyama, H. Analysis of Climatic Extremity since the 1950s in the Mountain Altai Territory. Geosph. Res. 2020, 3, 97–108. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Q.; Tang, Q.; Chen, X.; Yu, J.; Pozdniakov, S.P.; Wang, T. Increasing Annual and Extreme Precipitation in Permafrost-Dominated Siberia during 1959–2018. J. Hydrol. 2021, 603, 126865. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Y.; Chen, Y.; Ye, Z. Linear Trend and Abrupt Changes of Climate Indices in the Arid Region of Northwestern China. Atmos. Res. 2017, 196, 108–118. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Liu, D.; He, P.; Li, Z.; Shi, M.; Xu, J. Spatiotemporal Variability Characteristics of Extreme Climate Events in Xinjiang during 1960–2019. Environ. Sci. Pollut. Res. 2023, 30, 57316–57330. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, Q.; Chen, X.; Teng, Z.; Chen, C.; Yin, G.; Zhang, Y. Climate Changes in Temperature and Precipitation Extremes in an Alpine Grassland of Central Asia. Theor. Appl. Climatol. 2016, 126, 519–531. [Google Scholar] [CrossRef]
- Dashkhuu, D.; Kim, J.P.; Chun, J.A.; Lee, W.S. Long-Term Trends in Daily Temperature Extremes over Mongolia. Weather Clim. Extrem. 2015, 8, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.Q.; Hu, R.J.; Wang, S.P.; Zhang, Y.W.; Tong, L. Trends of Precipitation Extremes during 1960-2008 in Xinjiang, the Northwest China. Theor. Appl. Climatol. 2013, 111, 133–148. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Shen, Y.; Li, B. Tracking Climate Change in Central Asia through Temperature and Precipitation Extremes. J. Geogr. Sci. 2019, 29, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Zhang, J.; Game, A.T.; Chang, Y.; Li, S. Spatiotemporal Variability of Summer Precipitation and Precipitation Extremes and Associated Large-Scale Mechanisms in Central Asia during 1979–2018. J. Hydrol. X 2020, 8, 100061. [Google Scholar] [CrossRef]
- Feng, R.; Yu, R.; Zheng, H.; Gan, M. Spatial and Temporal Variations in Extreme Temperature in Central Asia. Int. J. Climatol. 2018, 38, e388–e400. [Google Scholar] [CrossRef]
- Tian, Y.; Yan, Z.; Li, Z. Spatial and Temporal Variations of Extreme Precipitation in Central Asia during 1982–2020. Atmosphere 2022, 13, 60. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Chen, J.; Zhao, Y.; Tuoliewubieke, D.; Li, J.; Yang, L.; Mao, W. Intensification of Extreme Precipitation in Arid Central Asia. J. Hydrol. 2021, 598, 125760. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, T.; Zheng, L.; Hu, Y.; Wang, H.; Kang, S. Spatiotemporal Variability of Snow Depth across the Eurasian Continent from 1966 to 2012. Cryosphere 2018, 12, 227–245. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Zhang, T.; Kang, S.; Wang, J. Spatiotemporal Variability of Snow Cover Timing and Duration over the Eurasian Continent during 1966–2012. Sci. Total Environ. 2021, 750, 141670. [Google Scholar] [CrossRef]
- Zolotokrylin, A.N.; Cherenkova, E.A. Seasonal Changes in Precipitation Extremes in Russia for the Last Several Decades and Their Impact on Vital Activities of the Human Population. Geogr. Environ. Sustain. 2017, 10, 69–82. [Google Scholar] [CrossRef] [Green Version]
- RIHMI-WDC Weather over the Territory of the Russian Federation in 2010. Available online: http://meteo.ru (accessed on 26 October 2022).
- WMO. Guidelines on the Calculation of Climate Normals. Available online: https://library.wmo.int/doc_num.php?explnum_id=4166 (accessed on 26 October 2022).
- Wang, X.L.; Feng, Y. RHtestsV4 User Manual. Available online: http://etccdi.pacificclimate.org/software.shtml (accessed on 26 October 2022).
- Wang, X.L. Accounting for Autocorrelation in Detecting Mean-Shifts in Climate Data Series Using the Penalized Maximal t or F Test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444. [Google Scholar] [CrossRef]
- Wang, X.L. Penalized Maximal F-Test for Detecting Undocumented Mean-Shifts without Trend-Change. J. Atmos. Ocean. Technol. 2008, 25, 368–384. [Google Scholar] [CrossRef]
- Welch, B.L. The Generalization of ‘Student’s’ Problem When Several Different Population Variances Are Involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; ISBN 978-0-85264-199-6. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Lomakina, N.Y.; Lavrinenko, A.V. Modern Trends of Temperature of the Atmospheric Boundary Layer over Siberia. Atmos. Ocean. Opt. 2022, 35, 378–386. [Google Scholar] [CrossRef]
- Fujinami, H.; Yasunari, T.; Watanabe, T. Trend and Interannual Variation in Summer Precipitation in Eastern Siberia in Recent Decades. Int. J. Climatol. 2016, 36, 355–368. [Google Scholar] [CrossRef]
- Ye, H.; Fetzer, E.J.; Wong, S.; Lambrigtsen, B.H. Rapid Decadal Convective Precipitation Increase over Eurasia during the Last Three Decades of the 20th Century. Sci. Adv. 2017, 3, e1600944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernokulsky, A.; Kozlov, F.; Zolina, O.; Bulygina, O.; Mokhov, I.I.; Semenov, V.A. Observed Changes in Convective and Stratiform Precipitation in Northern Eurasia over the Last Five Decades. Environ. Res. Lett. 2019, 14, 045001. [Google Scholar] [CrossRef]
- Bulygina, O.N.; Groisman, P.Y.; Razuvaev, V.N.; Korshunova, N.N. Changes in Snow Cover Characteristics over Northern Eurasia since 1966. Environ. Res. Lett. 2011, 6, 045204. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, N. Spatiotemporal Variability of Snow Cover and Snow Water Equivalent in the Last Three Decades over Eurasia. J. Hydrol. 2018, 559, 238–251. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Alexander, L.V.; Donat, M.G.; Zhang, X.; Bador, M.; Herold, N.; Lippmann, T.; Allan, R.; Aguilar, E.; Barry, A.A.; et al. Development of an Updated Global Land In Situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3. J. Geophys. Res. Atmos. 2020, 125, e2019JD032263. [Google Scholar] [CrossRef]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating Snow-Cover Trends from Space. Nat. Clim. Chang. 2018, 8, 924–928. [Google Scholar] [CrossRef]
Index | Definition | Unit |
---|---|---|
High-temperature-related indexes | ||
TX90P | Percentage of days when TX > 90th percentile of TX in 1961–1990 | % |
TN90P | Percentage of days when TN > 90th percentile of TN in 1961–1990 | % |
WSDI | Total number of days that TX exceeded the 90th percentile of TX in 1961–1990 for at least 6 consecutive days | Days |
Low-temperature-related indexes | ||
TX10P | Percentage of days when TX < 10th percentile of TX in 1961–1990 | % |
TN10P | Percentage of days when TN < 10th percentile of TN in 1961–1990 | % |
CSDI | Total number of days that TN was below the 10th percentile of TN in 1961–1990 for at least 6 consecutive days | Days |
Precipitation-related indexes | ||
CDD | Maximum length of a dry spell, maximum number of consecutive days with PRCP < 1 mm | Days |
CWD | Maximum length of a wet spell, maximum number of consecutive days with PRCP ≥ 1 mm | Days |
RX5day | Monthly maximum 5-day precipitation | mm |
R95P | Annual total PRCP when PRCP > 95th percentile of PRCP in 1961–1990 | mm |
PRCPTOT | Annual total precipitation in days with precipitation of 1 mm or more | mm |
ER | SI | FE | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | Unit | Trend | Z+ | Z− | Trend | Z+ | Z− | Trend | Z+ | Z− | ||||||
TX90P | % | 0.96 | 42 | (40) | 0 | (0) | 0.81 | 56 | (52) | 0 | (0) | 0.86 | 29 | (28) | 1 | (0) |
TN90P | % | 1.09 | 42 | (41) | 0 | (0) | 1.04 | 56 | (56) | 0 | (0) | 0.93 | 30 | (29) | 0 | (0) |
WSDI | Days | 1.23 | 42 | (39) | 0 | (0) | 0.27 | 56 | (43) | 0 | (0) | 0.27 | 29 | (19) | 1 | (0) |
TX10P | % | −0.88 | 0 | (0) | 42 | (41) | −0.77 | 0 | (0) | 56 | (53) | −0.88 | 0 | (0) | 30 | (30) |
TN10P | % | −0.82 | 1 | (1) | 41 | (41) | −0.87 | 2 | (1) | 54 | (52) | −1.02 | 0 | (0) | 30 | (28) |
CSDI | Days | −0.12 | 1 | (0) | 41 | (31) | −0.16 | 1 | (0) | 55 | (39) | −0.05 | 1 | (0) | 29 | (20) |
CDD | Days | −0.4 | 5 | (0) | 35 | (12) | −1.01 | 1 | (0) | 54 | (28) | −1.16 | 7 | (1) | 40 | (23) |
CWD | Days | 0.06 | 38 | (20) | 2 | (0) | 0.02 | 41 | (7) | 14 | (1) | 0.02 | 29 | (8) | 18 | (0) |
RX5DAY | mm | 0.72 | 35 | (10) | 5 | (0) | 0 | 32 | (5) | 23 | (2) | 0.92 | 38 | (6) | 7 | (0) |
R95P | mm | 4.73 | 39 | (23) | 1 | (0) | 1.18 | 38 | (8) | 17 | (2) | 3.72 | 39 | (14) | 8 | (0) |
PRCPTOT | mm | 15.13 | 39 | (35) | 1 | (0) | 7.89 | 48 | (30) | 7 | (0) | 11.31 | 42 | (26) | 5 | (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, T.; Matsuyama, H.; Kuzhevskaia, I.; Nechepurenko, O.; Chursin, V.; Zemtsov, V. Long-Term Trends of Extreme Climate Indexes in the Southern Part of Siberia in Comparison with Those of Surrounding Regions. Atmosphere 2023, 14, 1131. https://doi.org/10.3390/atmos14071131
Watanabe T, Matsuyama H, Kuzhevskaia I, Nechepurenko O, Chursin V, Zemtsov V. Long-Term Trends of Extreme Climate Indexes in the Southern Part of Siberia in Comparison with Those of Surrounding Regions. Atmosphere. 2023; 14(7):1131. https://doi.org/10.3390/atmos14071131
Chicago/Turabian StyleWatanabe, Takanori, Hiroshi Matsuyama, Irina Kuzhevskaia, Olga Nechepurenko, Vladislav Chursin, and Valerii Zemtsov. 2023. "Long-Term Trends of Extreme Climate Indexes in the Southern Part of Siberia in Comparison with Those of Surrounding Regions" Atmosphere 14, no. 7: 1131. https://doi.org/10.3390/atmos14071131
APA StyleWatanabe, T., Matsuyama, H., Kuzhevskaia, I., Nechepurenko, O., Chursin, V., & Zemtsov, V. (2023). Long-Term Trends of Extreme Climate Indexes in the Southern Part of Siberia in Comparison with Those of Surrounding Regions. Atmosphere, 14(7), 1131. https://doi.org/10.3390/atmos14071131