Reconciling Reduced Red Meat Consumption in Canada with Regenerative Grazing: Implications for GHG Emissions, Protein Supply and Land Use
Abstract
:1. Introduction
1.1. Combatting Climate Change through Reduced Methane Emissions
1.2. Combatting Climate Change through Regenerative Agriculture
1.3. Potential Limits of Regenerative Agriculture
2. Materials and Methods
2.1. The GHG-Protein Indicator
2.1.1. Canadian Applications of the GHG-Protein Indicator
2.1.2. National Protein Intake and Red Meat
2.1.3. Livestock Production Scenarios Based on Maintaining NPI
2.1.4. GHG Emission Intensity Indicators
2.2. Validation of Area Estimates for GF Beef
2.2.1. FCR Based on Slaughter Cattle
2.2.2. FCR Based on the Whole Herd
2.3. Assessing Area Impacts on Regenerative Grazing
2.4. Soil Organic Carbon as a GHG Emission Offset
3. Results
3.1. FCR Estimates for Validating Areas for GF Beef
3.2. GHG-Protein Ratios for GF Beef
3.3. Harvestable Forage Area Changes among Scenarios
3.4. The Role of Seeded Pasture
3.5. Soil Organic Carbon under Harvestable Forage
4. Discussion
4.1. FCR as a Performance Measure for Harvestable Forage Areas
4.2. Reliability of the Area and GHG Emission Estimates for GF Beef
4.3. Impact of Harvestable Forage for GF Beef on Land Use
4.4. Implications of the Protein Boundary Condition for the PS Analysis
4.5. Impact of Soil Organic Carbon
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Climate Change and Food Security: A Framework Document. 2008. Available online: www.fao.org/3/k2595e/k2595e00.htm. (accessed on 15 April 2021).
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussell, A.; Bilyea, T.; Zafiriou, M. Efficient Agriculture as a Greenhouse Gas Solutions Provider. The Canadian Agri-Food Policy Institute. 2019. Available online: https://capi-icpa.ca/explore/resources/efficient-agriculture-as-a-greenhouse-gas-solutions-provider/. (accessed on 5 April 2021).
- Bakkegaard, R.K.; Møller, L.R.; Bakhtiari, F. Joint Adaptation and Mitigation in Agriculture and Forestry; Working Paper; UNEP DTU: Copenhagen, Denmark, 2016; p. 36. [Google Scholar] [CrossRef]
- Almiron, N. Meat taboo: Climate Change and the EU Meat Lobby. In Meatsplaining, The Animal Industry and the Rhetoric of Denial; Hannan, J., Ed.; Sydney University Press: Sydney, Australia, 2020; ISBN 9781743327104. [Google Scholar]
- Cui, Y.; Khan, S.U.; Deng, Y.; Zhao, M. Regional difference decomposition and its spatiotemporal dynamic evolution of Chinese agricultural carbon emission: Considering carbon sink effect. Environ. Sci. Pollut. Res. 2021, 1–20. [Google Scholar] [CrossRef]
- Teague, W.R.; Apfelbaum, S.; Lal, R.; Kreuter, U.P.; Rowntree, J.; Davies, C.A.; Conser, R.; Rasmussen, M.; Hatfield, J.; Wang, T.; et al. The role of ruminants in reducing agriculture’s carbon footprint in North America. J. Soil Water Conserv. 2016, 71, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Yohannes, J. A Review on Relationship between Climate Change and Agriculture. J. Earth Sci. Clim. Chang. 2016, 7, 1–8. [Google Scholar] [CrossRef]
- Carrington, D. Giving Up Beef Will Reduce Carbon Footprint More Than Cars. The Guardian. 2014. Available online: www.theguardian.com/environment/2014/jul/21/giving-up-beef-reduce-carbon-footprint-more-than-cars (accessed on 1 March 2021).
- Majot, J.; Kuyek, D. Big Meat and Big Dairy’s Climate Emissions put Exxon Mobil to Shame. The Guardian. 2017. Available online: www.theguardian.com/commentisfree/2017/nov/07/big-meat-big-dairy-carbon-emmissions-exxon-mobil. (accessed on 1 March 2021).
- Project Drawdown. Farming Our Way Out of the Climate Crisis. 2017. Available online: https://globalecoguy.org/farming-our-way-out-of-the-climate-crisis-c235e1aaff8d (accessed on 4 March 2021).
- Delgado, J.A.; Groffman, P.M.; Nearing, M.A.; Goddard, T.; Reicosky, D.; Lal, R.; Kitchen, N.R.; Rice, C.W.; Towery, D.; Salon, P. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 118A–129A. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P.; et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Chang. Biol. 2020, 3, 1532–1575. [Google Scholar] [CrossRef] [Green Version]
- Hood, M. G20 Carbon ‘Food-Print’ Highest in Meat-Loving Nations: Report. 2020. Available online: https://phys.org/news/2020-07-g20-carbon-food-print-highest-meat-loving.html? (accessed on 13 February 2021).
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- O’Mara, F.P.; Beauchemin, K.A.; Kreuzer, M.; McAllister, T.A. Reduction of Greenhouse Gas Emissions of Ruminants Through Nutritional Strategies. In Proceedings of the International Conference Livestock and Global Climate Change, Hammamet, Tunisia, 17–20 May 2008; Rowlinson, P., Steele, M., Nefzaoui, A., Eds.; British Society of Animal Science: Midlothian, UK, 2008. Available online: www.bsas.org.uk (accessed on 10 July 2021).
- Morgan, C.B. I eat, therefore I’m evil: The dilemmas of applying climate justice to food choice. In Local Action for Global Climate Justice. The Great Lakes Watershed; Perkins, P.E., Ed.; Routledge: New York, NY, USA, 2020; pp. 131–144. ISBN 978-0-429-32070-5. [Google Scholar]
- Dyer, J.A.; Vergé, X.P.C.; Desjardins, R.L.; Worth, D.E. The protein-based GHG emission intensity for livestock products in Canada. J. Sustain. Agric. 2010, 34, 618–629. [Google Scholar] [CrossRef]
- Cusack, D.F.; Kazanski, C.E.; Hedgpeth, A.; Chow, K.; Cordeiro, A.L.; Karpman, J.; Ryals, R. Reducing climate impacts of beef production: A synthesis of life cycle assessments across management systems and global regions. Glob. Chang. Biol. 2021, 27, 1721–1736. [Google Scholar] [CrossRef]
- Ripple, W.J.; Smith, P.; Haberl, H.; Montzka, S.A.; McAlpine, C.; Boucher, D.H. Ruminants, climate change and climate policy. Nat. Clim. Chang. 2014, 4, 2–5. [Google Scholar] [CrossRef]
- Truth or Drought. Myth: Livestock Grazing, When Done Right, is Beneficial and Necessary. 2020. Available online: www.truthordrought.com/holistic-grazing-myths (accessed on 29 March 2021).
- Dyer, J.A.; Vergé, X.P.C.; Desjardins, R.L.; McConkey, B.G. Implications of biofuel feedstock crops for the livestock feed industry in Canada. In Environmental Impact of Biofuels; Dos Santos, B.M.A., Ed.; InTech Open Access Publisher: Rijeka, Croatia, 2011; pp. 161–178. ISBN 978-953-307-479-5. [Google Scholar]
- Dyer, J.A.; Worth, D.E.; Vergé, X.P.C.; Desjardins, R.L. Impact of recommended red meat consumption in Canada on the carbon footprint of Canadian livestock production. J. Clean. Prod. 2020, 266, 121785. [Google Scholar] [CrossRef]
- Dyer, J.A.; Desjardins, R.L.; Worth, D.E.; Vergé, X.P.C. Potential Role for Consumers to Reduce Canadian Agricultural GHG Emissions by Diversifying Animal Protein Sources. Sustainability 2020, 12, 5466. [Google Scholar] [CrossRef]
- Mandal, A. Red and Processed Meats—How Much to Include in Diets? Medical Research News. 2011. Available online: www.news-medical.net/news/20110222/Red-and-processed-meats-How-much-to-include-in-diet.aspx (accessed on 15 March 2021).
- Dyer, J.A.; Vergé, X.P.C.; Kulshreshtha, S.N.; Desjardins, R.L.; McConkey, B.G. Areas and greenhouse gas emissions from feed crops not used in Canadian livestock production in 2001. J. Sustain. Agric. 2011, 35, 780–803. [Google Scholar] [CrossRef]
- Dyer, J.; Desjardins, R. Protein as a Unifying metric for carbon footprinting livestock. Res. Outreach Publ. Earth Environ. 2020, 118, 142–145. Available online: https://researchoutreach.org/wp-content/uploads/2020/10/James-Dyer-and-Raymond-Desjardins.pdf (accessed on 1 April 2021).
- Veeramani, A. Carbon Footprinting Dietary Choices in Ontario: A Life Cycle Approach to Assessing Sustainable, Healthy & Socially Acceptable Diets. Master’s Thesis, Waterloo University, Waterloo, ON, Canada, 2015; p. 173. [Google Scholar]
- Patle, G.T.; Badyopadhyay, K.K.; Kumar, M. An overview of organic agriculture: A potential strategy for climate change mitigation. J. Appl. Nat. Sci. 2014, 6, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Boehm, M.; Junkins, B.; Desjardins, R.L.; Kulshreshtha, S.; Lindwall, W. Sink potential of Canadian agricultural soils. Clim. Change 2004, 65, 297–314. [Google Scholar] [CrossRef]
- Liang, C.; MacDonald, J.D.; Desjardins, R.L.; McConkey, B.G.; Beauchemin, K.A.; Flemming, C.; Cerkowniak, D.; Blondel, A. Beef cattle production impacts soil carbon storage. Sci. Total Environ. 2020, 718, 137273. [Google Scholar] [CrossRef]
- EIT Food. Can Regenerative Agriculture Replace Conventional Farming? European Institute of Innovation & Technology (EIT). 2020. Available online: www.eitfood.eu/blog/post/can-regenerative-agriculture-replace-conventional-farming (accessed on 4 March 2021).
- Elliot, R. A Close Look at Regenerative Agriculture in Ontario. Ontario Culinary. 2020. Available online: https://ontarioculinary.com/a-close-look-at-regenerative-agriculture-in-ontario/ (accessed on 13 February 2021).
- Hoeffner, K.; Beylich, A.; Chabbi, A.; Cluzeau, D.; Dascalu, D.; Graefe, U.; Guzmán, G.; Hallaire, V.; Hanisch, J.; Landa, B.B.; et al. Legacy effects of temporary grassland in annual crop rotation on soil ecosystem services. Sci. Total. Environ. 2021, 780, 146140. [Google Scholar] [CrossRef]
- Liebig, M.A.; Gross, J.R.; Kronberg, S.L.; Phillips, R.L. Grazing Management Contributions to Net Global Warming Potential: A Long-term Evaluation in the Northern Great Plains. J. Environ. Qual. 2010, 39, 799–809. [Google Scholar] [CrossRef]
- Kenyon, S. What is Regenerative Grazing? From the Ground Up. Canadian Cattlemen. 2020. Available online: https://www.canadiancattlemen.ca/from-the-ground-up/what-is-regenerative-grazing/ (accessed on 13 February 2021).
- NSAC. Agriculture and Climate Change: Policy Imperatives and Opportunities to Help Producers Meet the Challenge; National Sustainable Agriculture Coalition: Washington, DC, USA, 2019; Available online: https://sustainableagriculture.net (accessed on 10 July 2021).
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef]
- Matsumoto, N. Is Grass-Fed Beef Really Better For The Planet? Here’s The Science. NPR. 2019. Available online: www.npr.org/sections/thesalt/2019/08/13/746576239/is-grass-fed-beef-really-better-for-the-planet-heres-the-science (accessed on 11 February 2021).
- Ma, Z.; Shrestha, B.M.; Bork, E.W.; Chang, S.X.; Carlyle, C.N.; Döbert, T.F.; Silva Sobrinho, L.; Boyce, M.S. Soil greenhouse gas emissions and grazing management in northern temperate grasslandsSci. Total Environ.2021; Volume 796, p. 148975. [CrossRef]
- Vergé, X.P.; Dyer, J.A.; Desjardins, R.L.; Worth, D.E. Greenhouse gas emissions from the Canadian beef industry. Agric. Syst. 2008, 98, 126–134. [Google Scholar] [CrossRef]
- Desjardins, R.L.; Worth, D.E.; Vergé, X.P.C.; Maxime, D.; Dyer, J.; Cerkowniak, D. Carbon Footprint of Beef Cattle. Sustainability 2012, 4, 3279–3301. [Google Scholar] [CrossRef] [Green Version]
- Vergé, X.P.; Dyer, J.A.; Worth, D.E.; Smith, W.N.; Desjardins, R.L.; McConkey, B.G. A Greenhouse Gas and Soil Carbon Model for Estimating the Carbon Footprint of Livestock Production in Canada. Animals 2012, 2, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.S.; Ghosh, N. Impact of Climate Change on Livestock Production: A Review. J. Anim. Res. 2014, 4, 223. [Google Scholar] [CrossRef]
- Mangino, J.; Peterson, K.; Jacobs, H. Development of an Emissions Model to Estimate Methane from Enteric Fermentation in Cattle. U.S. Environmental Protection Agency. 2003. Available online: https://www.researchgate.net/publication/228465202 (accessed on 16 March 2021).
- Sejian, V.; Samal, L.; Haque, N.; Bagath, M.; Hyder, I.; Maurya, V.P.; Bhatta, R.; Ravindra, J.P.; Prasad, C.S.; Lal, R. Overview on adaptation, mitigation and amelioration strategies to improve livestock production under the changing climatic scenario. In Climate Change Impact on Livestock: Adaptation and Mitigation; Sejian, V., Gaughan, J., Baumgard, L., Prasad, C., Eds.; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Van Haarlem, R.P.; Desjardins, R.L.; Gao, Z.; Flesch, T.; Li, X. Methane and ammonia emissions from a beef feedlot in western Canada for a twelve-day period in the fall. Can. J. Anim. Sci. 2008, 88, 641–649. [Google Scholar] [CrossRef]
- Hahn, G.L. Housing and Management to Reduce Climactic Impacts on Livestock. Publications from USDA-ARS / UNL Faculty. 1981. Available online: https://digitalcommons.unl.edu/usdaarsfacpub/465 (accessed on 16 March 2021).
- Lyons, R.K.; Machen, R.V. Stocking Rate: The Key Grazing Management Decision. Texas A&M Agrilife Extension Service. 2018. Available online: https://cdn-ext.agnet.tamu.edu/wp-content/uploads/2018/12/EL-5400-stocking-rate-the-key-grazing-management-decision.pdf (accessed on 29 April 2021).
- Sheppard, S.C.; Bittman, S.; Donohoe, G.; Flaten, D.; Wittenberg, K.M.; Small, J.A.; Berthiaume, R.; McAllister, T.A.; Beauchemin, K.A.; McKinnon, J.; et al. Beef cattle husbandry practices across Ecoregions of Canada in 2011. Can. J. Anim. Sci. 2015, 95, 305–321. [Google Scholar] [CrossRef]
- Dyer, J.A.; Verge, X.P.C.; Desjardins, R.L.; Worth, D.E. An assessment of greenhouse gas emissions from co-grazing sheep and beef in Western Canadian rangeland. In Agricultural Management for Climate Change; Silvia, L., Suren, K., McHenry, M., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2015; pp. 13–29. ISBN 978-1-63483-051-5. [Google Scholar]
- Bailey, A.W.; McCartney, D.; Schellenberg, M.P. Management of Canadian Prairie Rangeland. AAFC No 10144. 2010. Available online: http://publications.gc.ca/site/eng/433214/publication.html (accessed on 29 April 2021).
- Stoddart, A.; Smith, A.D.; Box, T.W. Range Management; McGraw-Hill: New York, NY, USA, 1975; ISBN 0070615969-433. Available online: www.abebooks.com/book-search/isbn/0070615969/ (accessed on 29 April 2021).
- United States Department of Agriculture. Natural Resources Conservation Service. Balancing Your Animals with Your Forage. Small Scale Solutions for Your Farm. 2009. Available online: http://offices.sc.egov.usda.gov/locator/app (accessed on 13 February 2021).
- Capper, J.L.; Bauman, D.E. The Role of Productivity in Improving the Environmental Sustainability of Ruminant Production Systems. Annu. Rev. Anim. Biosci. 2013, 1, 469–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunnars, K. Protein Intake How Much Protein Should You Eat per Day? Healthline Newsletter. 2020. Available online: www.healthline.com/nutrition/how-much-protein-per-day (accessed on 15 March 2021).
- Agriculture and Agri-food Canada. Protein Disappearance of Animal Protein Sources in Canada—Per Capital Disappearance. 2020. Available online: www.agr.gc.ca/eng/canadas-agriculture-sectors/animal-industry/poultry-and-egg-market-information/industry-indicators/per-capita-disappearance/ (accessed on 1 April 2021).
- Vergé, X.; Dyer, J.; Desjardins, R.; Worth, D. Greenhouse gas emissions from the Canadian dairy industry in 2001. Agric. Syst. 2007, 94, 683–693. [Google Scholar] [CrossRef]
- Vergé, X.P.C.; Dyer, J.A.; Desjardins, R.L.; Worth, D. Long-term trends in greenhouse gas emissions from the Canadian poultry industry. J. Appl. Poult. Res. 2009, 18, 210–222. [Google Scholar] [CrossRef]
- Vergé, X.; Dyer, J.; Desjardins, R.; Worth, D. Greenhouse gas emissions from the Canadian pork industry. Livest. Sci. 2009, 121, 92–101. [Google Scholar] [CrossRef]
- Dyer, J.A.; Verge, X.P.C.; Desjardins, R.L.; Worth, D.E. A Comparison of the Greenhouse Gas Emissions From the Sheep Industry With Beef Production in Canada. Sustain. Agric. Res. 2014, 3, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Elward, M.; McLaughlin, B.; Alain, B. Livestock Feed Requirements Study 1999–2001; Catalogue No. 23-501-XIE; Statistics Canada: Ottawa, ON, Canada, 2003; p. 84. [Google Scholar]
- De Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- González, A.D.; Frostell, B.; Carlsson-Kanyama, A. Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation. Food Policy 2011, 36, 562–570. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Dyer, J.A.; Vergé, X.P.C.; Desjardins, R.L.; McConkey, B.G. Assessment of the Carbon and Non-Carbon Footprint Interactions of Livestock Production in Eastern and Western Canada. Agroecol. Sustain. Food Syst. 2014, 38, 541–572. [Google Scholar] [CrossRef]
- Dyer, J.A.; Vergé, X.P.C.; Desjardins, R.L.; Worth, D.E. Changes in greenhouse gas emissions from displacing cattle for biodiesel feedstock. In Biofuels—Status and Perspective; Krzysztof, B., Ed.; InTech Open Access Publisher: Rijeka, Croatia, 2015; p. 580. ISBN 978-953-51-2177-0. [Google Scholar] [CrossRef]
- Dyer, J.A.; Vergé, X.P. The Role of Canadian Agriculture in Meeting Increased Global Protein Demand with Low Carbon Emitting Production. Agronomy 2015, 5, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Dyer, J.A.; Vergé, X.P.C.; Desjardins, R.L.; Worth, D.E. District Scale GHG Emission Indicators for Canadian Field Crop and Livestock Production. Agronomy 2018, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Desjardins, R.; Worth, D.E.; Dyer, J.A.; Vergé, X.P.C.; McConkey, B.G. The Carbon Footprints of Agricultural Products in Canada. In Carbon Footprints, Environmental Footprints and Eco-Design of Products and Processes; Mathu, S.S., Ed.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Government of Canada. Canada’s Food Guide—Healthy Eating and the Environment. 2019. Available online: https://food-guide.canada.ca/en/tips-for-healthy-eating/healthy-eating-and-the-environment/ (accessed on 25 March 2021).
- Boadi, D.; Ominsky, K.H.; Fulawka, D.L.; Wittenberg, K.M. Improving Estimates of Methane Emissions Associated with Enteric Fermentation of Cattle in Canada by Adopting an IPCC (Intergovernmental Panel on Climate Change) Tier 2 Methodology; Technical Report; Agriculture and Agri-food Canada: Ottawa, ON, Canada, 2004; p. 133. [Google Scholar]
- Shahbandeh, M. Global Feed Conversion Ratio of Selected Meat And Fish. Statista. 25 September 2020. Available online: www.statista.com/statistics/254421/feed-conversion-ratios-worldwide-2010/ (accessed on 29 March 2021).
- Byrne, J. Feed Efficiency in Feedlot Production, OMAFRA. 2018. Available online: www.omafra.gov.on.ca/english/livestock/beef/news/vbn0218a2.htm (accessed on 29 March 2021).
- Gadberry, S.; Beck, P.; Coffey, K. Substituting High Energy Grains and Byproduct Feeds for Hay in Beef Cow Diets. Factsheet FSA3036. University of Arkansas. 2016. Available online: www.uaex.edu/publications/pdf/FSA-3036.PDF (accessed on 6 March 2021).
- Wand, C. Coping with Hay Shortages in Beef Cow Wintering Rations. OMAFRA. ISSN 1198-712X. 2020. Available online: www.ontario.ca/page/coping-hay-shortages-beef-cow-wintering-rations (accessed on 6 March 2021).
- ECCC. National Inventory Report 1990–2017: Greenhouse Gas Sources and Sinks in Canada. Canada’s Submission to the United Nations Framework Convention on Climate Change (Table ES–2); Environment and Climate Change Canada: Quebec, QC, Canada, 2019; Available online: https://www.canada.ca/en/environment-climate-change/services/climate-change/greenhouse-gas-emissions/sources-sinks-executive-summary-2021.html (accessed on 3 May 2021).
- VandenBygaart, A.J.; McConkey, B.G.; Angers, A.D.; Smith, W.; De Gooijer, H.; Bentham, M.; Martin, T. Soil carbon change factors for the Canadian agriculture national greenhouse gas inventory. Can. J. Soil Sci. 2008, 88, 671–680. [Google Scholar] [CrossRef]
- Estabrooke, B. Feedlots vs. Pastures: Two Very Different Ways to Fatten Beef Cattle. The Atlantic (Health). 2011. Available online: www.theatlantic.com/health/archive/2011/12/feedlots-vs-pastures-two-very-different-ways-to-fatten-beef-cattle/250543/ (accessed on 11 February 2021).
- Janzen, H.H.; Angers, D.A.; Boehm, M.; Bolinder, M.; Desjardins, R.L.; Dyer, J.; Ellert, B.H.; Gibb, D.J.; Gregorich, E.G.; Helgason, B.L.; et al. A proposed approach to estimate and reduce net greenhouse gas emissions from whole farms. Can. J. Soil Sci. 2006, 86, 401–418. [Google Scholar] [CrossRef] [Green Version]
- Basarab, J.A.; Okine, E.K.; Baron, V.S.; Marx, T.; Ramsey, P.; Ziegler, K.; Lyle, K. Methane emissions from enteric fermentation in Alberta’s beef cattle population. Can. J. Anim. Sci. 2005, 85, 501–512. [Google Scholar] [CrossRef]
- Chen, Z.; An, C.; Fang, H.; Zhang, Y.; Zhou, Z.; Zhou, Y.; Zhao, S. Assessment of regional greenhouse gas emission from beef cattle production: A case study of Saskatchewan in Canada. J. Environ. Manag. 2020, 264, 110443. [Google Scholar] [CrossRef] [PubMed]
Stages Referenced to Previous Work | Stages Completed in This Analysis | |||||||
---|---|---|---|---|---|---|---|---|
# | Stage | Function | Variables | |||||
{1} | The GHG emissions (from literature) | |||||||
Protein | beef | |||||||
pork | ||||||||
broilers | ||||||||
{2} | Protein intake and Red Meat (from literature) | |||||||
RM | beef | |||||||
pork | ||||||||
NPI | RM + broilers | # | Stage | Function | Variables | |||
{3} | Boundary conditions (Figure 1) | {6} | GF area validation (Table 3; Figure 3) | |||||
Upper | RM | FCR | LW{beef} | |||||
Lower | NPI | feed for beef | ||||||
{4} | Scenario analysis (Figure 2) | {7} | Compare PS areas (Figure 4) | |||||
Beef diet | BAU:GF | PS areas | All feed grains | |||||
BW ratios | beef:pork | Harvestable forage | ||||||
{5} | GHG emission intensities (Table 2) | {8} | Soil Organic Carbon (∆SOC) (Figure 5) | |||||
CO2e per: | Protein | Rank PS by: | GHG - ∆SOC | |||||
LW | Areas | |||||||
GHG | Greenhouse gas | PS | Production scenario(s) | |||||
NPI | National protein intake | FCR | Feed conversion ratio | |||||
RM | Red meat | BAU | Business as usual | |||||
BW | Boneless weight | GF | Grass fed | |||||
LW | Live weight for beef | ∆SOC | Soil organic carbon change |
Beef | Non-Ruminants | |||
---|---|---|---|---|
BAU 2 | GF 3 | Pork | Broiler | |
tCO2e/t Protein | 125.9 | 152.0 | 22.0 | 14.3 |
tCO2e/t LW | 10.5 | 12.6 | 2.2 | 1.4 |
Grain | Forage | Beef Cattle Feed | Beef | FCR | GHG | ||
---|---|---|---|---|---|---|---|
Scenarios 1 | Mha | Mha | Mt(grain) | Mt(hay) | Mt(LW) | Ave 2 | MtCO2e |
C | 1.03 | 3.14 | 2.9 | 12.9 | 1.54 | 4.7 | 16.1 |
PS1 | 0.76 | 2.32 | 2.2 | 9.5 | 1.14 | 4.7 | 11.9 |
PS2 | 0.41 | 4.36 | 1.2 | 17.9 | 1.14 | 7.3 | 14.3 |
PS3 | 0.20 | 2.18 | 0.6 | 8.9 | 0.57 | 7.3 | 7.2 |
PS4 | 0.38 | 1.16 | 1.1 | 4.7 | 0.57 | 4.7 | 5.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyer, J.A.; Desjardins, R.L. Reconciling Reduced Red Meat Consumption in Canada with Regenerative Grazing: Implications for GHG Emissions, Protein Supply and Land Use. Atmosphere 2021, 12, 945. https://doi.org/10.3390/atmos12080945
Dyer JA, Desjardins RL. Reconciling Reduced Red Meat Consumption in Canada with Regenerative Grazing: Implications for GHG Emissions, Protein Supply and Land Use. Atmosphere. 2021; 12(8):945. https://doi.org/10.3390/atmos12080945
Chicago/Turabian StyleDyer, James A., and Raymond L. Desjardins. 2021. "Reconciling Reduced Red Meat Consumption in Canada with Regenerative Grazing: Implications for GHG Emissions, Protein Supply and Land Use" Atmosphere 12, no. 8: 945. https://doi.org/10.3390/atmos12080945
APA StyleDyer, J. A., & Desjardins, R. L. (2021). Reconciling Reduced Red Meat Consumption in Canada with Regenerative Grazing: Implications for GHG Emissions, Protein Supply and Land Use. Atmosphere, 12(8), 945. https://doi.org/10.3390/atmos12080945