Atmospheric Circulation Patterns Associated with Extreme Precipitation Events in Eastern Siberia and Mongolia
Abstract
:1. Introduction
2. Data and Methods
2.1. Precipitation
2.2. Atmopsheric Circulation
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SES | south of Eastern Siberia |
EPE | extreme precipitation events |
PV | potential vorticity |
CWB | cyclonic wave breaking |
AWB | anticyclonic wave breaking |
COL | cut-off low |
M (1 and 2) | EPE that were observed in Mongolia |
SES-M (1 and 2) | EPE that were observed in area of border between SES and Mongolia |
SES (1 and 2) | EPE that were observed in SES |
References
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaption: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2014, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Tabari, H. Author correction: Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 16969. [Google Scholar] [CrossRef]
- Frolova, N.L.; Kireeva, M.B.; Magrickiy, D.V.; Bologov, M.B.; Kopylov, V.N.; Hall, J.; Semenov, V.A.; Kosolapov, A.E.; Dorozhkin, E.V.; Korobkina, E.A.; et al. Hydrological hazards in Russia: Origin, classification, changes and risk assessment. Nat. Hazards 2016, 88, 103–131. [Google Scholar] [CrossRef]
- Grigorieva, E.A.; Livenets, A.S. Risks to the health of russian population from floods and droughts in 2010–2020: A scoping review. Climate 2022, 10, 37. [Google Scholar] [CrossRef]
- Korytny, L.M.; Kichigina, N.V. Geographical analysis of river floods and their causes in southern East Siberia. Hydrol. Sci. J. 2006, 51, 450–464. [Google Scholar] [CrossRef]
- Kichigina, N.V. Flood Hazard on the Rivers of the Baikal Region. Geogr. Nat. Resour. 2018, 39, 120–129. [Google Scholar] [CrossRef]
- Antokhina, O.Y.; Latysheva, I.V.; Mordvinov, V.I. A Cases Study of mongolian cyclogenesis during the july 2018 blocking events. Geogr. Environ. Sustain. 2019, 12, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Fedorova, A.; Makarieva, O.; Nesterova, N.; Shikhov, A.; Vinogradova, T. Modelling maximum discharge of the catastrophic flood at the Iya River (Irkutsk region, Russia) in 2019. E3S Web Conf. 2020, 163, 01004. [Google Scholar] [CrossRef] [Green Version]
- Vilfand, R.M.; Kulikova, I.A.; Makarova, M.E. Weather and climate features of the northern hemisphere in 2019 in the context of long-period variability. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012067. [Google Scholar] [CrossRef]
- Kononova, N.K. Weather extremums in Siberia in 2019 and their connection with circulation of the atmosphere. Environ. Dyn. Glob. Clim. Chang. 2019, 10, 110–119. [Google Scholar] [CrossRef]
- Kelsch, M.; Caporali, E.; Lanza, L.G. Hydrometeorology of flash floods. In Coping with Flash Floods; Springer: Dordrecht, The Netherlands, 2001; pp. 19–35. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groisman, P.Y.; Knight, R.W.; Easterling, D.R.; Karl, T.R.; Hegerl, G.C.; Razuvaev, V.N. Trends in intense precipitation in the climate record. J. Clim. 2005, 18, 1326–1350. [Google Scholar] [CrossRef]
- Groisman, P.; Shugart, H.; Kicklighter, D.; Henebry, G.; Tchebakova, N.; Maksyutov, S.; Monier, E.; Gutman, G.; Gulev, S.; Qi, J.; et al. Northern Eurasia Future Initiative (NEFI): Facing the challenges and pathways of global change in the twenty-first century. Prog. Earth Planet. Sci. 2017, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Aleshina, M.A.; Semenov, V.A.; Chernokulsky, A.V. A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data. Environ. Res. Lett. 2021, 16, 105004. [Google Scholar] [CrossRef]
- Chernokulsky, A.; Kozlov, F.; Zolina, O.; Bulygina, O.N.; Mokhov, I.I.; Semenov, V.A. Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades. Environ. Res. Lett. 2019, 14, 045001. [Google Scholar] [CrossRef]
- Khlebnikova, E.I.; Rudakova, Y.L.; Shkolnik, I.M. Changes in precipitation regime over the territory of Russia: Data of regional climate modeling and observations. Russ. Meteorol. Hydrol. 2019, 44, 431–439. [Google Scholar] [CrossRef]
- Zolotokrylin, A.; Cherenkova, E. Seasonal changes in precipitation extremes in russia for the last several decades and their impact on vital activities of the human population. Geogr. Environ. Sustain. 2017, 10, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Shikhov, A.N.; Abdullin, R.K.; Tarasov, A.V. Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia). Geogr. Environ. Sustain. 2020, 13, 154–165. [Google Scholar] [CrossRef]
- Catto, J.L.; Pfahl, S. The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos. 2013, 118, 10791–10801. [Google Scholar] [CrossRef] [Green Version]
- Pfahl, S.; Wernli, H. Quantifying the relevance of cyclones for precipitation extremes. J. Clim. 2012, 25, 6770–6780. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, S.P.E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Barlow, M.; Gutowski, W.J.; Gyakum, J.R.; Katz, R.W.; Lim, Y.-K.; Schumacher, R.S.; Wehner, M.F.; Agel, L.; Bosilovich, M.; Collow, A.; et al. North American extreme precipitation events and related large-scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Clim. Dyn. 2019, 53, 6835–6875. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fu, Z.; Liu, B.; Zheng, Z.; Zhang, W.; Liu, Y.; Zhang, F.; Zhang, Q. Northward migration of the East Asian summer monsoon northern boundary during the twenty-first century. Sci. Rep. 2022, 12, 10066. [Google Scholar] [CrossRef]
- Berezhnykh, T.V.; Marchenko, O.Y.; Abasov, N.V.; Mordvinov, V.I. Changes in the summertime atmospheric circulation over East Asia and formation of long-lasting low-water periods within the Selenga River basin. Geogr. Nat. Resour. 2012, 33, 223–229. [Google Scholar] [CrossRef]
- Osipova, O.P.; Osipov, E.Y. Atmospheric circulation processes and precipitation regime in the northern part of the Baikal Mountain Region. Russ. Meteorol. Hydrol. 2019, 44, 695–703. [Google Scholar] [CrossRef]
- Chen, H.; Teng, F.; Zhang, W.; Liao, H. Impacts of anomalous midlatitude cyclone activity over East Asia during summer on the decadal mode of East Asian summer monsoon and its possible mechanism. J. Clim. 2017, 30, 739–753. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Shukurov, K. Potential sources of precipitation in Lake Baikal basin. In Proceedings of the 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics 2017, Irkutsk, Russia, 3–7 July 2017. [Google Scholar] [CrossRef]
- Iwao, K.; Takahashi, M. A Precipitation seesaw mode between Northeast Asia and Siberia in summer caused by rossby waves over the Eurasian continent. J. Clim. 2008, 21, 2401–2419. [Google Scholar] [CrossRef]
- Antokhina, O.Y.; Antokhin, P.N.; Martynova, Y.V.; Mordvinov, V.I. The linkage of the precipitation in the Selenga River Basin to midsummer atmospheric blocking. Atmosphere 2019, 10, 343. [Google Scholar] [CrossRef] [Green Version]
- Schubert, S.D.; Wang, H.; Koster, R.D.; Suarez, M.J.; Groisman, P.Y. Northern Eurasian heat waves and droughts. J. Clim. 2014, 27, 3169–3207. [Google Scholar] [CrossRef]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 2007, 111, 877–946. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Hoskins, B.J.; McIntyre, M.E. Two paradigms of baroclinic-wave life-cycle behaviour. Q. J. R. Meteorol. Soc. 1993, 119, 17–55. [Google Scholar] [CrossRef]
- de Vries, A.J. A global climatological perspective on the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events. Weather. Clim. Dyn. 2021, 2, 129–161. [Google Scholar] [CrossRef]
- Chyi, D.; Xie, Z.; Shi, N.; Guo, P.; Wang, H. Wave-breaking features of blocking over central Siberia and its impacts on the precipitation trend over southeastern lake Baikal. Adv. Atmos. Sci. 2019, 37, 75–89. [Google Scholar] [CrossRef]
- Schneider, U.; Finger, P.; Meyer-Christoffer, A.; Rustemeier, E.; Ziese, M.; Becker, A. Evaluating the Hydrological cycle over land using the newly-corrected precipitation climatology from the global precipitation climatology centre (GPCC). Atmosphere 2017, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Gairola, R.M.; Mitra, A.K. Comparison of large-scale global land precipitation from multisatellite and reanalysis products with gauge-based GPCC data sets. Theor. Appl. Clim. 2014, 121, 303–317. [Google Scholar] [CrossRef]
- Kharyutkina, E.; Loginov, S.; Martynova, Y.; Sudakov, I. Time series analysis of atmospheric precipitation characteristics in western Siberia for 1979–2018 across Different Datasets. Atmosphere 2022, 13, 189. [Google Scholar] [CrossRef]
- Available online: https://doi.org/10.5281/zenodo.7683621 (accessed on 28 February 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Holton, J.R.; Haynes, P.; McIntyre, M.E.; Douglass, A.R.; Rood, R.; Pfister, L. Stratosphere-troposphere exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Jing, P.; Banerjee, S. Rossby wave breaking and isentropic stratosphere-troposphere exchange during 1981–2015 in the northern hemisphere. J. Geophys. Res. Atmos. 2018, 123, 9011–9025. [Google Scholar] [CrossRef]
- Portmann, R.; Sprenger, M.; Wernli, H. The three-dimensional life cycles of potential vorticity cutoffs: A global and selected regional climatologies in ERA-Interim (1979–2018). Weather. Clim. Dyn. 2021, 2, 507–534. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Z.; Li, J.; Liu, J.; Chang, C.-P.; Ding, Y.; Wu, G. How to measure the strength of the east Asian summer monsoon. J. Clim. 2008, 21, 4449–4463. [Google Scholar] [CrossRef]
- Bowley, K.A.; Gyakum, J.R.; Atallah, E.H. A New perspective toward cataloging northern hemisphere Rossby wave breaking on the dynamic tropopause. Mon. Weather. Rev. 2019, 147, 409–431. [Google Scholar] [CrossRef]
- Available online: https://doi.org/10.5281/zenodo.7683717 (accessed on 28 February 2023).
- Available online: https://doi.org/10.5281/zenodo.7683742 (accessed on 28 February 2023).
- Yang, D.; Wang, L. The summertime circulation types over Eurasia and their connections with the north Atlantic oscillation modulated by north Atlantic SST. Atmosphere 2022, 13, 2093. [Google Scholar] [CrossRef]
- Dong, B.; Sutton, R.T.; Shaffrey, L.; Ben Harvey, B. Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions. Nat. Commun. 2022, 13, 1148. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, G.; Reljin, I.; Reljin, B. The influence of Arctic and north Atlantic oscillation on precipitation regime in Serbia. IOP Conf. Ser. Earth Environ. Sci. 2008, 4, 012025. [Google Scholar] [CrossRef]
- Li, J.; Ruan, C. The north Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates. Environ. Res. Lett. 2017, 13, 024007. [Google Scholar] [CrossRef] [Green Version]
M2 | PV | M-SES2 | PV | M-SES2 | PV | SES2 | PV | SES2 | PV |
---|---|---|---|---|---|---|---|---|---|
1982–1998 | 1982–1998 | 1999–2019 | 1982–1998 | 1999–2019 | |||||
8–9.07.1984 | - | 30–31.07.1982 | - | 6–7.07.2001 | CWB | 25–26.07.1988 | CWB | 7–8.07.2000 | COL |
5–6.08.1998 | COL | 27–28.07.1983 | - | 7–8.07.2006 | CWB | 5–6.07.1991 | CWB | 13.08.2000 | CWB |
27–28.08.1990 | CWB | 2–3.08.1984 | - | 29–30.08.2008 | - | 1–2.08.1992 | CWB | 27.07.2003 | COL |
21–23.07.1993 | CWB | 17–18.08.1985 | CWB | 8–9.08.2009 | COL | 5–6.08.1993 | COL | 17.06.2006 | CWB |
8–9.07.1994 | CWB | 7–8.07.1990 | CWB | 11–12.08.2010 | CWB | 20–21.07.1995 | CWB | 24.07.2009 | COL |
27–28.07.1996 | COL | 21–22.06.1994 | CWB | 5–6.08.2012 | - | 22–23.08.1998 | CWB | 13.07.2010 | - |
4–6.07.1998 | CWB | 10–11.08.1995 | COL | 15–16.07.2013 | COL | 26.06.2013 | CWB | ||
19–20.08.2017 | CWB | 18.07.2014 | COL | ||||||
6–7.07.2018 | CWB | 24.06.2019 | COL | ||||||
26.07.2019 | COL | ||||||||
10.08.2019 | CWB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antokhina, O.; Antokhin, P.; Gochakov, A.; Zbirannik, A.; Gazimov, T. Atmospheric Circulation Patterns Associated with Extreme Precipitation Events in Eastern Siberia and Mongolia. Atmosphere 2023, 14, 480. https://doi.org/10.3390/atmos14030480
Antokhina O, Antokhin P, Gochakov A, Zbirannik A, Gazimov T. Atmospheric Circulation Patterns Associated with Extreme Precipitation Events in Eastern Siberia and Mongolia. Atmosphere. 2023; 14(3):480. https://doi.org/10.3390/atmos14030480
Chicago/Turabian StyleAntokhina, Olga, Pavel Antokhin, Alexander Gochakov, Anna Zbirannik, and Timur Gazimov. 2023. "Atmospheric Circulation Patterns Associated with Extreme Precipitation Events in Eastern Siberia and Mongolia" Atmosphere 14, no. 3: 480. https://doi.org/10.3390/atmos14030480
APA StyleAntokhina, O., Antokhin, P., Gochakov, A., Zbirannik, A., & Gazimov, T. (2023). Atmospheric Circulation Patterns Associated with Extreme Precipitation Events in Eastern Siberia and Mongolia. Atmosphere, 14(3), 480. https://doi.org/10.3390/atmos14030480