Assimilation of Leaf Area Index and Soil Water Index from Satellite Observations in a Land Surface Model in Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. SURFEX Model and ISBA-A-gs Scheme
2.2. Data
2.2.1. Atmospheric Forcing Data
2.2.2. GEOV1 Leaf Area Index
2.2.3. ASCAT Soil Water Index
2.2.4. FLUXNET Site, Hegyhátsál
2.3. Data Assimilation
2.4. Experimental Design
3. Results and Discussion
3.1. Examination of Jacobians
3.2. Validation
3.2.1. Seasonal Cycle of LAI, WG2, GPP and LE
3.2.2. Inter-Annual Variability of LAI and WG2
3.2.3. Verification of LAI and SWI
4. Conclusions
- The results of the assimilation depend on the quality of the data to be assimilated, although the assimilation efficiently corrected LAI high RMSE and BIAS values remained. By applying a finer resolution and assimilating more advanced products of LAI (provided by Sentinel-3/OLCI and PROBA-V) and SWI (provided by Sentinel-1 C-SAR and Metop ASCAT), more precise results can be obtained [47,48]. New types of satellite information can be included in the assimilation system, such as FAPAR, surface albedo, or VOD (Vertical Optical Depth) in the future.
- In this study, the three layers ISBA-A-gs force restore model were used. This means that a single, thick root-zone layer represents soil hydrology, causing a slow response to dry or wet conditions. The propagation of surface soil moisture in the deeper layers may be affected by the lack of vertical resolution of the model. Increasing the number of soil layers allows a more accurate representation of the vertical distribution of soil moisture and the vegetation response to the water stress [1,18,19]. Therefore, the multi-layer version of soil model (diffusion version, ISBA-DIF) is expected to improve the system.
- It is planned that the operational non-hydrostatic AROME NWP forecasts will be corrected by using updated LAI instead of the climatic values. The updated LAI will be provided by daily assimilation of satellite LAI (Sentinel-3). Thus, LDAS should be extended to an AROME Lambert grid with finer 2.5 km resolution.
- The main advantage of LDAS is that it provides a consistent state (analysis) of vegetation and soil variables (moisture and temperature) for a given location and time. This analysis can be used as a starting point for the prediction component of the system, thus implementing a Land Monitoring and Forecasting System. The forecast length depends on the applied atmospheric forcings—the soil and vegetation forecasts can range even up to six months with forcings from ECMWF seasonal predictions. Consequently, the proposed Earth Observation-based information service is not only providing a picture of the current state of soil and vegetation, but is also able to predict the evolution of the vegetation even in seasonal time scale. This capability would make the system attractive for users and stakeholders in the agricultural sector.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohr, K.I.; Famiglietti, J.S.; Boone, A.; Starks, P.J. Modeling Soil Moisture and Surface Flux Variability with an Untuned Land Surface Scheme: A Case Study from the Southern Great Plains 1997 Hydrology Experiment. J. Hydrometeorol. 2000, 1, 154–169. [Google Scholar] [CrossRef] [Green Version]
- Viterbo, P. The Representation of Surface Processes in General Circulation Models. Ph.D. Thesis, University of Lisbon, Lisbon, Portuga, 1996; 201p. [Google Scholar]
- Mahfouf, J.F.; Viterbo, P.; Douville, H.; Beljaars, A.; Saarinen, S. A Revised Land-Surface Analysis Scheme in the Integrated Forecasting System. ECMWF Newsl. 2000, 88, 8–13. [Google Scholar]
- Drusch, M.; Scipal, K.; de Rosnay, P.; Balsamo, G.; Andersson, E.; Bougeault, P.; Viterbo, P. Towards a Kalman Filter Based Soil Moisture Analysis System for the Operational ECMWF Integrated Forecast System. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Balsamo, G.; Mahfouf, J.F.; Bélair, S.; Deblonde, G. A Land Data Assimilation System for Soil Moisture and Temperature: An Information Content Study. J. Hydrometeorol. 2007, 8, 1225–1242. [Google Scholar] [CrossRef]
- Reichle, R.H.; Walker, J.P.; Koster, R.D.; Houser, P.R. Extended Versus Ensemble Kalman Filtering for Land Data Assimilation. J. Hydrometeorol. 2002, 3, 728–740. [Google Scholar] [CrossRef]
- Barbu, A.L.; Calvet, J.-C.; Mahfouf, J.-F.; Albergel, C.; Lafont, S. Assimilation of Soil Wetness Index and Leaf Area Index Into the Isba-A-Gs Land Surface Model: Grassland Case Study. Biogeosciences 2011, 8, 1971–1986. [Google Scholar] [CrossRef] [Green Version]
- Barbu, A.L.; Calvet, J.-C.; Mahfouf, J.-F.; Lafont, S. Integrating ASCAT Surface Soil Moisture and GEOV1 Leaf Area Index into the SURFEX Modelling Platform: A Land Data Assimilation Application over France. Hydrol. Earth Syst. Sci. 2014, 18, 173–192. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; Munier, S.; Leroux, D.J.; Dewaele, H.; Fairbairn, D.; Barbu, A.L.; Gelati, E.; Dorigo, W.; Faroux, S.; Meurey, C.; et al. Sequential Assimilation of Satellite-Derived Vegetation and Soil Moisture Products Using SURFEX_v8.0: LDAS-Monde Assessment over the Euro-Mediterranean Area. Geosci. Model Dev. 2017, 10, 3889–3912. [Google Scholar] [CrossRef] [Green Version]
- Parrens, M.; Mahfouf, J.-F.; Barbu, A.; Calvet, J.-C. Assimilation of Surface Soil Moisture into a Multilayer Soil Model: Design and Evaluation at Local Scale. Hydrol. Earth Syst. Sci. 2014, 18, 673–689. [Google Scholar] [CrossRef] [Green Version]
- Draper, C.S.; Mahfouf, J.-F.; Walker, J.P. An EKF Assimilation of AMSR-E Soil Moisture into the ISBA Land Surface Scheme. J. Geophys. Res. 2009, 114, D20104. [Google Scholar] [CrossRef] [Green Version]
- Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W. Assimilation of ASCAT Near-Surface Soil Moisture into the SIM Hydrological Model over France. Hydrol. Earth Syst. Sci. 2011, 15, 3829–3841. [Google Scholar] [CrossRef] [Green Version]
- Rüdiger, C.; Albergel, C.; Mahfouf, J.-F.; Calvet, J.-C.; Walker, J.P. Evaluation of the Observation Operator Jacobian for Leaf Area Index Data Assimilation with an Extended Kalman Filter. J. Geophys. Res. 2010, 115, D09111. [Google Scholar] [CrossRef]
- Mahfouf, J.-F. Assimilation of Satellite-Derived Soil Moisture from ASCAT in a Limited-Area NWP Model. Q. J. Roy. Meteorol. Soc. 2010, 136, 784–798. [Google Scholar] [CrossRef]
- de Rosnay, P.; Drusch, M.; Vasiljevic, D.; Balsamo, G.; Albergel, C.; Isaksen, L. A Simplified Extended Kalman Filter for the Global Operational Soil Moisture Analysis at ECMWF. Q. J. R. Meteorol. Soc. 2013, 139, 1199–1213. [Google Scholar] [CrossRef]
- de Rosnay, P.; Balsamo, G.; Albergel, C.; Munoz-Sabater, J.; Isaken, L. Initialisation of Land Surface Variables for Numerical Weather Prediction. Surv. Geophys. 2014, 35, 607–621. [Google Scholar] [CrossRef]
- Bousetta, S.; Balsamo, G.; Dutra, E.; Beljaars, A.; Albergel, C. Assimilation of Surface Albedo and Vegetation States from Satellite Observations and Their Impact on Numerical Weather Prediction. Remote Sens. Environ. 2015, 163, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; Munier, S.; Bocher, A.; Bonan, B.; Zheng, Y.; Draper, C.; Leroux, D.J.; Calvet, J.-C. LDAS-Monde Sequential Assimilation of Satellite Derived Observations Applied to the Contiguous US: An ERA-5 Driven Reanalysis of the Land Surface Variables. Remote Sens. 2018, 10, 1627. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; Dutra, E.; Munier, S.; Calvet, J.-C.; Munoz-Sabater, J.; de Rosnay, P.; Balsamo, G. ERA-5 and ERA-Interim Driven ISBA Land Surface Model Simulations: Which one performs better? Hydrol. Earth Syst. Sci. 2018, 22, 3515–3532. [Google Scholar] [CrossRef] [Green Version]
- Balsamo, G.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Beljaars, A.; Bidlot, J.; Bousserez, N.; Boussetta, S.; Brown, A.; Buizza, R.; et al. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sens. 2018, 10, 2038. [Google Scholar] [CrossRef] [Green Version]
- Le Moigne, P.; Boone, A.; Calvet, J.-C.; Decharme, B.; Faroux, S.; Gibelin, A.-L.; Lebeaupin, C.; Mahfouf, J.-F.; Martin, E.; Masson, V.; et al. SURFEX Scientific Documentation; Groupe de Météorologie Àmoyenne Échelle, Note de Centre: Meteo-France, Toulouse, 2012; Volume 87, p. 237. [Google Scholar]
- Albergel, C.; Zheng, Y.; Bonan, B.; Dutra, E.; Rodríguez-Fernández, N.; Munier, S.; Draper, C.; de Rosnay, P.; Muñoz-Sabater, J.; Balsamo, G.; et al. Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces. Hydrol. Earth Syst. Sci. 2020, 24, 4291–4316. [Google Scholar] [CrossRef]
- Faroux, S.; Kaptue Tchuente, A.T.; Roujean, J.-L.; Masson, V.; Martin, E.; Le Moigne, P. ECOCLIMAP-II/Europe: A Twofold Database of Ecosystems and Surface Parameters at 1 km Resolution Based on Satellite Information for Use in Land Surface, Meteorological and Climate Models. Geosci. Model. Dev. 2013, 6, 563–582. [Google Scholar] [CrossRef] [Green Version]
- Noilhan, J.; Planton, S. A Simple Parameterization of Land Surface Processes for Meteorological Models. Mon. Weather. Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Noilhan, J.; Mahfouf, J.-F. The ISBA Land Surface Parameterisation Scheme. Glob. Planet. Chang. 1996, 13, 145–149. [Google Scholar] [CrossRef]
- Calvet, J.-C.; Noilhan, J.; Roujean, J.-L.; Bessemoulin, P.; Cabelguenne, M.; Olioso, A.; Wigneron, J.-P. An Interactive Vegetation SVAT Model Tested Against Data from Six Contrasting Sites. Agric. For. Meteorol. 1998, 92, 73–95. [Google Scholar] [CrossRef]
- Gibelin, A.-L.; Calvet, J.-C.; Roujean, J.-L.; Jarlan, L.; Los, S.O. Ability of the Land Surface Model ISBA-A-Gs to Simulate Leaf Area Index at the Global Scale: Comparison with Satellites Products. J. Geophys. Res. 2006, 111, D18102. [Google Scholar] [CrossRef]
- Calvet, J.-C.; Lafont, S.; Cloppet, E.; Souverain, F.; Badeau, V.; Le Bas, C. Use of Agricultural Statistics to Verify the Interannual Variability in Land Surface Models: A Case Study over France with ISBA-A-Gs. Geosci. Model. Dev. 2012, 5, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Canal, N.; Calvet, J.-C.; Decharme, B.; Carrer, D.; SLafont, S.; Pigeon, G. Evaluation of Root Water Uptake in the ISBA-A-Gs Land Surface Model Using Agricultural Yield Statistics over France. Hydrol. Earth Syst. Sci. 2014, 18, 4979–4999. [Google Scholar] [CrossRef] [Green Version]
- Horányi, A.; Kertész, S.; Kullmann, L.; Radnóti, G. The ARPEGE/ALADIN Mesoscale Numerical Modelling System and its Application at the Hungarian Meteorological Service. Időjárás 2006, 110, 203–227. [Google Scholar]
- Horányi, A.; Ihász, I.; Radnóti, G. ARPEGE/ALADIN: A Numerical Weather Prediction Model for Central-Europe with the Participation of the Hungarian Meteorological Service. Időjárás 1996, 100, 277–301. [Google Scholar]
- Mile, M.; Bölöni, G.; Randriamampianina, R.; Steib, R.; Kucukkaraca, E. Overview of Mesoscale Data Assimilation Developments at the Hungarian Meteorological Service. Időjárás 2015, 119, 215–239. [Google Scholar]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholczyk, P.; Smets, B. GEOV1: LAI and FAPAR Essential Climate Variables and FCover Global Times Series Capitalizing over Existing Products. Part1: Principles of Development and Production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR Essential Climate Variables and FCover Global Time Series Capitalizing over Existing Products. Part 2: Validation and Inter-Comparison with Reference Products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J.-C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B.; Martin, E. From Near-Surface to Root-Zone Soil Moisture Using an Exponential Filter: An Assessment of the Method Based on In-Situ Observations and Model Simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; Rüdiger, C.; Carrer, D.; Calvet, J.-C.; Fritz, N.; Naeimi, V.; Bartalis, Z.; Hasenauer, S. An Evaluation of ASCAT Surface Soil Moisture Products with In-Situ Observations in Southwestern France. Hydrol. Earth Syst. Sci. 2009, 13, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; Koster, R.D. Bias Reduction in Short Records of Satellite Soil Moisture. Geophys. Res. Lett. 2004, 31, L19501. [Google Scholar] [CrossRef] [Green Version]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 Dataset and the ONEFlux Processing Pipeline for Eddy Covariance Data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef]
- FLUXNET Datasets List. Available online: https://fluxnet.ornl.gov/site/505 (accessed on 21 July 2021).
- Nagy, Z.; Pintér, K.; Czóbel, S.Z.; Balogh, J.; Horváth, L.; Fóti, S.Z.; Barcza, Z.; Weidinger, T.; Csintalan, Z.S.; Dinh, N.Q.; et al. The Carbon Budget of Semi-Arid Grassland in a Wet and a Dry Year in Hungary. Agric. Ecosyst. Environ. 2007, 121, 21–29. [Google Scholar] [CrossRef]
- Barcza, Z.; Haszpra, L.; Kondo, H.; Saigusa, N.; Yamamoto, S.; Bartholy, J. Carbon Exchange of Grass in Hungary. Tellus B 2003, 55, 187–196. [Google Scholar] [CrossRef]
- Haszpra, L.; Hidy, D.; Taligás, T.; Barcza, Z. First Results of Tall Tower Based Nitrous Oxide Flux Monitoring over an Agricultural Region in Central Europe. Atmos. Environ. 2018, 176, 240–251. [Google Scholar] [CrossRef]
- Scipal, K.; Drusch, M.; Wagner, W. Assimilation of a ERS Scatterometer Derived Soil Moisture Index in the ECMWF Numerical Weather Prediction System. Adv. Water Resour. 2008, 31, 1101–1112. [Google Scholar] [CrossRef]
- Bouttier, F.; Courtier, P. Data Assimilation Concepts and Methods. In Meteorological Training Course Lecture Series; ECMWF: Reading, UK, 1999; 75p. [Google Scholar]
- Fairbairn, D.; Barbu, A.L.; Napoly, A.; Albergel, C.; Mahfouf, J.-F.; Calvet, J.-C. The Effect of Satellite-Derived Surface Soil Moisture and Leaf Area Index Land Data Assimilation on Streamflow Simulations over France. Hydrol. Earth Syst. Sci. 2017, 21, 2015–2033. [Google Scholar] [CrossRef] [Green Version]
- Szczypta, C.; Calvet, J.-C.; Maignan, F.; Dorigo, W.; Baret, F.; Ciais, P. Suitability of Modelled and Remotely Sensed Essential Climate Variables for Monitoring Euro-Mediterranean Droughts. Geosci. Model. Dev. 2014, 7, 931–946. [Google Scholar] [CrossRef] [Green Version]
- Fuster, B.; Sánchez-Zapero, J.; Camacho, F.; García-Santos, V.; Verger, A.; Lacaze, R.; Weiss, M.; Baret, F.; Smets, B. Quality Assessment of PROBA-V LAI, fAPAR and fCOVER Collection 300 m Products of Copernicus Global Land Service. Remote Sens. 2020, 12, 1017. [Google Scholar] [CrossRef] [Green Version]
- Bauer-Marschallinger, B.; Paulik, C.; Hochstöger, S.; Mistelbauer, T.; Modanesi, S.; Ciabatta, L.; Massari, C.; Brocca, L.; Wagner, W. Soil Moisture from Fusion of Scatterometer and SAR: Closing the Scale Gap with Temporal Filtering. Remote Sens. 2018, 10, 1030. [Google Scholar] [CrossRef] [Green Version]
Name of Experiment | Model | Domain | Atmospheric Forcing | Data Assimilation Method | Assim. Observations | Control Variables | Time Period | Model Outputs |
---|---|---|---|---|---|---|---|---|
Open-loop | SURFEX, ISBA-A-gs | Carpathian Basin | ALADIN, LandSAF | - | - | - | 2008–2015 (2007 spin up) | LAI, WG2, GPP, NEE, LE |
LDAS | SURFEX, ISBA-A-gs | Carpathian Basin | ALADIN, LandSAF | EKF | ASCAT SWI SPOT/VGT and PROBA-V LAI | WG1, WG2 and LAI | 2008–2015 (2007 spin up) | LAI, WG2, GPP, NEE, LE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, H.; Szintai, B. Assimilation of Leaf Area Index and Soil Water Index from Satellite Observations in a Land Surface Model in Hungary. Atmosphere 2021, 12, 944. https://doi.org/10.3390/atmos12080944
Tóth H, Szintai B. Assimilation of Leaf Area Index and Soil Water Index from Satellite Observations in a Land Surface Model in Hungary. Atmosphere. 2021; 12(8):944. https://doi.org/10.3390/atmos12080944
Chicago/Turabian StyleTóth, Helga, and Balázs Szintai. 2021. "Assimilation of Leaf Area Index and Soil Water Index from Satellite Observations in a Land Surface Model in Hungary" Atmosphere 12, no. 8: 944. https://doi.org/10.3390/atmos12080944
APA StyleTóth, H., & Szintai, B. (2021). Assimilation of Leaf Area Index and Soil Water Index from Satellite Observations in a Land Surface Model in Hungary. Atmosphere, 12(8), 944. https://doi.org/10.3390/atmos12080944