Comprehensive Analysis of Organic Micropollutants in Fine Particulate Matter in Hanoi Metropolitan Area, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Collection and Extraction
2.3. Targeted Analysis of the Air Particulate Samples
2.4. Quality Control
2.5. Meteorological Data
2.6. Statistical Analysis
3. Results
3.1. Concentrations of PM2.5 and Correlations with Meteorogical Variables
3.2. Overview of Organic Micropollutant Screening
3.3. Intermediate
3.4. Solvents and Reagents
3.5. Antioxidants
3.6. Non-Ionic Detergent Metabolites and Disinfectants
3.7. PAHs
3.8. Plastics
3.9. Petroleum
3.10. Agricultural Pollutants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bootdee, S.; Chantara, S.; Prapamontol, T. Determination of PM2.5 and polycyclic aromatic hydrocarbons from incense burning emission at shrine for health risk assessment. Atmos. Pollut. Res. 2016, 7, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Ngoc, B.A.P.; Delbarre, H.; Deboudt, K.; Dieudonné, E.; Tran, D.N.; Le Thanh, S.; Pelon, J.; Ravetta, F. Key factors explaining severe air pollution episodes in Hanoi during 2019 winter season. Atmos. Pollut. Res. 2021, 12, 101068. [Google Scholar] [CrossRef]
- Popovicheva, O.B.; Shonija, N.K.; Persiantseva, N.; Timofeev, M.; Diapouli, E.; Eleftheriadis, K.; Borgese, L.; Nguyen, X.A. Aerosol pollutants during agricultural biomass burning: A case study in Ba Vi region in Hanoi, Vietnam. Aerosol Atmos. Chem. 2017, 17, 2762–2779. [Google Scholar] [CrossRef]
- Ly, B.-T.; Matsumi, Y.; Nakayama, T.; Sakamoto, Y.; Kajii, Y.; Nghiem, T.-D. Characterizing PM2.5 in Hanoi with new high temporal resolution sensor. Aerosol Air Qual. Res 2018, 18, 2487–2497. [Google Scholar] [CrossRef]
- Duong, H.T.; Doan, N.H.; Trinh, H.T.; Kadokami, K. Occurrence and risk assessment of herbicides and fungicides in atmospheric particulate matter in Hanoi, Vietnam. Sci. Total Environ. 2021, 787, 147674. [Google Scholar] [CrossRef]
- Duong, H.T.; Kadokami, K.; Trinh, H.T.; Phan, T.Q.; Le, G.T.; Nguyen, D.T.; Nguyen, T.T.; Nguyen, D.T. Target screening analysis of 970 semi-volatile organic compounds adsorbed on atmospheric particulate matter in Hanoi, Vietnam. Chemosphere 2019, 219, 784–795. [Google Scholar] [CrossRef]
- Allinson, G.; Allinson, M.; Kadokami, K. Combining passive sampling with a GC-MS-database screening tool to assess trace organic contamination of rivers: A pilot study in Melbourne, Australia. Water Air Soil Pollut. 2015, 226, 230. [Google Scholar] [CrossRef]
- Borgie, M.; Ledoux, F.; Verdin, A.; Cazier, F.; Greige, H.; Shirali, P.; Courcot, D.; Dagher, Z. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. Environ. Res. 2015, 136, 352–362. [Google Scholar] [CrossRef]
- Toro-Heredia, J.; Jirau-Colón, H.; Jiménez-Vélez, B.D. Linking PM2.5 organic constituents, relative toxicity and health effects in Puerto Rico. Environ. Chall. 2021, 5, 100350. [Google Scholar] [CrossRef]
- Miller, C.J.; Runge-Morris, M.; Cassidy-Bushrow, A.E.; Straughen, J.K.; Dittrich, T.M.; Baker, T.R.; Petriello, M.C.; Mor, G.; Ruden, D.M.; O’Leary, B.F.; et al. A Review of Volatile Organic Compound Contamination in Post-Industrial Urban Centers: Reproductive Health Implications Using a Detroit Lens. Int. J. Environ. Res. Public Health 2020, 17, 8755. [Google Scholar] [CrossRef]
- Nghiem, T.-D.; Nguyen, T.T.T.; Nguyen, T.T.H.; Ly, B.-T.; Sekiguchi, K.; Yamaguchi, R.; Pham, C.-T.; Ho, Q.B.; Nguyen, M.-T.; Duong, T.N. Chemical characterization and source apportionment of ambient nanoparticles: A case study in Hanoi, Vietnam. Environ. Sci. Pollut. Res. 2020, 27, 30661–30672. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Kadokami, K.; Duong, H.T.; Chau, H.T.C. Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China. Chemosphere 2016, 165, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Nishimuta, K.; Ueno, D.; Takahashi, S.; Kuwae, M.; Kadokami, K.; Miyawaki, T.; Matsukami, H.; Kuramochi, H.; Higuchi, T.; Koga, Y. Use of comprehensive target analysis for determination of contaminants of emerging concern in a sediment core collected from Beppu Bay, Japan. Environ. Pollut. 2021, 272, 115587. [Google Scholar] [CrossRef] [PubMed]
- Allinson, M.; Kadokami, K.; Shiraishi, F.; Nakajima, D.; Zhang, J.; Knight, A.; Gray, S.; Scales, P.; Allinson, G. Wastewater recycling in Antarctica: Performance assessment of an advanced water treatment plant in removing trace organic chemicals. Environ. Pollut. 2018, 224, 122–129. [Google Scholar] [CrossRef]
- Trinh, H.T.; Marcussen, H.; Hansen, H.C.B.; Le, G.T.; Duong, H.T.; Ta, N.T.; Nguyen, T.Q.; Hansen, S.; Strobel, B.W. Screening of inorganic and organic contaminants in floodwater in paddy fields of Hue and Thanh Hoa in Vietnam. Environ. Sci. Pollut. Res. 2017, 24, 7348–7358. [Google Scholar] [CrossRef]
- Anh, H.Q.; Tomioka, K.; Tue, N.M.; Suzuki, G.; Minh, T.B.; Viet, P.H.; Takahashi, S. Comprehensive analysis of 942 organic micro-pollutants in settled dusts from northern Vietnam: Pollution status and implications for human exposure. J. Mater. Cycles Waste Manag. 2019, 21, 57–66. [Google Scholar] [CrossRef]
- Bui, T.H.; Nguyen, D.L.; Nguyen, T.P.M.; Bui, Q.T.; Nguyen, V.D.; Mac, V.D. Chemical characterization, source apportionment, and human health risk assessment of PM2.5 in an urban area in Hanoi, Vietnam. Air Qual. Atmos. Health 2022, 1–15. [Google Scholar] [CrossRef]
- Truong, A.H.; Kim, M.T.; Nguyen, T.T.; Nguyen, N.T.; Nguyen, Q.T. Methane, nitrous oxide and ammonia emissions from livestock farming in the Red River Delta, Vietnam: An inventory and projection for 2000–2030. Sustainability 2018, 10, 3826. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.P.M.; Bui, T.H.; Nguyen, M.K.; Nguyen, T.H.; Vu, V.T.; Pham, H.L. Impact of COVID-19 partial lockdown on PM2.5, SO2, NO2, O3, and trace elements in PM2.5 in Hanoi, Vietnam. Environ. Sci. Pollut. Res. 2022, 29, 41875–41885. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Wang, J.; Wu, J.; Liu, B.; Liu, X.; Gao, H.; Zhang, Y.; Feng, Y.; Han, S.; Gong, X. Exploring the Sensitivity of Visibility to PM2.5 Mass Concentration and Relative Humidity for Different Aerosol Types. Atmosphere 2022, 13, 471. [Google Scholar] [CrossRef]
- Ścibor, M.; Bokwa, A.; Balcerzak, B. Impact of wind speed and apartment ventilation on indoor concentrations of PM10 and PM2.5 in Kraków, Poland. Air Qual. Atmos. Health 2020, 13, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Tsuji, G.; Zhang, J.-Z.; Chen, Z.; Furue, M. Potential role of PM2.5 in melanogenesis. Environ. Int. 2019, 132, 105063. [Google Scholar] [CrossRef] [PubMed]
- Mobasser, S.; Wager, Y.; Dittrich, T.M. Indoor Air Purification of Volatile Organic Compounds (VOCs) Using Activated Carbon, Zeolite, and Organosilica Sorbents. Ind. Eng. Chem. Res. 2022, 20, 6791–6801. [Google Scholar] [CrossRef]
- Cheolmin Lee, Y.G.; Dajeong, L.; Yongseok, C.; Donghyun, L. A study on the perception of indoor concentration due to radon exhalation from domestic building materials. J. Environ. Sci. Int. 2017, 2017, 116. [Google Scholar] [CrossRef] [Green Version]
- Balmer, J.E.; Hung, H.; Vorkamp, K.; Letcher, R.J.; Muir, D.C. Hexachlorobutadiene (HCBD) contamination in the Arctic environment: A review. Emerg. Contam. 2019, 5, 116–122. [Google Scholar] [CrossRef]
- Wang, L.; Bie, P.; Zhang, J. Estimates of unintentional production and emission of hexachlorobutadiene from 1992 to 2016 in China. Environ. Pollut. 2018, 238, 204–212. [Google Scholar] [CrossRef]
- Nadian, M.; Mirzaei, R.; Soltani Mohammadi, S. Application of Moran’sI Autocorrelation in Spatial-Temporal Analysis of PM2.5 Pollutant (A case Study: Tehran City). J. Environ. Health Eng. 2018, 5, 197–213. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.-J.; Li, N.; Wu, R.; Richard, W.K.; Wang, Z.; Ho, W. Phosphorus flame retardants and Bisphenol A in indoor dust and PM2.5 in kindergartens and primary schools in Hong Kong. Environ. Pollut. 2018, 235, 365–371. [Google Scholar] [CrossRef]
- Munyaneza, J.; Qaraah, F.A.; Jia, Q.; Cheng, H.; Zhen, H.; Xiu, G. Seasonal Trends, Profiles, and Exposure Risk of PM2.5-bound Bisphenol Analogs in Ambient Outdoor Air: A Study in Shanghai, China. Aerosol Air Qual. Res. 2022, 22, 210324. [Google Scholar] [CrossRef]
- Sánchez-Piñero, J.; Novo-Quiza, N.; Moreda-Piñeiro, J.; Turnes-Carou, I.; Muniategui-Lorenzo, S.; López-Mahía, P. Multi-class organic pollutants in atmospheric particulate matter (PM2.5) from a Southwestern Europe industrial area: Levels, sources and human health risk. Environ. Res. 2022, 214, 114195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, C.; Zhang, W.; Qi, Z.; Song, Y.; Zhu, L.; Dong, C.; Chen, J.; Cai, Z. p-Phenylenediamine Antioxidants in PM2.5: The Underestimated Urban Air Pollutants. Environ. Sci. Technol. 2021, 56, 6914–6921. [Google Scholar] [CrossRef] [PubMed]
- Wallraff, J.P.; Ungeheuer, F.; Dombrowski, A.; Oehlmann, J.; Vogel, A.L. Occurrence and in vitro toxicity of organic compounds in urban background PM2.5. Sci. Total Environ. 2022, 817, 152779. [Google Scholar] [CrossRef]
- Marinaite, I.; Penner, I.; Molozhnikova, E.; Shikhovtsev, M.; Khodzher, T. Polycyclic Aromatic Hydrocarbons in the Atmosphere of the Southern Baikal Region (Russia): Sources and Relationship with Meteorological Conditions. Atmosphere 2022, 13, 420. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Yu, J.Z. Minimizing contamination from plastic labware in the quantification of C16 and C18 fatty acids in filter samples of atmospheric particulate matter and their utility in apportioning cooking source contribution to urban PM2.5. Atmosphere 2020, 11, 1120. [Google Scholar] [CrossRef]
- Islam, M.R.; Welker, J.; Salam, A.; Stone, E.A. Plastic Burning Impacts on Atmospheric Fine Particulate Matter at Urban and Rural Sites in the USA and Bangladesh. ACS Environ. Au 2022, 2, 409–417. [Google Scholar] [CrossRef]
- Abbasi, S.; Keshavarzi, B. Source identification of total petroleum hydrocarbons and polycyclic aromatic hydrocarbons in PM10 and street dust of a hot spot for petrochemical production: Asaluyeh County, Iran. Sustain. Cities Soc. 2019, 45, 214–230. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Li, Y.-C.; Amesho, K.T.; Shangdiar, S.; Chou, F.-C.; Cheng, P.-C. Chemical characterization of PM2.5 emissions and atmospheric metallic element concentrations in PM2.5 emitted from mobile source gasoline-fueled vehicles. Sci. Total Environ. 2020, 739, 139942. [Google Scholar] [CrossRef]
- Bozlaker, A.; Peccia, J.; Chellam, S. Indoor/outdoor relationships and anthropogenic elemental signatures in airborne PM2.5 at a high school: Impacts of petroleum refining emissions on lanthanoid enrichment. Environ. Sci. Technol. 2017, 51, 4851–4859. [Google Scholar] [CrossRef]
- Anh Le, H.; Quynh Linh, V.T. Investigation of Indoor and Outdoor Air Quality at Elementary Schools in Hanoi, Vietnam. VNU J. Sci. 2020, 36. [Google Scholar] [CrossRef]
- Dung, P.; Sharma, S. Responding to climate change in the agriculture and rural development sector in Vietnam. In Redefining Diversity & Dynamics of Natural Resources Management in Asia; Upland Natural Resources and Social Ecological Systems in Northern Vietnam; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 13–25. [Google Scholar]
- López, A.; Yusà, V.; Muñoz, A.; Vera, T.; Borràs, E.; Ródenas, M.; Coscollà, C. Risk assessment of airborne pesticides in a Mediterranean region of Spain. Sci. Total Environ. 2017, 574, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.M.; da Rocha, G.O.; de Andrade, J.B. Pesticides in fine airborne particles: From a green analysis method to atmospheric characterization and risk assessment. Sci. Rep. 2017, 7, 2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Guo, J.; Wang, Z.; Zhang, B.; Sun, Z.; Yun, X.; Zhang, J. Levels and inhalation health risk of neonicotinoid insecticides in fine particulate matter (PM2.5) in urban and rural areas of China. Environ. Int. 2020, 142, 105822. [Google Scholar] [CrossRef]
- Nascimento, M.M.; da Rocha, G.O.; de Andrade, J.B. A rapid low-consuming solvent extraction procedure for simultaneous determination of 34 multiclass pesticides associated to respirable atmospheric particulate matter (PM2.5) by GC–MS. Microchem. J. 2018, 139, 424–436. [Google Scholar] [CrossRef]
Category | Intermediates for Dyes | PAHs | Solvents | Reagents | Intermediates Used in Organic Synthesis | Intermediates for Resin | PCBs | Fungicides | Herbicides | Insecticides |
---|---|---|---|---|---|---|---|---|---|---|
PN1 | 2.18 | 1.85 | 25.72 | 59.52 | 0.90 | 1.27 | 0.39 | 27.28 | 0.34 | 21.18 |
PN2 | 1.38 | 4.40 | 22.05 | 20.91 | 2.83 | 1.63 | 0.29 | 18.88 | 0.06 | 18.98 |
PN3 | 1.84 | 1.94 | 38.16 | 48.47 | 0.91 | 1.79 | 0.42 | 29.87 | 0.37 | 10.34 |
PN4 | 0.94 | 0.29 | 11.56 | 31.31 | 0.64 | 2.16 | - | 13.39 | 0.13 | 15.94 |
PN5 | 1.88 | 0.47 | 13.00 | 22.90 | 0.82 | 1.40 | - | 13.43 | 0.10 | 8.66 |
PN6 | 0.87 | 0.54 | 20.95 | 22.06 | 0.96 | 1.77 | - | 15.61 | 0.10 | 3.84 |
PN7 | 1.61 | 0.68 | 20.51 | 13.04 | 0.69 | 1.35 | - | 13.13 | 0.20 | 6.91 |
PN8 | 1.15 | 0.45 | 20.75 | 11.52 | 0.68 | 1.05 | - | 20.11 | 0.16 | 9.83 |
PN9 | 0.80 | 0.57 | 12.62 | 10.93 | 0.55 | 2.07 | - | 9.92 | 0.09 | 8.03 |
PN10 | 1.86 | 0.68 | 12.55 | 10.25 | 0.56 | 1.87 | - | 8.43 | 0.13 | 3.31 |
TH1 | 0.01 | 0.95 | 9.26 | 3.99 | 1.77 | 0.02 | - | 102.40 | - | 202.45 |
TH2 | 0.00 | 0.75 | 6.21 | 2.78 | 1.08 | 0.02 | 0.04 | 63.65 | - | 149.34 |
TH3 | 0.02 | 2.88 | 4.42 | 1.82 | 1.52 | 0.04 | 0.04 | 58.41 | - | 133.33 |
TH4 | - | - | 4.36 | 1.15 | 0.98 | 0.22 | - | 63.02 | - | 132.30 |
TH5 | - | - | 3.22 | 0.54 | 0.49 | 0.19 | - | 46.41 | - | 107.17 |
TH6 | - | - | 3.72 | 1.78 | 2.06 | 0.17 | - | 33.28 | - | 87.06 |
TH7 | - | - | 1.93 | 0.96 | 1.82 | 0.11 | - | 43.68 | - | 122.55 |
TH8 | - | - | 5.66 | 0.71 | 0.38 | 0.21 | - | 38.70 | - | 96.12 |
TH9 | - | - | 3.17 | 0.27 | 0.82 | 0.09 | - | 45.17 | - | 77.37 |
TH10 | - | - | 4.06 | 1.58 | 1.27 | 0.05 | - | 52.15 | - | 83.81 |
CG1 | 1.08 | 1.26 | 16.63 | 32.72 | 0.54 | 0.06 | 0.23 | 29.65 | 4.72 | 9.36 |
CG2 | 1.30 | 1.20 | 16.74 | 31.58 | 0.56 | 0.83 | 0.24 | 32.18 | 0.12 | 27.29 |
CG3 | 1.00 | 1.24 | 13.82 | 28.99 | 0.37 | 0.12 | 0.20 | 8.97 | 0.89 | 4.83 |
CG4 | 1.10 | 1.87 | 14.81 | 21.38 | 0.36 | 0.62 | 0.26 | 17.11 | 3.87 | 22.38 |
CG5 | 1.32 | 1.01 | 22.93 | 34.60 | 0.47 | 0.06 | 0.23 | 28.37 | 0.96 | 16.19 |
CG6 | 0.93 | 0.66 | 14.54 | 20.27 | 0.51 | - | 0.22 | 15.86 | 0.02 | 6.19 |
CG7 | 1.09 | 1.49 | 12.99 | 25.13 | 2.07 | 0.02 | 0.23 | 14.73 | 0.28 | 8.98 |
CG8 | 0.56 | 1.45 | 3.27 | 17.16 | 0.08 | - | 0.11 | 3.46 | 0.88 | 2.11 |
CG9 | 0.71 | 0.67 | 9.24 | 13.38 | 0.24 | 0.03 | 0.24 | 10.59 | 0.06 | 11.05 |
CG10 | 0.44 | 0.23 | 5.12 | 5.67 | 0.11 | 0.08 | 0.00 | 5.33 | - | 3.31 |
Category | Antioxidants | Cosmetics | Disinfectants | Fatty Acid Methyl Ester | Fragrances | Leaching from Tires | Petroleum | Plastics Materials | PPCPs | Total Trace Organic Compounds |
---|---|---|---|---|---|---|---|---|---|---|
PN1 | 2.49 | 0.14 | 0.27 | 4.18 | 1.53 | 4.15 | 158.68 | 21.85 | 35.66 | 163.58 |
PN2 | 4.11 | 0.49 | 0.09 | 9.46 | 1.16 | 2.79 | 21.04 | 35.45 | 3.24 | 158.93 |
PN3 | 2.18 | 0.17 | 0.23 | 4.55 | 0.84 | 4.96 | 149.34 | 17.34 | 32.19 | 72.45 |
PN4 | 2.08 | - | 0.08 | 2.34 | 0.14 | 0.20 | 32.59 | 2.45 | 22.81 | 132.20 |
PN5 | 2.84 | 0.11 | 0.14 | 2.32 | 0.17 | 0.36 | 33.51 | 2.17 | 12.03 | 142.86 |
PN6 | 1.57 | - | 0.16 | 2.85 | 0.22 | 0.22 | 35.66 | 2.42 | 22.69 | 86.64 |
PN7 | 1.67 | - | 0.03 | 3.08 | 0.28 | 0.33 | 34.24 | 2.21 | 23.72 | 114.87 |
PN8 | 1.90 | 0.16 | 0.20 | 2.55 | 0.29 | 0.30 | 32.27 | 2.99 | 12.98 | 41.08 |
PN9 | 3.24 | - | 0.10 | 2.29 | 0.17 | 0.25 | 26.55 | 2.34 | 13.55 | 96.67 |
PN10 | 0.60 | - | 0.10 | 3.27 | 0.30 | 0.38 | 30.30 | 1.86 | 13.88 | 45.18 |
TH1 | 0.66 | 5.62 | 1.91 | 26.68 | 1.78 | 2.80 | 419.66 | 11.18 | 3.37 | 369.67 |
TH2 | 2.36 | 0.14 | 0.34 | 24.29 | 1.31 | 1.16 | 460.29 | 16.09 | 27.31 | 170.74 |
TH3 | 2.44 | - | 0.50 | 30.43 | 0.87 | 0.68 | 456.06 | 25.39 | 27.33 | 345.99 |
TH4 | 0.35 | - | 0.11 | 18.46 | 3.09 | 1.12 | 264.97 | 7.50 | 11.69 | 139.03 |
TH5 | 0.40 | - | 0.04 | 12.63 | 3.39 | 1.14 | 298.53 | 13.93 | 22.48 | 116.32 |
TH6 | 0.22 | - | 0.12 | 6.28 | 1.62 | 2.07 | 270.71 | 14.24 | 10.36 | 132.50 |
TH7 | 0.55 | - | 0.18 | 14.04 | 0.51 | 1.87 | 287.19 | 6.46 | 6.02 | 123.67 |
TH8 | 0.46 | - | 0.08 | 16.88 | 1.23 | 1.97 | 262.53 | 3.46 | 5.41 | 119.33 |
TH9 | 0.39 | - | 0.17 | 7.50 | 1.35 | 2.29 | 280.76 | 3.70 | 6.17 | 94.08 |
TH10 | 0.42 | - | 0.12 | 7.50 | 1.17 | 1.00 | 216.79 | 5.31 | 2.78 | 90.33 |
CG1 | 3.11 | 0.16 | 3.78 | 2.59 | 0.98 | 1.75 | 34.05 | 17.67 | 1.71 | 794.80 |
CG2 | 1.71 | 0.11 | 0.12 | 5.75 | 1.06 | 1.65 | 18.54 | 16.21 | 0.97 | 757.88 |
CG3 | 0.12 | 0.01 | 0.06 | 0.29 | 0.35 | 1.40 | 5.06 | 2.31 | 2.35 | 746.39 |
CG4 | 0.14 | 0.17 | 0.13 | 1.25 | 0.71 | 1.55 | 26.60 | 10.83 | 5.83 | 509.30 |
CG5 | 1.14 | 0.09 | 0.14 | 6.34 | 1.09 | 2.17 | 13.84 | 9.48 | 1.37 | 510.56 |
CG6 | 0.84 | 0.07 | 0.12 | 4.75 | 0.71 | 1.06 | 11.72 | 7.21 | 0.71 | 433.68 |
CG7 | 0.96 | 0.14 | 0.13 | 1.71 | 0.62 | 1.20 | 27.12 | 9.62 | 5.63 | 487.88 |
CG8 | 0.05 | - | 0.03 | 0.24 | 0.27 | 1.60 | 4.20 | 3.30 | 2.30 | 433.81 |
CG9 | 1.79 | 0.15 | 0.20 | 4.27 | 1.06 | 1.35 | 29.87 | 11.06 | 0.45 | 429.22 |
CG10 | 0.57 | 0.00 | 0.12 | 0.83 | 0.22 | 1.03 | 16.24 | 5.70 | 0.18 | 377.99 |
Location | PI Index | MP/P |
---|---|---|
PN1 | 1.453 | 1.284 |
PN2 | 1.025 | 0.079 |
PN3 | 0.790 | 0.668 |
PN4 | 0.590 | - |
PN5 | 0.913 | - |
PN6 | 0.888 | - |
PN7 | 0.989 | - |
PN8 | 0.530 | - |
PN9 | 1.564 | - |
PN10 | 1.544 | - |
TH1 | 0.165 | 2.619 |
TH2 | 0.486 | 2.381 |
TH3 | 0.368 | 0.324 |
TH4—TH10 | - | - |
CG1 | 1.164 | 0.810 |
CG2 | 0.392 | 1.001 |
CG3 | 0.197 | 0.000 |
CG4 | 1.110 | 0.403 |
CG5 | 1.979 | 1.902 |
CG6 | 1.116 | 1.417 |
CG7 | 2.124 | 0.776 |
CG8 | 0.130 | - |
CG9 | 0.838 | - |
CG10 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le-Quang, H.; Phuong, T.P.T.; Bui-Quang, M.; Nguyen-Tien, D.; Nguyen-Thanh, T.; Nguyen-Ha, M.; Shimadera, H.; Kondo, A.; Luong-Viet, M.; Nguyen-Quang, T. Comprehensive Analysis of Organic Micropollutants in Fine Particulate Matter in Hanoi Metropolitan Area, Vietnam. Atmosphere 2022, 13, 2088. https://doi.org/10.3390/atmos13122088
Le-Quang H, Phuong TPT, Bui-Quang M, Nguyen-Tien D, Nguyen-Thanh T, Nguyen-Ha M, Shimadera H, Kondo A, Luong-Viet M, Nguyen-Quang T. Comprehensive Analysis of Organic Micropollutants in Fine Particulate Matter in Hanoi Metropolitan Area, Vietnam. Atmosphere. 2022; 13(12):2088. https://doi.org/10.3390/atmos13122088
Chicago/Turabian StyleLe-Quang, Huong, Thao Pham Thi Phuong, Minh Bui-Quang, Dat Nguyen-Tien, Thao Nguyen-Thanh, My Nguyen-Ha, Hikari Shimadera, Akira Kondo, Mui Luong-Viet, and Trung Nguyen-Quang. 2022. "Comprehensive Analysis of Organic Micropollutants in Fine Particulate Matter in Hanoi Metropolitan Area, Vietnam" Atmosphere 13, no. 12: 2088. https://doi.org/10.3390/atmos13122088