Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = warm eddies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6183 KiB  
Article
Marine Heatwaves and Cold Spells Accompanied by Mesoscale Eddies Globally
by Sifan Su, Yu-Xuan Fu, Wenjin Sun and Jihai Dong
Remote Sens. 2025, 17(14), 2468; https://doi.org/10.3390/rs17142468 - 16 Jul 2025
Viewed by 384
Abstract
Marine heatwaves (MHWs) and Marine cold spells (MCSs) are oceanic events characterized by prolonged periods of anomalously warm or cold sea surface temperatures, which pose significant ecological and socio-economic threats on a global scale. These extreme temperature events exhibit an asymmetric trend under [...] Read more.
Marine heatwaves (MHWs) and Marine cold spells (MCSs) are oceanic events characterized by prolonged periods of anomalously warm or cold sea surface temperatures, which pose significant ecological and socio-economic threats on a global scale. These extreme temperature events exhibit an asymmetric trend under ongoing climate change in recent decades: MHWs have increased markedly in both frequency and intensity, whereas MCSs have shown an overall decline. Among the potential drivers, mesoscale eddies play a critical role in modulating sea surface temperature anomalies (SSTAs). Anticyclonic eddies (AEs) promote downwelling, generating positive SSTAs that potentially favor MHWs, while cyclonic eddies (CEs) enhance upwelling and negative anomalies that are potentially related to MCSs. In this paper, we investigate the relationship between mesoscale eddies and MHWs/MCSs using global satellite-derived datasets from 2010 to 2019. By analyzing the spatial overlap and intensity correlation between eddies and MHWs/MCSs, it is found that 12.2% of MHWs are accompanied by AEs, and 13.4% of MCSs by CEs, with a high degree of spatial containment where approximately 90.2% of MHW events are found within the mean eddy contour of AEs, and about 93.1% of MCS events fall inside the mean eddy contour of CEs. Stronger eddies tend to be associated with more intense MHWs/MCSs. This study provides new insights into the role of mesoscale eddies in regulating extreme oceanic temperature events, offering valuable information for future predictions in the context of climate change. Full article
Show Figures

Graphical abstract

8 pages, 2357 KiB  
Article
Net Ecosystem Exchanges of Spruce Forest Carbon Dioxide Fluxes in Two Consecutive Years in Qilian Mountains
by Bingying Qiao, Lili Sheng, Kelong Chen and Yangong Du
Appl. Sci. 2025, 15(12), 6845; https://doi.org/10.3390/app15126845 - 18 Jun 2025
Viewed by 212
Abstract
The net ecosystem CO2 exchange (NEE) of spruce forest ecosystems is poorly understood by the lack of measurements of CO2 in the Qilian Mountain of Western China. Thus, we conducted consecutive measurements of CO2 fluxes using tower-based the eddy covariance [...] Read more.
The net ecosystem CO2 exchange (NEE) of spruce forest ecosystems is poorly understood by the lack of measurements of CO2 in the Qilian Mountain of Western China. Thus, we conducted consecutive measurements of CO2 fluxes using tower-based the eddy covariance method from 2021 to 2022. These results indicated that daily NEE of spruce forest indicated a robust temporal pattern ranging from −28.43 to 29.62 g C m−2 from 2021 to 2022. Remarkable carbon sink characteristics were presented from late May to late September. Month accumulative NEE fluxes ranged from −336.57 to 142.22 g C m−2 in two years. Additionally, average carbon sink was 591.51 ± 37.41 g C m−2 in Qilian Mountain. NEE was negatively driven by vapor pressure deficit (VPD) and average air temperature (p < 0.05), as determined using the structural equation model. However, the direct effect coefficient of precipitation on NEE was weak. VPD was positively driven by air temperature and negatively determined by precipitation. In conclusion, a future warming scenario would significantly decrease the carbon sink of the spruce forest in Qilian Mountain. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

20 pages, 14791 KiB  
Article
Global Variability and Future Projections of Marine Heatwave Onset and Decline Rates
by Yongyan Pan, Wenjin Sun, Senliang Bao, Mingshen Xie, Lei Jiang, Jinlin Ji, Yang Yu and Changming Dong
Remote Sens. 2025, 17(8), 1362; https://doi.org/10.3390/rs17081362 - 11 Apr 2025
Cited by 1 | Viewed by 756
Abstract
Marine heatwaves (MHWs) can significantly impact marine ecosystems and socio-economic systems, and their severity may increase with global warming. Nevertheless, research on the onset and decline rates of MHWs remains limited, and their historical and future variations are not yet fully understood. This [...] Read more.
Marine heatwaves (MHWs) can significantly impact marine ecosystems and socio-economic systems, and their severity may increase with global warming. Nevertheless, research on the onset and decline rates of MHWs remains limited, and their historical and future variations are not yet fully understood. This study, therefore, analyzes the spatiotemporal characteristics of MHW onset and decline rates by using historical and future sea surface temperature data from OISSTv2.1 and CMIP6. The results indicate that during the historical period from 1982 to 2014, MHW onset and decline rates were higher in eddy-active mid-latitude current systems and the western tropical region but lower in subtropical gyres. A remarkably high correlation (0.94) exists between the onset and decline rates; regions with higher onset rates also tend to have higher decline rates. Approximately 49.69% of the global ocean exhibits an increasing trend in MHW onset rates, with significant increases observed in the Eastern Equatorial Pacific. Meanwhile, 92.87% of oceanic regions exhibit an increase in decline rates. Looking ahead to the future (2015~2100), both the SSP245 and SSP585 scenarios display consistent spatial patterns of MHW onset and decline rates. The Kuroshio-Oyashio Extension, Gulf Stream, Antarctic Circumpolar Current, and Brazil-Malvinas Confluence regions exhibit relatively higher onset and decline rates. Under the SSP585 scenario, both the onset and decline rates of MHWs are higher than those under the SSP245 scenario. This indicates that as global warming intensifies, more extreme MHWs are likely to occur. This finding indicates that it is necessary to pay attention to the rate of global warming when mitigating its potential impacts. Full article
Show Figures

Figure 1

18 pages, 9863 KiB  
Article
The Stratospheric Polar Vortex and Surface Effects: The Case of the North American 2018/19 Cold Winter
by Kathrin Finke, Abdel Hannachi, Toshihiko Hirooka, Yuya Matsuyama and Waheed Iqbal
Atmosphere 2025, 16(4), 445; https://doi.org/10.3390/atmos16040445 - 11 Apr 2025
Viewed by 595
Abstract
A severe cold air outbreak hit the US and parts of Canada in January 2019, leaving behind many casualties where at least 21 people died as a consequence. According to Insurance Business America, the event cost the US about 1 billion dollars. In [...] Read more.
A severe cold air outbreak hit the US and parts of Canada in January 2019, leaving behind many casualties where at least 21 people died as a consequence. According to Insurance Business America, the event cost the US about 1 billion dollars. In the Midwest, surface temperatures dipped to the lowest on record in decades, reaching −32 °C in Chicago, Illinois, and down to −48 °C wind chill temperature in Cotton and Dakota, Minnesota, giving rise to broad media attention. A zonal wavenumber 1–3 planetary wave forcing caused a sudden stratospheric warming, with a displacement followed by a split of the polar vortex at the beginning of 2019. The common downward progression of the stratospheric anomalies stalled at the tropopause and, thus, they did not reach tropospheric levels. Instead, the stratospheric trough, developing in a barotropic fashion around 70° W, turned the usually baroclinic structure of the Aleutian high quasi-barotropic. In response, upward propagating waves over the North Pacific were reflected at its lower stratospheric, eastward tilting edge toward North America. Channeled by a dipole structure of positive and negative eddy geopotential height anomalies, the waves converged at the center of the latter and thereby strengthened the circulation anomalies responsible for the severely cold surface temperatures in most of the Midwest and Northeast US. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 6005 KiB  
Article
Geological and Hydrographic Aspects of Dissolved Methane Distribution Within Gulf of Patience, Sakhalin Island: Marine Expedition Results in Warm Season of 2024 and Remote Sensing Data
by Nadezhda Syrbu, Andrei Kholmogorov, Vyacheslav Lobanov and Igor Stepochkin
Water 2025, 17(5), 659; https://doi.org/10.3390/w17050659 - 24 Feb 2025
Viewed by 494
Abstract
In the warm season of 2024, we conducted sampling and measurements of gas-geochemical parameters in seawater, including dissolved methane, helium, and hydrogen, in the Gulf of Patience and the eastern shelf of Sakhalin Island in the Sea of Okhotsk during cruise 71 of [...] Read more.
In the warm season of 2024, we conducted sampling and measurements of gas-geochemical parameters in seawater, including dissolved methane, helium, and hydrogen, in the Gulf of Patience and the eastern shelf of Sakhalin Island in the Sea of Okhotsk during cruise 71 of R/V Akademik Oparin. We identified a large area of bottom degassing, indicating high potential for oil and gas in this region. The fields of increased methane concentrations extend from the seabed to the lower boundary of the seasonal thermocline but do not extend into deeper parts of the Sea of Okhotsk due to the strong stratification of water in the bay. Cold, dense water lies at the bottom, and warmer, less-saline water is on the surface, creating a barrier which prevents movement of dissolved methane into the upper layer. The formation of mesoscale eddies over the continental slope to the southeast of the Gulf of Patience also contributes to preventing methane reaching the water and spreading into the deep Kuril Basin during the warm season. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

17 pages, 6293 KiB  
Article
Exploiting Enhanced Altimetry for Constraining Mesoscale Variability in the Nordic Seas and Arctic Ocean
by Antonio Bonaduce, Andrea Storto, Andrea Cipollone, Roshin P. Raj and Chunxue Yang
Remote Sens. 2025, 17(4), 684; https://doi.org/10.3390/rs17040684 - 17 Feb 2025
Cited by 1 | Viewed by 633
Abstract
Recent advances in Arctic observational capabilities have revealed that the Arctic Ocean is highly turbulent in all seasons and have improved temporal and spatial sampling of sea level retrievals from remote sensing, even above 80°N. Such data are expected to be increasingly valuable [...] Read more.
Recent advances in Arctic observational capabilities have revealed that the Arctic Ocean is highly turbulent in all seasons and have improved temporal and spatial sampling of sea level retrievals from remote sensing, even above 80°N. Such data are expected to be increasingly valuable in the future when the extent of sea ice in the Arctic Ocean is reduced. Assimilating this new data into ocean models, together with in situ observations, provides an enriched representation of the mesoscale population that induces new eddy-driven contributions to local dynamics and thermodynamics. To quantify the content of the new information, we compare three-year-long assimilative experiments at ¼° resolution incorporating in situ-only data, in situ and standard altimetry, and in situ and high-latitude-enhanced altimetry, respectively. The enhanced altimetry data lead to an increase in three-dimensional eddy kinetic energy, generated by coherent vortexes, of up to 20% in several areas. Robust ocean warming is generated in the Arctic sector down to 800 m. Via heat budget analysis, this warming can be ascribed to a local enhancement of vertical mixing, as well as an increase in meridional heat transport. The assimilation of enhanced altimetry amplifies the transport, compared to standard altimetry, especially north of 70°N. Full article
(This article belongs to the Special Issue Recent Advances on Oceanic Mesoscale Eddies II)
Show Figures

Figure 1

20 pages, 6155 KiB  
Article
Impact of Anticyclonic Mesoscale Eddies on the Vertical Structures of Marine Heatwaves in the South China Sea
by Xindi Song, Ruili Sun, Shuangyan He, Haoyu Zhang, Yanzhen Gu, Peiliang Li and Jinbao Song
Remote Sens. 2025, 17(3), 370; https://doi.org/10.3390/rs17030370 - 22 Jan 2025
Cited by 1 | Viewed by 966
Abstract
Under global warming, the South China Sea (SCS) is experiencing increasingly severe marine heatwaves (MHWs), with impacts on marine ecosystems such as coral reefs and marine pastures becoming more evident. The numerous anticyclonic eddies (AEs) distributed in the SCS are important drivers of [...] Read more.
Under global warming, the South China Sea (SCS) is experiencing increasingly severe marine heatwaves (MHWs), with impacts on marine ecosystems such as coral reefs and marine pastures becoming more evident. The numerous anticyclonic eddies (AEs) distributed in the SCS are important drivers of MHW generation and development, yet their impacts on MHWs are still not fully understood. In this study, the vertical structures of various types of MHWs inside the AEs and in the background field were mapped and compared, and we found that AEs of varying amplitudes have distinct impacts on the vertical structures of MHWs. MHWs inside the AEs can be divided into two categories: subsurface-reversed MHWs and subsurface-intensified MHWs. The former is manifested as anomalous cooling in the subsurface, driven by the uplift of thermocline due to the inhibition of downward mixing. The latter is characterized by anomalous warming in the subsurface, resulting from strong vertical warm-water subsidence induced by large-amplitude AEs. This process may penetrate the thermocline and produce maximum warming anomalies in the layer beneath the region of greatest temperature gradient change. Our research reveals characteristics of various vertical structures of MHWs in the SCS, attributing their differences to the stable water layer’s different response to varying intensities of vertical heat conduction, and deepening people’s understanding of the impact of AEs in the SCS on the vertical structure of MHWs. Full article
Show Figures

Figure 1

34 pages, 7806 KiB  
Article
Using OCO-2 Observations to Constrain Regional CO2 Fluxes Estimated with the Vegetation, Photosynthesis and Respiration Model
by Igor B. Konovalov, Nikolai A. Golovushkin and Evgeny A. Mareev
Remote Sens. 2025, 17(2), 177; https://doi.org/10.3390/rs17020177 - 7 Jan 2025
Cited by 2 | Viewed by 1147
Abstract
A good quantitative knowledge of regional sources and sinks of atmospheric carbon dioxide (CO2) is essential for understanding the global carbon cycle. It is also a key prerequisite for elaborating cost-effective national strategies to achieve the goals of the Paris Agreement. [...] Read more.
A good quantitative knowledge of regional sources and sinks of atmospheric carbon dioxide (CO2) is essential for understanding the global carbon cycle. It is also a key prerequisite for elaborating cost-effective national strategies to achieve the goals of the Paris Agreement. However, available estimates of CO2 fluxes for many regions of the world remain uncertain, despite significant recent progress in the remote sensing of terrestrial vegetation and atmospheric CO2. In this study, we investigate the feasibility of inferring reliable regional estimates of the net ecosystem exchange (NEE) using column-averaged dry-air mole fractions of CO2 (XCO2) retrieved from Orbiting Carbon Observatory-2 (OCO-2) observations as constraints on parameters of the widely used Vegetation Photosynthesis and Respiration model (VPRM), which predicts ecosystem fluxes based on vegetation indices derived from multispectral satellite imagery. We developed a regional-scale inverse modeling system that applies a Bayesian variational optimization algorithm to optimize parameters of VPRM coupled to the CHIMERE chemistry transport model and which involves a preliminary transformation of the input XCO2 data that reduces the impact of the CHIMERE boundary conditions on inversion results. We investigated the potential of our inversion system by applying it to a European region (that includes, in particular, the EU countries and the UK) for the warm season (May–September) of 2021. The inversion of the OCO-2 observations resulted in a major (more than threefold) reduction of the prior uncertainty in the regional NEE estimate. The posterior NEE estimate agrees with independent estimates provided by the CarbonTracker Europe High-Resolution (CTE-HR) system and the ensemble of the v10 OCO-2 model intercomparison (MIP) global inversions. We also found that the inversion improves the agreement of our simulations of XCO2 with retrievals from the Total Carbon Column Observing Network (TCCON). Our sensitivity test experiments using synthetic XCO2 data indicate that the posterior NEE estimate would remain reliable even if the actual regional CO2 fluxes drastically differed from their prior values. Furthermore, the posterior NEE estimate is found to be robust to strong biases and random uncertainties in the CHIMERE boundary conditions. Overall, this study suggests that our approach offers a reliable and relatively simple way to derive robust estimates of CO2 ecosystem fluxes from satellite XCO2 observations while enhancing the applicability of VPRM in regions where eddy covariance measurements of CO2 fluxes are scarce. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

17 pages, 7040 KiB  
Article
Observation of Statistical Characteristics and Vertical Structures of Surface Warm Cyclonic Eddies and Cold Anticyclonic Eddies in the North Pacific Subtropical Countercurrent Region
by Yaowei Ma, Qinghong Li, Xiangjun Yu, Song Li and Xingyu Zhou
J. Mar. Sci. Eng. 2024, 12(10), 1783; https://doi.org/10.3390/jmse12101783 - 8 Oct 2024
Viewed by 1298
Abstract
Conventional wisdom about mesoscale eddies is that cyclonic (anticyclonic) eddies are commonly associated with cold(warm) surface cores. Nevertheless, plenties of surface warm cyclonic eddies (WCEs) and cold anticyclonic eddies (CAEs) in the North Pacific Subtropical Countercurrent (STCC) region are observed by a synergistic [...] Read more.
Conventional wisdom about mesoscale eddies is that cyclonic (anticyclonic) eddies are commonly associated with cold(warm) surface cores. Nevertheless, plenties of surface warm cyclonic eddies (WCEs) and cold anticyclonic eddies (CAEs) in the North Pacific Subtropical Countercurrent (STCC) region are observed by a synergistic investigation based on data from satellite altimetry, microwave radiometer, and Argo float profiles in this study. The results indicate that these two types of abnormal eddies (WCEs and CAEs) are prevalent in the STCC region, comprising approximately 30% of all eddies detected via satellite observations. We then analyze their spatial-temporal distribution characteristics and composite vertical structures. A statistical comparison with surface cold cyclonic eddies (CCEs) and warm anticyclonic eddies (WAEs) reveals notable differences between the anomalous and typical eddies. Additionally, we present the composite vertical structures of temperature and salinity anomalies for the anomalous eddies across five delineated subregions within an eddy-coordinate system. Furthermore, the close relationship between these abnormal eddies and subsurface-intensified mesoscale eddies are discussed. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

19 pages, 6249 KiB  
Article
Carbon and Energy Balance in a Primary Amazonian Forest and Its Relationship with Remote Sensing Estimates
by Mailson P. Alves, Rommel B. C. da Silva, Cláudio M. Santos e Silva, Bergson G. Bezerra, Keila Rêgo Mendes, Larice A. Marinho, Melahel L. Barbosa, Hildo Giuseppe Garcia Caldas Nunes, José Guilherme Martins Dos Santos, Theomar Trindade de Araújo Tiburtino Neves, Raoni A. Santana, Lucas Vaz Peres, Alex Santos da Silva, Petia Oliveira, Victor Hugo Pereira Moutinho, Wilderclay B. Machado, Iolanda M. S. Reis, Marcos Cesar da Rocha Seruffo, Avner Brasileiro dos Santos Gaspar, Waldeir Pereira and Gabriel Brito-Costaadd Show full author list remove Hide full author list
Remote Sens. 2024, 16(19), 3606; https://doi.org/10.3390/rs16193606 - 27 Sep 2024
Cited by 4 | Viewed by 1934
Abstract
With few measurement sites and a great need to validate satellite data to characterize the exchange of energy and carbon fluxes in tropical forest areas, quantified by the Net Ecosystem Exchange (NEE) and associated with phenological measurements, there is an increasing need for [...] Read more.
With few measurement sites and a great need to validate satellite data to characterize the exchange of energy and carbon fluxes in tropical forest areas, quantified by the Net Ecosystem Exchange (NEE) and associated with phenological measurements, there is an increasing need for studies aimed at characterizing the Amazonian environment in its biosphere–atmosphere interaction, considering the accelerated deforestation in recent years. Using data from a flux measurement tower in the Caxiuanã-PA forest (2005–2008), climatic data, CO2 exchange estimated by eddy covariance, as well as Gross Primary Productivity (GPP) data and satellite vegetation indices (from MODIS), this work aimed to describe the site’s energy, climatic and carbon cycle flux patterns, correlating its gross primary productivity with satellite vegetation indices. The results found were: (1) marked seasonality of climatic variables and energy flows, with evapotranspiration and air temperature on the site following the annual march of solar radiation and precipitation; (2) energy fluxes in phase and dependent on available energy; (3) the site as a carbon sink (−569.7 ± 444.9 gC m−2 year−1), with intensity varying according to the site’s annual water availability; (4) low correlation between productivity data and vegetation indices, corroborating data in the literature on these variables in this type of ecosystem. The results show the importance of preserving this type of environment for the mitigation of global warming and the need to improve satellite estimates for this region. NDVI and EVI patterns follow radiative availability, as does LAI, but without direct capture related to GPP data, which correlates better with satellite data only in the months with the highest LAI. The results show the significant difference at a point measurement to a satellite interpolation, presenting how important preserving any type of environment is, even related to its size, for the global climate balance, and also the need to improve satellite estimates for smaller areas. Full article
Show Figures

Graphical abstract

24 pages, 2008 KiB  
Review
A Review on the Arctic–Midlatitudes Connection: Interactive Impacts, Physical Mechanisms, and Nonstationary
by Shuoyi Ding, Xiaodan Chen, Xuanwen Zhang, Xiang Zhang and Peiqiang Xu
Atmosphere 2024, 15(9), 1115; https://doi.org/10.3390/atmos15091115 - 13 Sep 2024
Cited by 2 | Viewed by 2549
Abstract
In light of the rapid Arctic warming and continuous reduction in Arctic Sea ice, the complex two-way Arctic–midlatitudes connection has become a focal point in recent climate research. In this paper, we review the current understanding of the interactive influence between midlatitude atmospheric [...] Read more.
In light of the rapid Arctic warming and continuous reduction in Arctic Sea ice, the complex two-way Arctic–midlatitudes connection has become a focal point in recent climate research. In this paper, we review the current understanding of the interactive influence between midlatitude atmospheric variability and Arctic Sea ice or thermal conditions on interannual timescales. As sea ice diminishes, in contrast to the Arctic warming (cooling) in boreal winter (summer), Eurasia and North America have experienced anomalously cold (warm) conditions and record snowfall (rainfall), forming an opposite oscillation between the Arctic and midlatitudes. Both statistical analyses and modeling studies have demonstrated the significant impacts of autumn–winter Arctic variations on winter midlatitude cooling, cold surges, and snowfall, as well as the potential contributions of spring–summer Arctic variations to midlatitude warming, heatwaves and rainfall, particularly focusing on the role of distinct regional sea ice. The possible physical processes can be categorized into tropospheric and stratospheric pathways, with the former encompassing the swirling jet stream, horizontally propagated Rossby waves, and transient eddy–mean flow interaction, and the latter manifested as anomalous vertical propagation of quasi-stationary planetary waves and associated downward control of stratospheric anomalies. In turn, atmospheric prevailing patterns in the midlatitudes also contribute to Arctic Sea ice or thermal condition anomalies by meridional energy transport. The Arctic–midlatitudes connection fluctuates over time and is influenced by multiple factors (e.g., continuous melting of climatological sea ice, different locations and magnitudes of sea ice anomalies, internal variability, and other external forcings), undoubtedly increasing the difficulty of mechanism studies and the uncertainty surrounding predictions of midlatitude weather and climate. In conclusion, we provide a succinct summary and offer suggestions for future research. Full article
(This article belongs to the Special Issue Arctic Atmosphere–Sea Ice Interaction and Impacts)
Show Figures

Figure 1

16 pages, 5452 KiB  
Article
Comparison of Summer Coastal Currents off the East Coast of Korea in 2021 and 2022
by Seung-Woo Lee, Gyundo Pak, Jae-Hyoung Park, Su-Chan Lee, Jin-Yong Jeong and Suyun Noh
J. Mar. Sci. Eng. 2024, 12(9), 1512; https://doi.org/10.3390/jmse12091512 - 2 Sep 2024
Viewed by 1998
Abstract
This study investigates the variability of coastal currents off the east coast of Korea, specifically in the Wangdolcho area of the East/Japan Sea, from June 2021 to October 2022. The observations revealed significant fluctuations in depth-averaged current velocity, with a peak of 0.81 [...] Read more.
This study investigates the variability of coastal currents off the east coast of Korea, specifically in the Wangdolcho area of the East/Japan Sea, from June 2021 to October 2022. The observations revealed significant fluctuations in depth-averaged current velocity, with a peak of 0.81 m/s in August 2021 and a minimum of −0.05 m/s in August 2022. These year-to-year variations highlight the complex dynamics of coastal currents influenced by regional wind patterns and mesoscale eddies. In the summer of 2021, the development of offshore eddies, coupled with variable alongshore wind stress, led to increased current velocities and alternating upwelling and downwelling conditions, resulting in abrupt changes in current intensity. Conversely, in the summer of 2022, the negative vorticity in the Korea Strait and negative wind stress curl along the coast likely caused the East Korean Warm Current to shift further offshore, resulting in a weakened southward flow along the coast. This study emphasizes the need for long-term monitoring to better understand the coastal current dynamics and their environmental impacts. The anticipated completion of the Wangdolcho Ocean Research Station is expected to greatly improve monitoring capabilities, providing continuous and comprehensive data that will enhance our understanding of coastal currents and their broader impacts on the marine environment. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

30 pages, 135008 KiB  
Article
Characteristics of Summer Flash Drought and Its Effect on Maize Growth in Liaoning Province, China
by Ruipeng Ji, Wenying Yu, Baihui Guo, Rui Feng, Jinwen Wu, Dongming Liu and Changhua Xu
Agronomy 2024, 14(8), 1791; https://doi.org/10.3390/agronomy14081791 - 14 Aug 2024
Cited by 1 | Viewed by 1099
Abstract
Flash droughts, characterized by their abrupt onset and rapid intensification, are predicted to increase in frequency and severity under global warming. Understanding the incidence and progression of a flash drought and its impact on maize growth is crucial for maize production to withstand [...] Read more.
Flash droughts, characterized by their abrupt onset and rapid intensification, are predicted to increase in frequency and severity under global warming. Understanding the incidence and progression of a flash drought and its impact on maize growth is crucial for maize production to withstand flash drought events. This study used the evaporative demand drought index (EDDI) method to evaluate the incidence of summer drought in Liaoning during the period 1961–2020. It examined the incidence and characteristics of summer flash droughts in Liaoning Province in the period of 1961–2020 and evaluated the factors responsible and the impact on maize during the critical development period. The ratio of the number of stations recording a disaster to total number of stations (IOC) curve, i.e., the ratio of the number of stations recording disasters and total stations, for summer flash droughts in Liaoning showed an upward trend during the period of 1961–2020, with large-scale, regional, and local flash droughts occurring in 8, 10, and 31 years, respectively. Summer flash droughts in Liaoning were mainly in the extreme drought category and ranged in frequency from 10% to 20% in most areas. Before the flash drought occurrence in three typical years (1989, 1997, and 2018), a precipitation deficit without large-scale high-temperature events was observed, and the cumulative water deficit caused the flash drought. Regional or large-scale high-temperature events were often accompanied by flash droughts, and the drought intensified rapidly, owing to the influence of heat waves and water deficits. Summer flash droughts caused a reduction in total primary productivity (GPP) of maize by more than 20% in most areas in the three typical years. The yield reduction rate in 1989, 1997, and 2018, was 27.6%, 26.4%, and 5%, respectively. The degree of decline in maize productivity and yield was associated with the onset and duration of the flash drought. The atmospheric conditions of summer flash droughts were characterized by high-pressure anomalies and atmospheric subsidence, which were unconducive for precipitation but conducive to flash drought occurrence. The continuous high-pressure anomaly promoted the maintenance of the flash drought. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

11 pages, 2354 KiB  
Article
Influence of Abnormal Eddies on Seasonal Variations in Sonic Layer Depth in the South China Sea
by Xintong Liu, Chunhua Qiu, Tianlin Wang, Huabin Mao and Peng Xiao
Remote Sens. 2024, 16(15), 2845; https://doi.org/10.3390/rs16152845 - 2 Aug 2024
Viewed by 1414
Abstract
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal [...] Read more.
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal eddies (warm anticyclonic and cold cyclonic eddies) and abnormal eddies (cold anticyclonic and warm cyclonic eddies). However, the influence of mesoscale eddies, especially abnormal eddies, on SLD remains unclear. Based on satellite altimeter and reanalysis data, we explored the influence of mesoscale eddies on seasonal variations in SLD in the South China Sea. We found that the vertical structures of temperature anomalies within the eddies had a significant impact on the sound speed field. A positive correlation between sonic layer depth anomaly (SLDA) and eddy intensity (absolute value of relative vorticity) was investigated. The SLDA showed significant seasonal variations: during summer (winter), the proportion of negative (positive) SLDA increased. Normal eddies (abnormal eddies) had a more pronounced effect during summer and autumn (spring and winter). Based on mixed-layer heat budget analysis, it was found that the seasonal variation in SLD was primarily induced by air–sea heat fluxes. However, for abnormal eddies, the horizontal advection and vertical convective terms modulated the variations in the SLDA. This study provides additional theoretical support for mesoscale eddy–acoustic coupling models and advances our understanding of the impact of mesoscale eddies on sound propagation. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Third Edition))
Show Figures

Figure 1

14 pages, 2157 KiB  
Article
Viral Dynamics in the Tropical Pacific Ocean: A Comparison between Within and Outside a Warm Eddy
by Patrichka Wei-Yi Chen, Madeline Olivia, Gwo-Ching Gong, Sen Jan and An-Yi Tsai
Viruses 2024, 16(6), 937; https://doi.org/10.3390/v16060937 - 11 Jun 2024
Viewed by 1299
Abstract
In mesoscale eddies, the chemical properties and biological composition are different from those in the surrounding water due to their unique physical processes. The mechanism of physical–biological coupling in warm-core eddies is unclear, especially because no studies have examined the effects of environmental [...] Read more.
In mesoscale eddies, the chemical properties and biological composition are different from those in the surrounding water due to their unique physical processes. The mechanism of physical–biological coupling in warm-core eddies is unclear, especially because no studies have examined the effects of environmental factors on bacteria and viruses. The purpose of the present study was to examine the influence of an anticyclonic warm eddy on the relationship between bacterial and viral abundances, as well as viral activity (viral production), at different depths. At the core of the warm eddy, the bacterial abundance (0.48 to 2.82 × 105 cells mL−1) fluctuated less than that outside the eddy (1.12 to 7.03 × 105 cells mL−1). In particular, there was a four-fold higher viral–bacterial abundance ratio (VBR) estimated within the eddy, below the layer of the deep chlorophyll maximum, than outside the eddy. An anticyclonic warm eddy with downwelling at its center may contribute to viruses being transmitted directly into the deep ocean through adsorption on particulate organic matter while sinking. Overall, our findings provide valuable insights into the interaction between bacterial and viral abundances and their ecological mechanisms within a warm eddy. Full article
(This article belongs to the Special Issue Diversity and Evolution of Viruses in Ecosystem)
Show Figures

Figure 1

Back to TopTop