The Increased Likelihood in the 21st Century for a Tropical Cyclone to Rapidly Intensify When Crossing a Warm Ocean Feature—A Simple Model’s Prediction
Abstract
:1. Introduction
2. The Model
2.1. The Problem
2.2. Intensity Change Due to the WOF: The WOF-Induced RI
2.3. Ocean Feedback
2.3.1. Assumptions
2.3.2. Two-Layer Ocean
2.3.3. Potential Energy
2.3.4. Wind Energy
2.3.5. Wind-Induced SST Cooling
2.3.6. Coupling
2.3.7. Values of Parameters
- L = 200 km, the TC’s radial scale (roughly to ~18 m/s) [40];
- ρa/ρ0 = 10−3, the ratio of air to seawater densities;
- γ = 0.02, see below;
- Cd = 2 × 10−3, the drag coefficient at high wind speeds [47];
- g = 10 m/s2, the Earth’s gravity;
- α = 3 × 10−4 K−1, seawater’s thermal expansion coefficient [39];
- h1 and h2 are chosen to be from the surface to the 26 °C isotherm z = −z26, and from z = −z26 to the 20 °C isotherm z = −z20. The h1 ≈ h2 ≈ 100 m in the RI region (10~25 °N) in the tropical and subtropical western North Pacific (Figure 3).
3. Results
3.1. δVm with No Ocean Feedback
3.2. δVm with Ocean Feedback
3.3. Observed RIs in the Present Climate
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Symbols and Abbreviations
A, B, C | Coefficients of the empirical MPI |
c | Ocean’s mode-1 baroclinic phase speed |
Cd | Drag coefficient |
FT | Factor expressing the effect of TC-induced SST cooling (Equation (16)); the term “sμFT” couples TC’s δVm to ocean cooling |
g | Earth’s gravity |
h1 & h2 | Depths of the ocean’s upper and lower layers, i.e. before mixing |
L | TC’s radius |
P | = L/Uh, time taken for the TC to traverse its radius (i.e. half its size) |
PE | Raised potential energy, PE after mixing minus before mixing |
PE|2layers | Ocean 2-layer system’s potential energy before mixing |
PE|mix | Ocean 1-layer system’s potential energy after mixing |
s | slope of Vm on the T-space: |
t | a general variable for time |
T | a general variable for SST |
T1 and T2 | Uniform temperatures of the ocean’s upper and lower layers before mixing |
Tmix | Uniform temperature after mixing |
T0 | Ambient (i.e. background) SST (Figure 1) |
Uh | TC translation speed |
V | = |V| wind speed of the wind vector V |
Vm | MPI maximum wind |
V0 | Maximum wind of the TC approaching the WOF |
WE | Wind energy |
x & z | Horizontal and vertical axes, z = 0 at the sea surface |
Z26 & Z20 | Depths of the ocean’s 26 °C and 20 °C isotherms |
α | thermal expansion coefficient of seawater ≈ 3×10−4 K−1 at SST ≈ 28 °C |
ρa | Air density |
ρ0 | Reference seawater density ≈ 1025 kg/m3 |
ρ1 and ρ2 | Uniform densities of ocean’s upper and lower layers before mixing |
ρmix | Uniform seawater density after mixing |
δT | = Tmix − T1 (< 0), the SST cooling due to TC (Equation (13)); used also as the usual mathematical notation of “Change in T” (e.g., Equation (3)) |
δT0 | < 0, ocean cooling caused by increased δV0 as the TC crosses into the WOF |
δTW | The WOF’s SST anomaly (> 0); i.e. total WOF’s SST = T0 + δTW (Figure 1) |
ΔT | = T1 − T2 (> 0), the temperature difference between upper and lower layers |
Δρ | = ρ1 − ρ2 (< 0), the density difference between upper and lower layers |
δVm | Change in MPI maximum wind (m/s) due to change in SST, see Equation (2) |
δV0 | Change in TC’s maximum wind as it crosses over the WOF |
γ | Mixing efficiency (~ fraction of the wind work that goes into mixing) |
μ | Ratio of TC wind to MPI wind = V0/Vm ≤ 1 |
μ1, μ2, μ3 | Coefficient variables used in the model solution (19) |
MPI | Maximum Potential Intensity |
POM | Princeton Ocean Model |
RI | Rapid Intensification |
SST | Sea Surface Temperature |
TC | Tropical Cyclone |
TS | Tropical Storm |
WOF | Warm Ocean Feature |
References
- Kaplan, J.; DeMaria, M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather Forecast. 2003, 18, 1093–1108. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, M.T.; Nguyen, S.V.; Smith, R.K.; Persing, J. Do tropical cyclones intensify by WISHE? Q. J. R. Meteorol. Soc. 2009, 135, 1697–1714. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.D.; Moskaitis, J.R.; Feldmeier, J.W.; Ferek, R.J.; Beaubien, M.; Bell, M.M.; Cecil, D.L.; Creasey, R.L.; Duran, P.; Elsberry, R.L.; et al. A view of tropical cyclones from above. BAMS 2017, 2113–2134. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.A.; Marks, F.D. A thermodynamic pathway leading to rapid intensification of tropical cyclones in shear. Geophys. Res. Lett. 2019, 46, 9241–9251. [Google Scholar] [CrossRef]
- Paterson, L.A.; Hanstrum, B.N.; Davidson, N.E.; Weber, H.C. Influence of Environmental Vertical Wind Shear on the Intensity of Hurricane-Strength Tropical Cyclones in the Australian Region. Mon. Weather Rev. 2005, 133, 3644–3660. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Y.; Wu, C.C. Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev. 2007, 135, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.; DeMaria, M.; Knaff, J.A. A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Weather Forecast. 2010, 25, 220–241. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Peng, M.S.; Fu, B.; Li, T. Quantifying environmental control on tropical cyclone intensity change. Mon. Weather Rev. 2010, 138, 3243–3271. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Su, H.; Fovell, R.G.; Wang, B.; Shen, J.T.; Kahn, B.H.; Hristova-Veleva, S.M.; Lambrigtsen, B.H.; Fetzer, E.J.; Jiang, J.H. Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett. 2012, 39, L20809. [Google Scholar] [CrossRef] [Green Version]
- Soloviev, A.V.; Lukas, R.; Donelan, M.A.; Haus, B.K.; Ginis, I. The air-sea interface and surface stress under tropical cyclones. Sci. Rep. 2014, 4, 5306. [Google Scholar] [CrossRef]
- Soloviev, A.V.; Lukas, R.; Donelan, M.A.; Haus, B.K.; Ginis, I. Is the state of the air-sea interface a factor in rapid intensification and rapid decline of tropical cyclones? J. Geophys. Res. Oceans. 2017, 122, 10–174. [Google Scholar] [CrossRef]
- Wada, A. Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan. J. Oceanogr. 2015, 71, 131–156. [Google Scholar] [CrossRef]
- Donelan, M.A. On the decrease of the oceanic drag coefficient in high winds. J. Geophys. Res. Oceans 2017, 123, 1485–1501. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhao, K. Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Mon. Weather Rev. 2015, 143, 64–87. [Google Scholar] [CrossRef]
- Zhang, L.; Oey, L. Young ocean waves favor the rapid intensification of tropical cyclones-a global observational analysis. Mon. Weather Rev. 2019, 147, 311–328. [Google Scholar] [CrossRef]
- Oey, L.; Lin, Y. The Influence of Environments on the Intensity Change of Typhoon Soudelor. Atmosphere 2021, 12, 162. [Google Scholar] [CrossRef]
- Kossin, J.P.; Olander, T.L.; Knapp, K.R. Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 2013, 26, 9960–9976. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Tippett, M.K.; Sobel, A.H.; Camargo, S.J. Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun. 2016, 7, 10625. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Schade, L.R.; Emanuel, K.A. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.; DesAutels, C.; Holloway, C.; Korty, R. Environmental control of tropical cyclone intensity. J. Atmos. Sci. 2004, 61, 843–858. [Google Scholar] [CrossRef]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a warm oceanic feature on Hurricane Opal. Mon. Weather Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Hong, X.; Chang, S.W.; Raman, S.; Shay, L.K.; Hodur, R. The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev. 2000, 128, 1347–1365. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.I.; Wu, C.C.; Emanuel, K.; Lee, I.H.; Wu, C.R.; Pun, I.F. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Weather Rev. 2005, 133, 2635–2649. [Google Scholar] [CrossRef]
- Ali, M.M.; Jagadeesh, P.V.; Jain, S. Effects of eddies on Bay of Bengal cyclone intensity. Eos Trans. Am. Geophys. Union 2007, 88, 93–95. [Google Scholar] [CrossRef]
- Mainelli, M.; DeMaria, M.; Shay, L.K.; Goni, G. Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather Forecast. 2008, 23, 3–16. [Google Scholar] [CrossRef]
- Jaimes, B.; Shay, L.K.; Uhlhorn, E.W. Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Weather Rev. 2015, 143, 111–131. [Google Scholar] [CrossRef]
- Mawren, D.; Reason, C.J.C. Variability of upper-ocean characteristics and tropical cyclones in the South West Indian Ocean. J. Geophys. Res. Oceans 2017, 122, 2012–2028. [Google Scholar] [CrossRef]
- Potter, H.; DiMarco, S.F.; Knap, A.H. Tropical Cyclone Heat Potential and the Rapid Intensification of Hurricane Harvey in the Texas Bight. J. Geophys. Res. Oceans. 2019, 124, 2440–2451. [Google Scholar] [CrossRef]
- Oey, L.; Huang, S.M. Can a warm ocean feature caus a typhoon to intensify rapidly? Atmosphere 2021, 12, 797. [Google Scholar] [CrossRef]
- Riehl, H. Some relations between wind and thermal structure of steady state hurricanes. J. Atmos. Sci. 1963, 20, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- DeMaria, M.; Kaplan, J. Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Clim. 1994, 7, 1325–1334. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Chen, L.; Wang, Y. An observational study of environmental dynamical control of tropical cyclone intensity in the Atlantic. Mon. Weather Rev. 2008, 136, 3307–3322. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Tan, Z. The relationship between sea surface temperature and maximum intensification rate of tropical cyclones in the North Atlantic. J. Atmos. Sci. 2016, 73, 4979–4988. [Google Scholar] [CrossRef]
- Zhang, L.; Oey, L. An observational analysis of ocean surface waves in tropical cyclones in the western North Pacific Ocean. J. Geophys. Res. Oceans 2019, 124, 184–195. [Google Scholar] [CrossRef]
- Oey, L.Y.; Ezer, T.; Wang, D.P.; Fan, S.J.; Yin, X.Q. Loop current warming by Hurricane Wilma. Geophys. Res. Lett. 2006, 33, L08613. [Google Scholar] [CrossRef] [Green Version]
- Oey, L.Y.; Ezer, T.; Wang, D.P.; Yin, X.Q.; Fan, S.J. Hurricane-induced motions and interaction with ocean currents. Cont. Shelf Res. 2007, 27, 1249–1263. [Google Scholar] [CrossRef]
- Price, J.F. Upper Ocean Response to a Hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; de Szoeke, R.A.; Schlax, M.G.; El Naggar, K.; Siwertz, N. Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 1998, 28, 433–460. [Google Scholar] [CrossRef]
- Xu, F.H.; Oey, L.Y. Seasonal SSH variability of the Northern South China Sea. J. Phys. Oceanogr. 2015, 45, 1595–1609. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere-Ocean Dynamics; Academic Press: Cambridge, MA, USA, 1982; p. 662. [Google Scholar]
- Holland, G.J.; Belanger, J.I.; Fritz, A. A revised model for radial profiles of hurricane winds. Mon. Weather Rev. 2010, 138, 4393–4401. [Google Scholar] [CrossRef]
- Chiang, T.L.; Wu, C.R.; Oey, L.Y. Typhoon Kai-Tak: A perfect ocean’s storm. J. Phys. Oceanogr. 2011, 41, 221–233. [Google Scholar] [CrossRef]
- Kunze, E. Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 1985, 15, 544–565. [Google Scholar] [CrossRef]
- Oey, L.Y.; Inoue, M.; Lai, R.; Lin, X.H.; Welsh, S.E.; Rouse, L.J., Jr. Stalling of near-inertial waves in a cyclone. Geophys. Res. Lett. 2008, 35, L12604. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Sun, J.; Oey, L.Y. The influence of ocean on Typhoon Nuri (2008). Mon. Weather Rev. 2015, 143, 4493–4513. [Google Scholar] [CrossRef]
- Sun, J.; Oey, L.Y.; Chang, R.; Xu, F.; Huang, S.M. Ocean response to typhoon Nuri (2008) in western Pacific and South China Sea. Ocean. Dyn. 2015, 65, 735–749. [Google Scholar] [CrossRef]
- Etemad-Shahidi, A.; Imberger, J. Anatomy of turbulence in a narrow and strongly stratified estuary. J. Geophys. Res. 2002, 107, 3070. [Google Scholar] [CrossRef]
- Bouffard, D.; Boegman, L.A. Diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos Oceans 2013, 61, 14–34. [Google Scholar] [CrossRef]
- Monismith, S.G.; Koseff, J.R.; White, B.L. Mixing efficiency in the presence of stratification: When is it constant? Geophys. Res. Lett. 2018, 45, 5627–5634. [Google Scholar] [CrossRef]
- Smyth, W.D. Marginal instability and the efficiency of ocean mixing. J. Phys. Oceanogr. 2020, 50, 2141–2150. [Google Scholar] [CrossRef]
- Sayol, J.M. On the Complexity of Upper Ocean Mesoscale Dynamics. Ph.D Thesis, IMEDEA(CSIC-UIB), Majorca, Spain, 2016; p. 178. [Google Scholar]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; Hagos, S.M.; Judi, D.R. On the use of ocean dynamic temperature for hurricane intensity forecasting. Weather Forecast. 2018, 33, 411–418. [Google Scholar] [CrossRef]
- Bozart, L.E.; Velden, C.S.; Bracken, W.D.; Molinari, J.; Black, P.G. Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Weather Rev. 2000, 128, 322–352. [Google Scholar] [CrossRef]
- Oliver, E.C.J. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 2019, 53, 1653–1659. [Google Scholar] [CrossRef]
- Seager, R.; Cane, M.; Henderson, N.; Lee, D.E.; Abernathey, R.; Zhang, Z. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Chang. 2019, 9, 517–522. [Google Scholar] [CrossRef]
- Martinez-Moreno, J.; Hogg, A.; England, M.H.; Constantinou, N.C.; Kiss, A.E.; Morrison, A.K. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Chang. 2021, 11, 397–403. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of climate models. In IPCC Report Chapter 9; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Lima, F.P.; Wethey, D.S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat. Commun. 2012, 3, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emanuel, K.A. The theory of hurricanes. Annu. Rev. Fluid Mech. 1991, 23, 179–196. [Google Scholar] [CrossRef]
- Lighthill, J. Ocean spray and the thermodynamics of tropical cyclones. J. Engr. Math. 1999, 35, 11–42. [Google Scholar] [CrossRef]
- Kossin, J.P.; Knapp, K.R.; Olander, T.L.; Velden, C.S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA 2020, 117, 11975–11980. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oey, L. The Increased Likelihood in the 21st Century for a Tropical Cyclone to Rapidly Intensify When Crossing a Warm Ocean Feature—A Simple Model’s Prediction. Atmosphere 2021, 12, 1285. https://doi.org/10.3390/atmos12101285
Oey L. The Increased Likelihood in the 21st Century for a Tropical Cyclone to Rapidly Intensify When Crossing a Warm Ocean Feature—A Simple Model’s Prediction. Atmosphere. 2021; 12(10):1285. https://doi.org/10.3390/atmos12101285
Chicago/Turabian StyleOey, Leo. 2021. "The Increased Likelihood in the 21st Century for a Tropical Cyclone to Rapidly Intensify When Crossing a Warm Ocean Feature—A Simple Model’s Prediction" Atmosphere 12, no. 10: 1285. https://doi.org/10.3390/atmos12101285
APA StyleOey, L. (2021). The Increased Likelihood in the 21st Century for a Tropical Cyclone to Rapidly Intensify When Crossing a Warm Ocean Feature—A Simple Model’s Prediction. Atmosphere, 12(10), 1285. https://doi.org/10.3390/atmos12101285