Compact, Fast Cavity Ring-Down Spectroscopy Monitor for Simultaneous Measurement of Ozone and Nitrogen Dioxide in the Atmosphere
Abstract
:1. Introduction
2. Experimental Section
2.1. Cavity Ring-Down Spectroscopy
2.2. CRDS Instrument for NO2 and O3 Detection
3. Results and Discussion
3.1. Effective NO2 absorption cross-section
3.2. Zero Measurement
3.3. O3 conversion Efficiency
3.4. Consistency of NO2 Measurement
3.5. NO2 and O3 Detection Performance
3.6. Assessment of O3/NO2-CRDS Measurement Accuracy
3.7. Field Measurement and Intercomparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashmore, M.R. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 2005, 28, 949–964. [Google Scholar] [CrossRef]
- Mudway, I.S.; Kelly, F.J. Ozone and the lung: A sensitive issue. Mol. Asp. Med. 2000, 21, 1–48. [Google Scholar] [CrossRef] [PubMed]
- Levy, H. Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science 1971, 173, 141–143. [Google Scholar] [CrossRef]
- Qiao, S.D.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.; Ma, Y.F. Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell. Photoacoustics 2022, 27, 100381. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Y.; Hu, R.Z.; Chen, H.; Xie, P.H.; Wang, Y.H.; Li, Z.Y.; Jin, H.W.; Liu, J.G.; Liu, W.Q. Development of a field system for measurement of tropospheric OH radical using laser-induced fluorescence technique. Opt. Express 2019, 27, A419–A435. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.N.; Ma, Y.F. Tunable Diode Laser Absorption Spectroscopy Based Temperature Measurement with a Single Diode Laser Near 1.4 m. Sensors 2022, 22, 6095. [Google Scholar] [CrossRef]
- Dunlea, E.J.; Herndon, S.C.; Nelson, D.D.; Volkamer, R.M.; Lamb, B.K.; Allwine, E.J.; Grutter, M.; Ramos Villegas, C.R.; Marquez, C.; Blanco, S.; et al. Technical note: Evaluation of standard ultraviolet absorption ozone monitors in a polluted urban environment. Atmos. Chem. Phys. 2006, 6, 3163–3180. [Google Scholar] [CrossRef] [Green Version]
- Ridley, B.A.; Grahek, F.E.; Walega, J.G. A small, high-sensitivity, medium-response ozone detector suitable for measurements from light aircraft. J. Atmos. Oceanic Technol. 1992, 9, 142–148. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhang, X.X.; Li, X.; Cui, Z.L.; Xiao, H. Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS). Appl. Spectrosc. 2018, 72, 1244–1251. [Google Scholar] [CrossRef]
- Peters, S.; Bejan, I.; Kurtenbach, R.; Liedtke, S.; Villena, G.; Wiesen, P.; Kleffmann, J. Development of a new LOPAP instrument for the detection of O3 in the atmosphere. Atmos. Environ. 2013, 67, 112–119. [Google Scholar] [CrossRef]
- Hannun, R.A.; Swanson, A.K.; Bailey, S.A.; Hanisco, T.F.; Bui, T.P.; Bourgeois, I.; Peischl, J.; Ryerson, T.B. A cavity-enhanced ultraviolet absorption instrument for high-precision, fast-time-response ozone measurements. Atmos. Meas. Tech. 2020, 13, 6877–6887. [Google Scholar] [CrossRef]
- Gomez, A.L.; Rosen, E.P. Fast response cavity enhanced ozone monitor. Atmos. Meas. Tech. 2013, 6, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Washenfelder, R.A.; Wagner, N.L.; Dub´e, W.P.; Brown, S.S. Measurement of Atmospheric Ozone by Cavity Ring-down Spectroscopy. Environ. Sci. Technol. 2011, 45, 2938–2944. [Google Scholar] [CrossRef]
- Clemitshaw, K.C. A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry. Crit. Rev. Environ. Sci. Technol. 2004, 34, 1–108. [Google Scholar] [CrossRef]
- Axelsson, H.; Edner, H.; Galle, B.; Ragnarson, P.; Rudin, M. Differential optical-absorption spectroscopy (DOAS) measurements of ozone in the 280–290 nm wavelength region. Appl. Spectrosc. 1990, 44, 1654–1658. [Google Scholar] [CrossRef] [Green Version]
- Ryerson, T.B.; Buhr, M.P.; Frost, G.J.; Goldan, P.D.; Holloway, J.S.; Hübler, G.; Jobson, B.T.; Kuster, W.C.; McKeen, S.A.; Parrish, D.D.; et al. Emissions lifetimes and ozone formation in power plant plumes. J. Geophys. Res. Atmos. 1998, 103, 22569–22583. [Google Scholar] [CrossRef]
- Williams, E.J.; Fehsenfeld, F.C.; Jobson, B.T.; Kuster, W.C.; Goldan, P.D.; Stutz, J.; Mcclenny, W.A. Comparison of Ultraviolet Absorbance, Chemiluminescence, and DOAS Instruments for Ambient Ozone Monitoring. Environ. Sci. Technol. 2006, 40, 5755–5762. [Google Scholar]
- Spicer, C.W.; Joseph, D.W.; Ollison, W.M. A Re-Examination of ambient air ozone monitor interferences. J. Air Waste Manag. Assoc. 2010, 60, 1353–1364. [Google Scholar] [CrossRef] [Green Version]
- Ollison, W.M.; Crow, W.; Spicer, C.W. Field testing of new-technology ambient air ozone monitors. J. Air Waste Manag. Assoc. 2013, 63, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Leston, A.R.; Ollison, W.M.; Spicer, C.W.; Satola, J. Potential interference bias in ozone standard compliance monitoring. J. Air Waste Manag. Assoc. 2005, 55, 1464–1472. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Y.; Hu, R.Z.; Xie, P.H.; Chen, H.; Wu, S.Y.; Wang, F.Y.; Wang, Y.H.; Ling, L.Y.; Liu, J.G.; Liu, W.Q. Development of a portable cavity ring down spectroscopy instrument for simultaneous, in situ measurement of NO3 and N2O5. Opt. Express 2018, 26, A433–A449. [Google Scholar] [CrossRef] [PubMed]
- Rothman, L.S.; Gordon, I.E.; Barber, R.J.; Dothe, H.; Gamache, R.R.; Goldman, A.; Perevalov, V.I.; Tashkun, S.A.; Tennyson, J. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
- Voigt, S.; Orphal, J.; Burrows, J.P. The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250–800 nm region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol. A Chem. 2002, 149, 1–7. [Google Scholar] [CrossRef]
- Sander, S.P.; Friedl, R.R.; Ravishankara, A.R.; Golden, D.M.; Kolb, C.E.; Kurylo, M.J.; Molina, M.J.; Moortgat, G.K.; Keller-Rudek, H.; Finlayson-Pitts, B.J.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 2006. [Google Scholar]
- Li, Z.Y.; Hu, R.Z.; Xie, P.H.; Chen, H.; Liu, X.Y.; Liang, S.X.; Wang, D.; Wang, F.Y.; Wang, Y.H.; Lin, C.; et al. Simultaneous measurement of NO and NO2 by a dual-channel cavity ring-down spectroscopy technique. Atmos. Meas. Tech. 2019, 12, 3223–3236. [Google Scholar] [CrossRef] [Green Version]
- Kalnajs, L.E.; Avallone, L.M. A Novel Lightweight Low-Power Dual-Beam Ozone Photometer Utilizing Solid-State Optoelectronics. J. Atmos. Ocean. Technol. 2009, 27, 869–880. [Google Scholar] [CrossRef]
- Gao, R.S.; Ballard, J.; Watts, L.A.; Thornberry, T.D.; Ciciora, S.J.; McLaughlin, R.J.; Fahey, D.W. A compact, fast UV photometer for measurement of ozone from research aircraft. Atmos. Meas. Tech. 2012, 5, 2201–2210. [Google Scholar] [CrossRef] [Green Version]
- Darby, S.B.; Smith, P.D.; Venables, D.S. Cavity-enhanced absorption using an atomic line source: Application to deep-UV measurements. Analyst 2012, 137, 2318–2321. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hu, Z.; Tang, H.; Xue, H.; Chen, Y.; Hu, R. Compact, Fast Cavity Ring-Down Spectroscopy Monitor for Simultaneous Measurement of Ozone and Nitrogen Dioxide in the Atmosphere. Atmosphere 2022, 13, 2106. https://doi.org/10.3390/atmos13122106
Liu X, Hu Z, Tang H, Xue H, Chen Y, Hu R. Compact, Fast Cavity Ring-Down Spectroscopy Monitor for Simultaneous Measurement of Ozone and Nitrogen Dioxide in the Atmosphere. Atmosphere. 2022; 13(12):2106. https://doi.org/10.3390/atmos13122106
Chicago/Turabian StyleLiu, Xiaoyan, Zhijing Hu, Hehe Tang, Huijie Xue, Yang Chen, and Renzhi Hu. 2022. "Compact, Fast Cavity Ring-Down Spectroscopy Monitor for Simultaneous Measurement of Ozone and Nitrogen Dioxide in the Atmosphere" Atmosphere 13, no. 12: 2106. https://doi.org/10.3390/atmos13122106
APA StyleLiu, X., Hu, Z., Tang, H., Xue, H., Chen, Y., & Hu, R. (2022). Compact, Fast Cavity Ring-Down Spectroscopy Monitor for Simultaneous Measurement of Ozone and Nitrogen Dioxide in the Atmosphere. Atmosphere, 13(12), 2106. https://doi.org/10.3390/atmos13122106