Nitrous Oxide Emissions from an Alpine Grassland as Affected by Nitrogen Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Experimental Design
2.2. N2O Flux Determination
2.3. Soil and Plant Sampling
2.4. Data Analysis
3. Results
3.1. Environmental Conditions
3.2. Daily N2O Flux Rate and Cumulative Emissions
3.3. Soil Chemical Characteristics
3.4. Plant Biomass under Different N Addition Rates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change-IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Shcherbak, I.; Millar, N.; Robertson, G. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Tian, H.; Pan, S.; Prior, S.A.; Dangal, S. Global N2O emissions from cropland driven by nitrogen addition and envi-ronmental factors: Comparison and uncertainty analysis. Glob. Biogeochem. Cycles 2020, 34, e2020GB006698. [Google Scholar] [CrossRef]
- Du, R.; Lu, D.; Wang, G. Diurnal, seasonal, and inter-annual variations of N2O fluxes from native semi-arid grassland soils of inner Mongolia. Soil Biol. Biochem. 2006, 38, 3474–3482. [Google Scholar] [CrossRef]
- Allard, V.; Soussana, J.-F.; Falcimagne, R.; Berbigier, P.; Bonnefond, J.; Ceschia, E.; D’Hour, P.; Hénault, C.; Laville, P.; Martin, C.; et al. The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agric. Ecosyst. Environ. 2007, 121, 47–58. [Google Scholar] [CrossRef]
- Kang, L.; Han, X.; Zhang, Z.; Sun, O. Grassland ecosystems in China: Review of current knowledge and research advancement. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 997–1008. [Google Scholar] [CrossRef]
- Tian, H.; Yang, J.; Xu, R.; Lu, C.; Canadell, J.G.; Davidson, E.A.; Jackson, R.B.; Arneth, A.; Chang, J.; Ciais, P.; et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Chang. Biol. 2018, 25, 640–659. [Google Scholar] [CrossRef] [Green Version]
- Mummey, D.L.; Smith, J.L.; Bluhm, G. Estimation of Nitrous Oxide Emissions from US Grasslands. Environ. Manag. 2000, 25, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Conen, F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag. 2006, 20, 255–263. [Google Scholar] [CrossRef]
- Zhang, J.; Müller, C.; Cai, Z. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biol. Biochem. 2015, 84, 199–209. [Google Scholar] [CrossRef]
- Granli, T.; Bockman, O.C. Nitrous Oxide from Agriculture. Available online: https://agris.fao.org/agris-search/search.do?recordID=NO9500232 (accessed on 25 July 2021).
- Yan, Y.; Ganjurjav, H.; Hu, G.; Liang, Y.; Li, Y.; He, S.; Danjiu, L.; Yang, J.; Gao, Q. Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai–Tibetan Plateau. Agric. Ecosyst. Environ. 2018, 265, 45–53. [Google Scholar] [CrossRef]
- Dangal, S.R.S.; Tian, H.; Xu, R.; Chang, J.; Canadell, J.G.; Ciais, P.; Pan, S.; Yang, J.; Zhang, B. Global Nitrous Oxide Emissions From Pasturelands and Rangelands: Magnitude, Spatiotemporal Patterns, and Attribution. Glob. Biogeochem. Cycles 2019, 33, 200–222. [Google Scholar] [CrossRef]
- Weitz, A.; Linder, E.; Frolking, S.; Crill, P.; Keller, M. N2O emissions from humid tropical agricultural soils: Effects of soil moisture, texture and nitrogen availability. Soil Biol. Biochem. 2001, 33, 1077–1093. [Google Scholar] [CrossRef]
- Erguder, T.H.; Boon, N.; Wittebolle, L.; Marzorati, M.; Verstraete, W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol. Rev. 2009, 33, 855–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroeze, C.; Mosier, A.; Bouwman, L. Closing the global N2O budget: A retrospective analysis 1500–1994. Glob. Biogeochem. Cycles 1999, 13, 1–8. [Google Scholar] [CrossRef]
- Van Lent, J.; Hergoualc’H, K.; Verchot, L.V. Reviews and syntheses: Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: A meta-analysis. Biogeosciences 2015, 12, 7299–7313. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.J.; Cloy, J.M.; Topp, C.; Ball, B.C.; Bagnall, A.; Rees, R.; Chadwick, D.R. Quantifying N2O emissions from intensive grassland production: The role of synthetic fertilizer type, application rate, timing and nitrification inhibitors. J. Agric. Sci. 2016, 154, 812–827. [Google Scholar] [CrossRef] [Green Version]
- Geng, F.; Li, K.; Liu, X.; Gong, Y.; Yue, P.; Li, Y.; Han, W. Long-term effects of N deposition on N2O emission in an alpine grassland of Central Asia. Catena 2019, 182, 104100. [Google Scholar] [CrossRef]
- Luo, C.; Wang, S.; Zhang, L.; Wilkes, A.; Zhao, L.; Zhao, X.; Xu, S.; Xu, B. CO2, CH4 and N2O fluxes in an alpine meadow on the Tibetan Plateau as affected by N-addition and grazing exclusion. Nutr. Cycl. Agroecosyst. 2020, 117, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Gong, Y.; Song, W.; He, G.; Hu, Y.; Tian, C.; Liu, X. Responses of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains. Chemosphere 2012, 88, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Dong, S.; Jiang, X.; Liu, S.; Ji, H.; Li, Y.; Han, Y.; Sha, W. Effects of warming and nitrogen deposition on CH4, CO2 and N2O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau. Sci. Total. Environ. 2017, 592, 565–572. [Google Scholar] [CrossRef]
- Peng, Q.; Qi, Y.; Dong, Y.; Xiao, S.; He, Y. Soil nitrous oxide emissions from a typical semiarid temperate steppe in inner Mongolia: Effects of mineral nitrogen fertilizer levels and forms. Plant Soil 2011, 342, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Xu, R.; Liu, Y.; Wang, Y.; Wang, Y. Three-year study of CO2 efflux and CH4/N2O fluxes at an alpine steppe site on the central Tibetan Plateau and their responses to simulated N deposition. Geoderma 2014, 232, 88–96. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Y.; Laanbroek, H.J.; Xu, X.; Song, B.; Huo, Y.; Chen, S.; Li, L.; Zhang, L. Saturated N2O emission rates occur above the nitrogen deposition level predicted for the semi-arid grasslands of Inner Mongolia, China. Geoderma 2019, 341, 18–25. [Google Scholar] [CrossRef]
- Bouwman, L. Direct emission of nitrous oxide from agricultural soils. Nutr. Cycl. Agroecosyst. 1996, 46, 53–70. [Google Scholar] [CrossRef]
- Dobbie, K.E.; McTaggart, I.P.; Smith, K.A. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors. J. Geophys. Res. Space Phys. 1999, 104, 26891–26899. [Google Scholar] [CrossRef]
- Cardenas, L.; Thorman, R.; Ashlee, N.; Butler, M.; Chadwick, D.; Chambers, B.; Cuttle, S.; Donovan, N.; Kingston, H.; Lane, S. Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs. Agric. Ecosyst. Environ. 2010, 136, 218–226. [Google Scholar] [CrossRef]
- Kim, D.-G.; Mishurov, M.; Kiely, G. Effect of increased N use and dry periods on N2O emission from a fertilized grassland. Nutr. Cycl. Agroecosyst. 2010, 88, 397–410. [Google Scholar] [CrossRef]
- Kim, D.-G.; Ramirez, G.H.; Giltrap, D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-analysis. Agric. Ecosyst. Environ. 2013, 168, 53–65. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, G.; Li, F.; Zhou, G.; Yang, G.; Fang, K.; Liu, L.; Qin, S.; Zhang, D.; Yang, Y. Soil Temperature Dynamics Modulate N2O Flux Response to Multiple Nitrogen Additions in an Alpine Steppe. J. Geophys. Res. Biogeosci. 2018, 123, 3308–3319. [Google Scholar] [CrossRef]
- Li, L.; Gao, X.; Li, X.; Lin, L.; Zeng, F.; Gui, D.; Lu, Y. Nitrogen (N) and phosphorus (P) resorption of two dominant alpine perennial grass species in response to contrasting N and P availability. Environ. Exp. Bot. 2016, 127, 37–44. [Google Scholar] [CrossRef]
- Fang, S.; Yan, J.; Che, M.; Zhu, Y.; Liu, Z.; Pei, H.; Zhang, H.; Xu, G.; Lin, X. Climate change and the ecological responses in Xinjiang, China: Model simulations and data analyses. Quat. Int. 2013, 311, 108–116. [Google Scholar] [CrossRef]
- Carter, M.R. Soil sampling and methods of analysis. J. Environ. Qual. 1993, 38, 15–24. [Google Scholar]
- Yue, P.; Li, K.; Gong, Y.; Hu, Y.; Mohammat, A.; Christie, P.; Liu, X. A five-year study of the impact of nitrogen addition on methane uptake in alpine grassland. Sci. Rep. 2016, 6, 32064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, M.; Gao, X.; Tenuta, M.; Li, L.; Gui, D.; Li, X.; Zeng, F. Enhancement of N2O emissions by grazing is related to soil physicochemical characteristics rather than nitrifier and denitrifier abundances in alpine grassland. Geoderma 2020, 375, 114511. [Google Scholar] [CrossRef]
- Pedersen, A.R. HMR: Flux Estimation with Static Chamber Data. R Package Version 0.3.1. 2011. Available online: https://cran.r-project.org/web/packages/HMR/index.html (accessed on 10 February 2018).
- Kuang, W.; Gao, X.; Gui, D.; Tenuta, M.; Flaten, D.N.; Yin, M.; Zeng, F. Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China. Field Crop. Res. 2018, 229, 17–26. [Google Scholar] [CrossRef]
- Jiang, C.; Yu, G.; Fang, H.; Cao, G.; Li, Y. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos. Environ. 2010, 44, 2920–2926. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC/IGES: Hayama, Japan, 2006. [Google Scholar]
- Cardenas, L.; Bhogal, A.; Chadwick, D.; McGeough, K.; Misselbrook, T.; Rees, R.; Thorman, R.; Watson, C.; Williams, J.; Smith, K.; et al. Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands. Sci. Total Environ. 2019, 661, 696–710. [Google Scholar] [CrossRef] [PubMed]
- Patten, D.K.; Bremner, J.M.; Blackmer, A.M. Effects of Drying and Air-dry Storage of Soils on Their Capacity for Denitrification of Nitrate. Soil Sci. Soc. Am. J. 1980, 44, 67–70. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, M.; Wang, Y.; Shen, R.; Gou, J.; Li, J.; Jin, J.; Li, L. Impacts of soil moisture on nitrous oxide emission from croplands: A case study on the rice-based agro-ecosystem in Southeast China. Chemosphere Glob. Chang. Sci. 2000, 2, 207–224. [Google Scholar] [CrossRef]
- Davidson, E.A. Soil Water Content and the Ratio of Nitrous Oxide to Nitric Oxide Emitted from Soil. In Biogeochemistry of Global Change; Oremland, R.S., Ed.; Springer: Boston, MA, USA, 1993. [Google Scholar] [CrossRef]
- Hyde, B.P.; Hawkins, M.J.; Fanning, A.F.; Noonan, D.; Ryan, M.; Toole, P.O.; Carton, O.T. Nitrous Oxide Emissions from a Fertilized and Grazed Grassland in the South East of Ireland. Nutr. Cycl. Agroecosyst. 2006, 75, 187–200. [Google Scholar] [CrossRef]
- Jones, S.; Rees, R.; Skiba, U.; Ball, B. Influence of organic and mineral N fertiliser on N2O fluxes from a temperate grassland. Agric. Ecosyst. Environ. 2007, 121, 74–83. [Google Scholar] [CrossRef]
- Kitzler, B.; Zechmeisterboltenstern, S.; Holtermann, C.; Skiba, U.M.; Butterbach-Bahl, K. Controls over N2O, NOx and CO2 fluxes in a calcareous mountain forest soil. Biogeosciences 2006, 3, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.F.; Pattey, E.; Goddard, T.W.; Kryzanowski, L.M.; Puurveen, H. Modeling the Effects of Fertilizer Application Rate on Nitrous Oxide Emissions. Soil Sci. Soc. Am. J. 2006, 70, 235–248. [Google Scholar] [CrossRef]
- Frunzke, K.; Meyer, O. Nitrate respiration, denitrification, and utilization of nitrogen sources by aerobic carbon monoxide-oxidizing bacteria. Arch. Microbiol. 1990, 154, 168–174. [Google Scholar] [CrossRef]
- Malghani, S.; Kim, J.; Lee, S.-H.; Yoo, G.-Y.; Kang, H. Application of two contrasting rice-residue-based biochars triggered gaseous loss of nitrogen under denitrification-favoring conditions: A short-term study based on acetylene inhibition technique. Appl. Soil Ecol. 2018, 127, 112–119. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, J.; Clark, C.M.; Naeem, S.; Pan, Q.; Huang, J.; Zhang, L.; Han, X. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from inner Mongolia Grasslands. Glob. Chang. Biol. 2010, 16, 358–372. [Google Scholar] [CrossRef]
- Chen, H.; Mothapo, N.V.; Shi, W. Soil Moisture and pH Control Relative Contributions of Fungi and Bacteria to N2O Production. Microb. Ecol. 2014, 69, 180–191. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Vogt, R.D.; Mulder, J.; Wang, J.; Zhang, X. Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation. Glob. Chang. Biol. 2017, 24, e617–e626. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, G.; Wang, W.; Zhao, X. Factors affecting global forest soil N2O emission flux. Chin. J. Ecol. 2012, 31, 446–452. (In Chinese) [Google Scholar]
- He, M.; Dijkstra, F.A. Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil. Soil Biol. Biochem. 2015, 82, 99–106. [Google Scholar] [CrossRef]
- Horta, L.A.D.; Philippot, L.; Peyrard, C.; Bru, D.; Breuil, M.-C.; Bizouard, F.; Justes, E.; Mary, B.; Leonard, J.; Spor, A. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils. Glob. Chang. Biol. 2017, 24, 360–370. [Google Scholar] [CrossRef] [PubMed]
Treatment | ƩN2O (kg N ha−1) | EF (%) | ||||
---|---|---|---|---|---|---|
2017 | 2018 | Total | 2017 | 2018 | Average | |
Control | 0.3 ± 0.1 b | 0.3 ± 0.1 c | 0.7 | - | - | - |
N10 | 0.4 ± 0.1 b | 0.4 ± 0.1 bc | 0.8 | 0.9 ± 0.6 a | 0.8 ± 0.3 a | 0.8 ± 0.5 a |
N30 | 0.4 ± 0.1 b | 0.4 ± 0.1 bc | 0.8 | 0.2 ± 0.3 a | 0.2 ± 0.2 a | 0.2 ± 0.2 a |
N60 | 0.6 ± 0.1 ab | 0.5 ± 0.1 abc | 1.2 | 0.5 ± 0.1 a | 0.3 ± 0.1 a | 0.5 ± 0.2 a |
N120 | 0.9 ± 0.2 a | 0.8 ± 0.1 ab | 1.7 | 0.5 ± 0.1 a | 0.4 ± 0.1 a | 0.4 ± 0.1 a |
N240 | 1.1 ± 0.2 a | 1.0 ± 0.1 a | 2.1 | 0.3 ± 0.1 a | 0.3 ± 0.1 a | 0.3 ± 0.1 a |
NO3−-N | NH4+-N | DOC | pH | Air Temp. | Soil Temp. | Precipitation | WFPS | |
---|---|---|---|---|---|---|---|---|
N2O flux | −0.016 | −0.012 | 0.370 ** | 0.273 * | −0.035 | 0.027 | 0.058 | 0.051 |
Treatment | Plant Above-Ground Biomass (g m−2) | ||
---|---|---|---|
June | July | August | |
Control | 100 ± 11a | 158 ± 13 c | 259 ± 6 d |
N10 | 105 ± 9 a | 166 ± 13 bc | 274 ± 4 cd |
N30 | 95 ± 8 b | 177 ± 9 abc | 291 ± 5 bc |
N60 | 100 ± 6 a | 201 ± 34 abc | 313 ± 22 ab |
N120 | 107 ± 2 a | 224 ± 8 a | 342 ± 14 a |
N240 | 119 ± 10 a | 216 ± 12 ab | 325 ± 7 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Gao, X.; Cao, D.; Li, L.; Li, X.; Zeng, F. Nitrous Oxide Emissions from an Alpine Grassland as Affected by Nitrogen Addition. Atmosphere 2021, 12, 976. https://doi.org/10.3390/atmos12080976
Wu Y, Gao X, Cao D, Li L, Li X, Zeng F. Nitrous Oxide Emissions from an Alpine Grassland as Affected by Nitrogen Addition. Atmosphere. 2021; 12(8):976. https://doi.org/10.3390/atmos12080976
Chicago/Turabian StyleWu, Yufeng, Xiaopeng Gao, Dengchao Cao, Lei Li, Xiangyi Li, and Fanjiang Zeng. 2021. "Nitrous Oxide Emissions from an Alpine Grassland as Affected by Nitrogen Addition" Atmosphere 12, no. 8: 976. https://doi.org/10.3390/atmos12080976
APA StyleWu, Y., Gao, X., Cao, D., Li, L., Li, X., & Zeng, F. (2021). Nitrous Oxide Emissions from an Alpine Grassland as Affected by Nitrogen Addition. Atmosphere, 12(8), 976. https://doi.org/10.3390/atmos12080976