Regional Climate Models Validation for Agroclimatology in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used
2.2. Methods Used
2.2.1. Evaluation Metrics for Validation
- i.
- Mean absolute error (MAE) was used to calculate the absolute value of the difference between modeled and observed data (Equation (1)):
- ii.
- Root mean squared error (RMSE) detects the effect of the outliers in the difference between modeled and observation-derived values (Equation (2))
- iii.
- Pearson’s Correlation Coefficient (Corr) helped to measure the linear correlation between modeled and observation-derived values.
2.2.2. Algorithm for RCMs Ranking
- xn tasminMAE—weighted rank obtained by the model n for tasmin for the MAE metric;
- xn tasminRMSE—weighted rank obtained by the model n for tasmin for the RMSR metric;
- xn tasminCorr—weighted rank obtained by the model n for tasmin for the Pearson Correlation metric;
- xn tasmin5pMAE—weighted rank obtained by the model n for 5th percentile of tasmin for the MAE metric;
- xn tasmin5pRMSE—weighted rank obtained by the model n for 5th percentile of tasmin for the RMSR metric;
- xn tasmin5pCorr—weighted rank obtained by the model n for 5th percentile of tasmin for the Pearson Correlation metric;
- xn tasmaxMAE—weighted rank obtained by the model n for tasmax for the MAE metric;
- xn tasmaxRMSE—weighted rank obtained by the model n for tasmax for the RMSR metric;
- xn tasmaxCorr—weighted rank obtained by the model n for tasmax for the Pearson Correlation metric;
- xn tasmax95pMAE—weighted rank obtained by the model n for 95th percentile of tasmax for the MAE metric;
- xn tasmax95pRMSE—weighted rank obtained by the model n for 95th percentile of tasmax for the RMSR metric;
- xn tasmax95pCorr—weighted rank obtained by the model n for 95th percentile of tasmax for the Pearson Correlation metric;
- xn prMAE—weighted rank obtained by the model n for pr for the MAE metric;
- xn prRMSE—weighted rank obtained by the model n for pr for the RMSR metric;
- xn prCorr—weighted rank obtained by the model n for pr for the Pearson Correlation metric;
- xn pr95pMAE—weighted rank obtained by the model n for 95th percentile of pr for the MAE metric;
- xn pr95pRMSE—weighted rank obtained by the model n for 95th percentile of pr for the RMSR metric;
- xn pr95pCorr—weighted rank obtained by the model n for 95th percentile of pr for the Pearson Correlation metric;
2.2.3. Area Analysis
3. Results
3.1. Model Performance on Temperature
3.2. Model Performance on Precipitation
3.3. Model Selection Procedure
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, C.; Barros, V.; Stocker, T.; Dahe, Q. IPCC—Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- EU. EU Adaptation Strategy. 2019. Available online: https://ec.europa.eu/clima/policies/adaptation/what_en (accessed on 16 May 2021).
- EU. The Post-2020 Common Agricultural Policy: Environmental Benefits and Simplification. 2019. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/key_policies/documents/cap-post-2020-environ-benefits-simplification_en.pdf (accessed on 1 July 2021).
- EPA. Agrophenology. 2019. Available online: https://www.eea.europa.eu/data-and-maps/indicators/timing-of-the-cycle-of-2/assessment (accessed on 1 July 2021).
- Rummukainen, M. State-of-the-art with regional climate models. WIREs Clim. Chang. 2010, 1, 82–96. [Google Scholar] [CrossRef]
- Coppola, E.; Nogherotto, R.; Ciarlo, J.M.; Giorgi, F.; van Meijgaard, E.; Kadygrov, N.; Iles, C.; Corre, L.; Sandstad, M.; Somot, S.; et al. Assessment of the European Climate Projections as Simulated by the Large EURO-CORDEX Regional and Global Climate Model Ensemble. J. Geophys. Res. Atmos. 2021, 126. [Google Scholar] [CrossRef]
- Fischer, G.; Shah, M.; Tubiello, F.; van Velhuizen, H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos. Trans. R. Soc. Biol. Sci. 2005, 360, 2067–2083. [Google Scholar] [CrossRef]
- Lane, A.; Jarvis, A. Changes in Climate will modify the Geography of Crop Suitability: Agricultural Biodiversity can help with Adaptation. SAT Ejournal 2007, 4, 1–12. [Google Scholar]
- Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjitkar, S.; Sujakhu, N.M.; Merz, J.; Kindt, R.; Xu, J.; Matin, A.; Zomer, R.J. Suitability analysis and projected climate change impact on banana and coffee production zones in Nepal. PLoS ONE 2016, 11, e0163916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Silva, C.S.; Weatherhead, E.K.; Knox, J.W.; Rodriguez-Diaz, J.A. Predicting the impacts of climate change-A case study of paddy irrigation water requirements in Sri Lanka, Agric. Water Manag. 2007, 93, 19–29. [Google Scholar] [CrossRef]
- Liu, J.; Fritz, S.; Van Wesenbeeck, C.F.A.; Fuchs, M.; You, L.; Obersteiner, M.; Yang, H. A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change. Glob. Planet. Chang. 2008, 64, 222–235. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Fischer, G.; Van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Zabel, F.; Putzenlechner, B.; Mauser, W. Global Agricultural Land Resources—A High Resolution Suitability Evaluation and Its Perspectives until 2100 under Climate Change Conditions. PLoS ONE 2014, 9, e114980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Forestieri, A.; Arnone, E.; Blenkinsop, S.; Candela, A.; Fowler, H.; Noto, L.V. The impact of climate change on extreme precipitation in Sicily, Italy. Hydrol. Process. 2018, 32, 332–348. [Google Scholar] [CrossRef] [Green Version]
- Torma, C.Z. Detailed validation of EURO-CORDEX and Med-CORDEX regional climate model ensembles over the Carpathian Region. Időjárás 2019, 123, 217–240. [Google Scholar] [CrossRef]
- Warscher, M.; Wagner, S.; Marke, T.; Laux, P.; Smiatek, G.; Strasser, U.; Kunstmann, H. A 5 km Resolution Regional Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal, Regional and Elevation-Dependent Variations. Atmosphere 2019, 10, 682. [Google Scholar] [CrossRef] [Green Version]
- Varga, Á.J.; Breuer, H. Sensitivity of simulated temperature, precipitation, and global radiation to different WRF configurations over the Carpathian Basin for regional climate applications. Clim. Dyn. 2020, 55, 2849–2866. [Google Scholar] [CrossRef]
- Vautard, R.; Kadygrov, N.; Iles, C.; Boberg, F.; Buonomo, E.; Bülow, K.; Coppola, E.; Corre, L.; Meijgaard, E.; Nogherotto, R. Evaluation of the large EURO-CORDEX regional climate model ensemble. J. Geophys. Res. Atmos. 2020. [Google Scholar] [CrossRef]
- Ceglar, A.; Croitoru, A.-E.; Cuxart, J.; Djurdjevic, V.; Güttler, I.; Ivančan-Picek, B.; Jug, D.; Lakatos, M.; Weidinger, T. PannEx: The Pannonian Basin Experiment. Clim. Serv. 2018, 11, 78–85. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Birsan, M.V. ROCADA: A gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Nat Hazards 2015, 78, 1045–1063. [Google Scholar] [CrossRef]
- Klein Tank, A. Changing temperature and precipitation extremes in Europe’s climate. Change 2002, 63, 14–16. [Google Scholar]
- Website of the European Climate Assessment & Dataset project. Available online: https://www.ecad.eu/ (accessed on 16 May 2021).
- Website of CARPATCLIM Project. Available online: http://www.carpatclim-eu.org (accessed on 16 May 2021).
- Sidău, M.R.; Croitoru, A.-E.; Alexandru, D.-E. Comparative Analysis between Daily Extreme Temperature and Precipitation Values Derived from Observations and Gridded Datasets in North-Western Romania. Atmosphere 2021, 12, 361. [Google Scholar] [CrossRef]
- Birsan, M.-V.; Dumitrescu, A. ROCADA: Romanian daily gridded climatic dataset (1961–2013) V1.0. Adm. Natl. Meteorol. Bucur. Rom. PANGAEA 2014. [Google Scholar] [CrossRef]
- Website of EURO-CORDEX—Coordinated Downscaling Experiment—European Domain. Available online: https://euro-cordex.net/index.php.en (accessed on 16 May 2021).
- Bartók, B.; Tobin, I.; Vautard, R.; Vrac, M.; Jin, X.; Levavasseur, G.; Denvil, S.; Dubus, L.; Parey, S.; Michelangeli, P.-A.; et al. Climate projection dataset tailored for the European energy sector. Clim. Serv. 2019, 16, 1001383. [Google Scholar] [CrossRef]
- Suklitsch, M.; Gobiet, A.; Leuprecht, A.; Frei, C. High Resolution Sensitivity Studies with the Regional Climate Model CCLM in the Alpine Region. Meteorol. Z. 2008, 17, 467–476. [Google Scholar] [CrossRef]
- Le Roy, B.; Lemonsu, A.; Schoetter, R. A statistical–dynamical downscaling methodology for the urban heat island applied to the EURO-CORDEX ensemble. Clim. Dyn. 2021, 56, 2487–2508. [Google Scholar] [CrossRef]
Domain | EUR-11 | ||
---|---|---|---|
EURO-CORDEX Simulation | Driving Model | Regional Climate Model | No. |
CNRM-CM5 | CLMcom-CCLM4-8-17_v1 IPSL-WRF381P_v2 KNMI-RACMO22E_v2 SMHI-RCA4_v1 | M1 M2 M3 M4 | |
ICHEC-EC-EARTH | KNMI-RACMO22E_v1 SMHI-RCA4_v1 | M5 M6 | |
IPSL-CM5A-MR | IPSL-WRF381P_v1 | M7 | |
MOHC-HadGEM2-ES | CLMcom-CCLM4-8-17_v1 IPSL-WRF381P_v1 KNMI-RACMO22E_v2 SMHI-RCA4_v1 | M8 M9 M10 M11 | |
MPI-M-MPI-ESM-LR | KNMI-RACMO22E_v1 CLMcom-CCLM4-8-17_v MPI-CSC-REMO2009_v1 SMHI-RCA4_v1a | M12 M13 M14 M15 | |
Experiment | historical | ||
Ensemble * | r1i1p1 | ||
Time Frequency | Daily | ||
Variable ** | tasmax tasmin pr |
Variable/Metric | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual | MVP * | WWVP ** | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tasmax | MAE | 1.46 | 1.85 | 2.42 | 2.22 | 2.34 | 1.77 | 2.17 | 2.24 | 1.57 | 1.27 | 1.25 | 1.28 | 1.29 | 1.40 | 1.44 | |
RMSE | 1.79 | 2.27 | 2.86 | 2.57 | 2.60 | 2.06 | 2.44 | 2.50 | 1.83 | 1.55 | 1.51 | 1.58 | 1.60 | 1.70 | 1.78 | ||
Corr | 0.78 | 0.78 | 0.81 | 0.89 | 0.90 | 0.91 | 0.92 | 0.91 | 0.92 | 0.91 | 0.89 | 0.83 | 0.90 | 0.91 | 0.89 | ||
tasmin | MAE | 1.84 | 2.21 | 2.35 | 2.19 | 1.96 | 1.63 | 1.80 | 1.74 | 1.51 | 1.36 | 1.42 | 1.59 | 1.52 | 1.47 | 1.62 | |
RMSE | 2.07 | 2.48 | 2.61 | 2.39 | 2.13 | 1.84 | 2.06 | 2.02 | 1.77 | 1.57 | 1.60 | 1.80 | 1.73 | 1.70 | 1.83 | ||
Corr | 0.87 | 0.89 | 0.90 | 0.91 | 0.91 | 0.90 | 0.89 | 0.87 | 0.89 | 0.89 | 0.89 | 0.87 | 0.92 | 0.91 | 0.91 | ||
pr | MAE | 25.25 | 22.64 | 24.26 | 15.89 | 21.38 | 23.64 | 24.67 | 22.74 | 11.28 | 15.48 | 21.70 | 22.23 | 144.1 | 155.9 | 88.68 | |
RMSE | 32.28 | 29.56 | 29.52 | 21.48 | 28.33 | 29.92 | 29.16 | 25.51 | 14.00 | 19.69 | 27.75 | 29.26 | 208.3 | 207.0 | 118.8 | ||
Corr | 0.73 | 0.58 | 0.61 | 0.70 | 0.72 | 0.73 | 0.75 | 0.74 | 0.71 | 0.72 | 0.59 | 0.71 | 0.80 | 0.77 | 0.79 | ||
tasmax | 5th percentile | MAE | 2.37 | 2.79 | 2.49 | 2.35 | 1.65 | 1.62 | 1.83 | 1.98 | 1.34 | 1.21 | 1.61 | 1.99 | 1.31 | 1.22 | 1.63 |
RMSE | 2.78 | 3.25 | 2.87 | 2.70 | 1.99 | 1.89 | 2.11 | 2.26 | 1.63 | 1.54 | 1.89 | 2.32 | 1.62 | 1.50 | 1.95 | ||
Corr | 0.77 | 0.75 | 0.80 | 0.88 | 0.89 | 0.92 | 0.93 | 0.93 | 0.92 | 0.87 | 0.83 | 0.78 | 0.91 | 0.92 | 0.89 | ||
95th percentile | MAE | 1.83 | 2.36 | 3.19 | 2.78 | 2.48 | 1.96 | 2.51 | 2.39 | 1.85 | 1.53 | 1.45 | 1.57 | 1.46 | 1.51 | 1.76 | |
RMSE | 2.30 | 2.94 | 3.69 | 3.11 | 2.74 | 2.27 | 2.79 | 2.65 | 2.12 | 1.81 | 1.76 | 1.92 | 1.81 | 1.83 | 2.14 | ||
Corr | 0.78 | 0.83 | 0.83 | 0.85 | 0.89 | 0.90 | 0.90 | 0.89 | 0.89 | 0.88 | 0.85 | 0.83 | 0.89 | 0.90 | 0.88 | ||
tasmin | 5th percentile | MAE | 2.66 | 2.99 | 3.93 | 2.98 | 2.20 | 1.64 | 1.76 | 1.65 | 1.43 | 1.52 | 2.80 | 2.68 | 1.89 | 1.47 | 2.19 |
RMSE | 3.09 | 3.43 | 4.28 | 3.39 | 2.38 | 1.86 | 2.01 | 1.92 | 1.67 | 1.77 | 3.04 | 3.06 | 2.14 | 1.70 | 2.45 | ||
Corr | 0.76 | 0.82 | 0.88 | 0.87 | 0.90 | 0.91 | 0.91 | 0.89 | 0.89 | 0.85 | 0.86 | 0.78 | 0.91 | 0.92 | 0.90 | ||
95th percentile | MAE | 1.40 | 1.58 | 1.87 | 1.88 | 1.74 | 1.69 | 2.04 | 2.19 | 1.78 | 1.53 | 1.36 | 1.42 | 1.42 | 1.55 | 1.40 | |
RMSE | 1.64 | 1.79 | 2.11 | 2.10 | 1.93 | 1.90 | 2.30 | 2.48 | 2.06 | 1.77 | 1.59 | 1.67 | 1.63 | 1.78 | 1.59 | ||
Corr | 0.79 | 0.86 | 0.85 | 0.89 | 0.88 | 0.87 | 0.85 | 0.82 | 0.83 | 0.86 | 0.86 | 0.83 | 0.90 | 0.88 | 0.89 | ||
pr | 95th percentile | MAE | 3.21 | 3.20 | 3.43 | 1.95 | 2.20 | 3.11 | 3.88 | 4.10 | 2.52 | 2.26 | 3.10 | 2.89 | 1.44 | 1.85 | 2.04 |
RMSE | 4.11 | 4.11 | 4.15 | 2.68 | 2.93 | 3.78 | 4.43 | 4.48 | 2.99 | 2.90 | 4.12 | 3.85 | 2.09 | 2.30 | 2.80 | ||
Corr | 0.65 | 0.50 | 0.48 | 0.60 | 0.61 | 0.59 | 0.63 | 0.70 | 0.58 | 0.65 | 0.45 | 0.60 | 0.73 | 0.74 | 0.69 |
Final Rank | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual | MVP * | WWVP ** |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M5 | M1 | M8 | M8 | M1 | M13 | M3 | M3 | M12 | M12 | M12 | M12 | M9 | M12 | M1 |
2 | M1 | M9 | M9 | M1 | M13 | M2 | M12 | M12 | M10 | M2 | M6 | M5 | M1 | M2 | M9 |
3 | M12 | M8 | M1 | M10 | M8 | M10 | M10 | M10 | M3 | M5 | M3 | M1 | M2 | M15 | M10 |
4 | M9 | M2 | M5 | M13 | M12 | M1 | M2 | M15 | M4 | M7 | M2 | M3 | M10 | M9 | M8 |
5 | M8 | M12 | M2 | M15 | M14 | M14 | M4 | M13 | M2 | M11 | M10 | M4 | M12 | M10 | M12 |
6 | M11 | M6 | M11 | M14 | M10 | M12 | M5 | M14 | M11 | M15 | M1 | M7 | M11 | M11 | M11 |
7 | M6 | M5 | M3 | M12 | M3 | M9 | M15 | M4 | M5 | M3 | M9 | M6 | M5 | M7 | M5 |
8 | M2 | M3 | M4 | M9 | M9 | M5 | M7 | M2 | M13 | M10 | M4 | M11 | M8 | M5 | M2 |
9 | M10 | M4 | M12 | M11 | M5 | M3 | M13 | M5 | M1 | M4 | M11 | M8 | M15 | M4 | M3 |
10 | M4 | M11 | M13 | M2 | M15 | M7 | M14 | M9 | M15 | M9 | M15 | M13 | M3 | M13 | M13 |
11 | M3 | M7 | M6 | M5 | M2 | M11 | M6 | M7 | M9 | M6 | M5 | M14 | M13 | M3 | M6 |
12 | M7 | M15 | M7 | M4 | M11 | M15 | M1 | M6 | M7 | M13 | M8 | M2 | M4 | M1 | M15 |
13 | M14 | M13 | M10 | M3 | M6 | M6 | M9 | M11 | M8 | M1 | M7 | M10 | M6 | M8 | M4 |
14 | M13 | M10 | M14 | M6 | M4 | M4 | M11 | M1 | M6 | M14 | M13 | M9 | M14 | M14 | M14 |
15 | M15 | M14 | M15 | M7 | M7 | M8 | M8 | M8 | M14 | M8 | M14 | M15 | M7 | M6 | M7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartok, B.; Telcian, A.-S.; Săcărea, C.; Horvath, C.; Croitoru, A.-E.; Stoian, V. Regional Climate Models Validation for Agroclimatology in Romania. Atmosphere 2021, 12, 978. https://doi.org/10.3390/atmos12080978
Bartok B, Telcian A-S, Săcărea C, Horvath C, Croitoru A-E, Stoian V. Regional Climate Models Validation for Agroclimatology in Romania. Atmosphere. 2021; 12(8):978. https://doi.org/10.3390/atmos12080978
Chicago/Turabian StyleBartok, Blanka, Adrian-Sorin Telcian, Christian Săcărea, Csaba Horvath, Adina-Eliza Croitoru, and Vlad Stoian. 2021. "Regional Climate Models Validation for Agroclimatology in Romania" Atmosphere 12, no. 8: 978. https://doi.org/10.3390/atmos12080978
APA StyleBartok, B., Telcian, A. -S., Săcărea, C., Horvath, C., Croitoru, A. -E., & Stoian, V. (2021). Regional Climate Models Validation for Agroclimatology in Romania. Atmosphere, 12(8), 978. https://doi.org/10.3390/atmos12080978