Characterization of Pollutant Emissions from Typical Material Handling Equipment Using a Portable Emission Measurement System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design for Emission Measurement
2.1.1. Description of the PEMS Used in This Study
2.1.2. Selection of the Equipment for Testing
2.1.3. Testing Duty Modes
2.2. Real-World Emission Measurements
2.3. Data Quality Control and Analysis
2.3.1. Instantaneous Emissions Analysis
2.3.2. Modal Emissions Analysis
2.3.3. Composite Emissions Estimation
3. Results
3.1. Brief Description of Collected Emission Data
3.2. Instantaneous Emissions from the Loaders and Cranes
3.3. Modal Emissions for Loaders and Cranes
3.4. Composite Emission Factors for Loaders and Cranes
3.5. Comparison of Emission Factors Found in Different Studies
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohara, T.; Akimoto, H.; Kurokawa, J.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T. An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys. 2007, 7, 4419–4444. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 14, 5131–5153. [Google Scholar] [CrossRef] [Green Version]
- Jathar, S.H.; Woody, M.; Pye, H.O.; Baker, K.R.; Robinson, A.L. Chemical transport model simulations of organic aerosol in southern California: Model evaluation and gasoline and diesel source contributions. Atmos. Chem. Phys. 2017, 17, 4305–4318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, C.L.; Tanenbaum, S.; Hidy, G.M. Source contributions to atmospheric gases and particulate matter in the southeastern United States. Environ. Sci. Technol. 2012, 46, 5479–5488. [Google Scholar] [CrossRef]
- Dallmann, T.R.; Harley, R.A. Evaluation of mobile source emission trends in the United States. J. Geophys. Res.-Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Xing, J.; Pleim, J.; Mathur, R.; Pouliot, G.; Hogrefe, C.; Gan, C.M.; Wei, C. Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010. Atmos. Chem. Phys. 2013, 13, 7531–7549. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Winijkul, E.; Streets, D.G.; Lu, Z.; Bond, T.C.; Zhang, Y. Global emission projections for the transportation sector using dynamic technology modeling. Atmos. Chem. Phys. 2014, 14, 5709–5733. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency (US EPA). User’s Guide for the Final NONROAD2005 Model; USEPA: Washington, DC, USA, 2005. [Google Scholar]
- CARB (California Air Resources Board). User’s Guide for OFFROAD2007; CARB: Sacramento, CA, USA, 2007. [Google Scholar]
- EMEP/EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook; European Environment Agency: Copenhagen, Denmark, 2016; Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2016 (accessed on 27 September 2016).
- Fan, C.Y.; Song, C.L.; Lv, G.; Wang, G.Y.; Zhou, H.; Jing, X.J. Evaluation of carbonyl compound emissions from a non-road equipment diesel engine fueled with a methanol/diesel blend. Appl. Therm. Eng. 2018, 129, 1382–1391. [Google Scholar] [CrossRef]
- Lindgren, M.; Larsson, G.; Hansson, P.A. Evaluation of factors influencing emissions from tractors and construction equipment during realistic work operations using diesel fuel and bio-fuels as substitute. Biosyst. Eng. 2010, 107, 123–130. [Google Scholar] [CrossRef]
- Heidari, B.; Marr, L.C. Real-time emissions from construction equipment compared with model predictions. J. Air Waste Manag. Assoc. 2015, 65, 115–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirjola, L.T.; Rönkkö, T.; Saukko, E.; Parviainen, H.; Malinen, A.; Alanen, J.; Saveljeff, H. Exhaust emissions of non-road mobile equipment: Real-world and laboratory studies with diesel and HVO fuels. Fuel 2017, 202, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Abolhasani, S.; Frey, H.C.; Kim, K.; Rasdorf, W.; Lewis, P.; Pang, S.H. Real-world in-use activity, fuel use, and emissions for nonroad construction vehicles: A case study for excavators. J. Air Waste Manag. Assoc. 2008, 58, 1033–1046. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.H.; Frey, H.C.; Rasdorf, W.J. Life cycle inventory energy consumption and emissions for biodiesel versus petroleum diesel fueled construction vehicles. Environ. Sci. Technol. 2009, 43, 6398–6405. [Google Scholar] [CrossRef]
- Frey, H.C.; Rasdorf, W.; Lewis, P. Comprehensive field study of fuel use and emissions of nonroad diesel construction equipment. Transp. Res. Record 2010, 2158, 69–76. [Google Scholar] [CrossRef]
- Cao, T.; Durbin, T.D.; Russell, R.L.; Cocker, D.R.; Scora, G.; Maldonado, H.; Johnson, K.C. Evaluations of in-use emission factors from off-road construction equipment. Atmos. Environ. 2016, 147, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Zavala, M.; Huertas, J.I.; Prato, D.; Jazcilevich, A.; Aguilar, A.; Balam, M.; Misra, C.; Molina, L.T. Real-world emissions of in-use off-road vehicles in Mexico. J. Air Waste Manag. Assoc. 2017, 67, 958–972. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.L.; Ge, Y.S.; Tan, J.W.; Zeng, T.; Liang, B. Characterizations of typical non-road equipment emissions in China by using portable emission measurement system. Sci. Total Environ. 2012, 437, 255–261. [Google Scholar] [CrossRef] [PubMed]
- China Construction Machinery Association (CCMA). China Construction Machinery Industry Yearbook; Mechanical Industry Press: Beijing, China, 2018. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China (MEE PCR). Chinese National Guideline for Emission Inventory Development for Non-Road Equipment; Ministry of Ecology and Environment: Beijing, China, 2014.
- Pang, K.L.; Zhang, K.S.; Ma, S. Tailpipe emission characterizations of diesel-fueled forklifts under real-world operations using a portable emission measurement system. J. Environ. Sci. 2021, 100, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, K.S.; Pang, K.L.; Di, B.F. A fuel-based approach for emission factor development for highway paving construction equipment in China. J. Air Waste Manag. Assoc. 2016, 66, 1214–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Zhang, K.S.; Wang, F.; Pang, K.L.; Zhu, Y.; Li, Z.; Mao, H.; Hu, B.; Yang, J.; Wang, B. Characterization of tailpipe emissions from in-use excavators. Environ. Sci. 2019, 40, 1670–1679. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China (MEE PCR). Determination of Atmospheric Articles PM10 and PM2.5 in Ambient Air by Gravimetric Method; MEE PCR: Beijing, China, 2011. [Google Scholar]
- Vojtisek-Lom, M.; Allsop, J.E. Development of heavy-duty diesel portable, on-board mass exhaust emissions monitoring system with NOx, CO2, and qualitative capabilities. J. Socof Automot. Eng. 2001, 5, 636–642. [Google Scholar]
- Frey, H.C.; Rouphail, N.M.; Unal, A.; Colyar, J. Measurement of on-road tailpipe emissions using a portable instrument. J. Air Waste Manag. Assoc. 2003, 53, 992–1002. [Google Scholar] [CrossRef] [Green Version]
- Chernyshev, V.V.; Zakharenko, A.M.; Ugay, S.M.; Hien, T.T.; Hai, L.H.; Olesik, S.M.; Kholodov, A.S.; Zubko, E.; Kokkinakis, M.; Burykina, T.I.; et al. Morphological and chemical composition of particulate matter in buses exhaust. Toxicol. Rep. 2019, 6, 120–125. [Google Scholar] [CrossRef]
Test Count | Equipment Type | Equipment Model | Engine Model | MY 1 | EP 2 (kW) | ESC 3 (Stage) |
---|---|---|---|---|---|---|
1 | Loader | CG 4 ZL50E-3 | WD10G22CE23 | 2013 | 162 | II |
2 | CG 4 ZL30B-2 | 6110/125G-18 | 2007 | 86 | I | |
3 | CG 4 ZL30B | 6110/125G-18 | 2008 | 86 | Ⅰ | |
4 | CG 4 ZL30B | 6110/125G-18 | 2008 | 86 | Ⅰ | |
5 | Crane | XG 5 XZJ5160JQZ12 | D6114ZQ33A | 2003 | 152 | Ⅰ |
6 | XG 5 XAJ5164JQZ12 | SC8DK230Q3 | 2009 | 170 | Ⅰ | |
7 | XG 5 XZJ5164JQZ12 | SC8DK230Q3 | 2010 | 170 | Ⅱ | |
8 | XG 5 XZJ5164JQZ12 | SC8DK230Q3 | 2011 | 170 | Ⅱ | |
9 | CJ 6 QZC5102JQZQY8F | YC4E140-30 | 2008 | 105 | Ⅰ |
Instrument | Model | Specification | Precision |
---|---|---|---|
Temperature- and humidity-controlled chamber | YiHeng LHS-80HC-I, China | −5–80 °C; 40–85%RH | High temperature: ±0.5 °C; Low temperature: ±1 °C; Humidity: ±3%RH |
Electronic balance | Sartorius Quintix 35–1CN, Germany | 0–30 g | 0.01 mg |
Test Count | Equipment Type | Equipment Model | Date Amount (s) | Data Validity (%) | PM2.5 Samples Number |
---|---|---|---|---|---|
1 | Loader | CG ZL50E-3 | 6349 | 73.2 | 6 |
2 | CG ZL30B-2 | 8249 | 88.3 | 7 | |
3 | CG ZL30B | 12,032 | 91.6 | 11 | |
4 | CG ZL30B | 9150 | 88.4 | 8 | |
5 | Crane | XG XZJ5160JQZ12 | 10,993 | 94.1 | 11 |
6 | XG XAJ5164JQZ12 | 7660 | 86.6 | 8 | |
7 | XG XZJ5164JQZ12 | 9085 | 93.9 | 6 | |
8 | XG XZJ5164JQZ12 | 9957 | 89.8 | 5 | |
9 | CJ QZC5102JQZQY8F | 9295 | 90.9 | 7 |
Duty Mode | Engine Power | Time-Based Emissions (g/h) | Fuel-Based Emissions (g/kg-fuel) | ||||||
---|---|---|---|---|---|---|---|---|---|
CO | HC | NO | PM2.5 | CO | HC | NO | PM2.5 | ||
Idling | 75 ≤ P < 130 | 19.1 ± 11.3 | 3.4 ± 1.8 | 38.2 ± 30.3 | 0.8 ± 1.1 | 13.9 ± 9.3 | 2.6 ± 1.9 | 25.0 ± 12.3 | 0.6 ± 0.9 |
130 ≤ P < 225 | 33.4 ± 7.7 | 5.3 ± 4.5 | 50.3 ± 23.9 | 2.6 ± 3.2 | 17.9 ± 12.6 | 2.4 ± 1.6 | 19.9 ± 8.8 | 2.0 ± 3.3 | |
Moving | 75 ≤ P < 130 | 53.9 ± 26.1 | 7.9 ± 2.8 | 110.3 ± 14.6 | 8.2 ± 8.8 | 13.4 ± 7.1 | 2.9 ± 1.6 | 27.8 ± 3.0 | 2.5 ± 2.8 |
130 ≤ P < 225 | 164.2 ± 211.9 | 12.9 ± 6.9 | 253.4 ± 96.5 | 14.9 ± 21.0 | 17.4 ± 8.1 | 3.2 ± 2.6 | 26.5 ± 10.0 | 1.9 ± 1.5 | |
Working | 75 ≤ P < 130 | 82.0 ± 55.9 | 10.7 ± 9.4 | 108.1 ± 61.1 | 14.3 ± 12.9 | 16.8 ± 9.2 | 3.5 ± 2.3 | 25.8 ± 12.2 | 4.0 ± 2.9 |
130 ≤ P < 225 | 212.7 ± 340.3 | 12.9 ± 7.3 | 200.0 ± 88.1 | 16.2 ± 27.0 | 10.5 ± 6.2 | 2.2 ± 1.7 | 23.7 ± 9.2 | 0.7 ± 0.6 |
Test Count | Equipment Type | Fuel Consumption (g/s) | Composite Emissions (g/kg-fuel) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CO | HC | NO | PM2.5 | ||||||||
Ave | 95%CI * | Ave | 95%CI * | Ave | 95%CI * | Ave | 95%CI * | Ave | 95%CI * | ||
1 | loader | 7.2 | (2.5, 11.9) | 33.4 | (11.0, 62.7) | 2.0 | (0.5, 4.0) | 6.6 | (2.8, 11.5) | 4.1 | (0.8, 9.1) |
2 | 2.4 | (1.5, 3.3) | 18.4 | (6.0, 36.9) | 3.4 | (1.1, 6.7) | 94.5 | (39.6, 164.9) | 4.0 | (1.3, 7.9) | |
3 | 0.9 | (0.6, 1.2) | 11.0 | (4.6, 18.7) | 4.2 | (1.7, 7.3) | 25.4 | (12.6, 38.7) | 1.8 | (0.7, 3.4) | |
4 | 1.1 | (0.7, 1.5) | 24.1 | (9.3, 42.7) | 1.2 | (0.5, 2.2) | 26.1 | (11.8, 45.5) | 4.5 | (2.2, 7.0) | |
5 | Crane | 1.0 | (0.8, 1.2) | 9.1 | (7.0, 11.4) | 3.1 | (1.8, 4.7) | 22.8 | (17.8, 28.1) | 0.4 | (0.3, 0.5) |
6 | 2.2 | (1.4, 2.9) | 9.0 | (6.9, 11.1) | 0.3 | (0.2, 0.3) | 31.4 | (25.6, 37.3) | 0.7 | (0.5, 0.9) | |
7 | 1.9 | (1.1, 2.7) | 8.8 | (6.8, 10.8) | 4.6 | (3.6, 5.7) | 24.2 | (19.0, 29.8) | 0.2 | (0.1, 0.2) | |
8 | 1.9 | (1.1, 2.8) | 8.9 | (6.4, 11.6) | 1.8 | (1.4, 2.1) | 26.7 | (21.4, 32.1) | 0.1 | (0.1, 0.2) | |
9 | 1.4 | (0.8, 1.9) | 7.8 | (6.1, 9.6) | 2.2 | (1.3, 3.3) | 36.3 | (27.7, 45.5) | 0.2 | (0.1, 0.2) |
Emission Factors (g/kg-Fuel) | Equipment Type | Sources | |||
---|---|---|---|---|---|
CO | HC | NO | PM2.5 | ||
21.73 | 2.70 | 38.18 | 3.59 | Loader | This study |
14.28 | 2.37 | 24.42 | 2.01 | Loader | NONROAD [8] |
17.47 | 7.61 | 83.38 | 1.48 | Loader | Fu et al. [20] |
11.03 | 5.99 | 42.56 | 0.25 | Loader | Frey et al. [17] |
8.70 | 2.39 | 28.29 | 0.30 | Crane | This study |
9.91 | 2.43 | 25.48 | 1.70 | Crane | NONROAD [8] |
10.72 | 3.39 | 32.79 | 2.09 | Construction equipment | National Guideline [22] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, K.; Meng, X.; Ma, S.; Yin, Z. Characterization of Pollutant Emissions from Typical Material Handling Equipment Using a Portable Emission Measurement System. Atmosphere 2021, 12, 598. https://doi.org/10.3390/atmos12050598
Pang K, Meng X, Ma S, Yin Z. Characterization of Pollutant Emissions from Typical Material Handling Equipment Using a Portable Emission Measurement System. Atmosphere. 2021; 12(5):598. https://doi.org/10.3390/atmos12050598
Chicago/Turabian StylePang, Kaili, Xiangrui Meng, Shuai Ma, and Ziyuan Yin. 2021. "Characterization of Pollutant Emissions from Typical Material Handling Equipment Using a Portable Emission Measurement System" Atmosphere 12, no. 5: 598. https://doi.org/10.3390/atmos12050598
APA StylePang, K., Meng, X., Ma, S., & Yin, Z. (2021). Characterization of Pollutant Emissions from Typical Material Handling Equipment Using a Portable Emission Measurement System. Atmosphere, 12(5), 598. https://doi.org/10.3390/atmos12050598