Measurement of CO2 by Wavelength Modulated Reinjection Off-Axis Integrated Cavity Output Spectroscopy at 2 μm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Experimental Equipment
2.3. Spectral Line Selection
3. Results and Discussion
3.1. Reinjection Mirror Design and Wavelength Modulation Parameters Determination
3.2. Comparative Analysis of Systems Performance
3.3. Measurement of Room Atmospheric CO2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.Q.; Chen, Z.Y.; Liu, J.G.; Xie, P.H.; Zhang, T.S.; Zhao, N.J.; Si, F.Q.; Hu, R.Z.; Yin, G.F. Advances with Respect to the Environment Spectroscopy Monitoring Technology. Acta Opt. Sin. 2020, 40, 7–14. [Google Scholar]
- Bogomolov, A.; Zabarylo, U.; Kirsanov, D.; Belikova, V.; Ageev, V.; Usenov, I.; Galyanin, V.; Minet, O.; Sakharova, T.; Danielyan, G.; et al. Development and Testing of an LED-Based Near-Infrared Sensor for Human Kidney Tumor Diagnostics. Sensors 2017, 17, 0914–0930. [Google Scholar] [CrossRef] [Green Version]
- Harilal, S.S.; Brumfield, B.E.; Lahaye, N.L. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis. Appl. Phys. Rev. 2018, 5, 021301. [Google Scholar] [CrossRef]
- Cygan, A.; Wcisło, P.; Wójtewicz, S.; Masłowski, P.; Domysławska, J.; Trawiński, R.S.; Ciuryło, R.; Lisak, D. Precise cavity enhanced absorption spectroscopy. J. Phys. Conf. Ser. 2014, 548, 012015. [Google Scholar] [CrossRef] [Green Version]
- Maithani, S.; Pradhan, M. Cavity ring-down spectroscopy and its applications to environmental, chemical and biomedical systems. J. Chem. Sci. 2020, 132, 114. [Google Scholar] [CrossRef]
- Kiseleva, M.; Mandon, J.; Persijn, S.; Harren, F.J.M. Accurate measurements of line strengths and air-broadening coefficients in methane around 1.66 µm using cavity ring down spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2019, 224, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.B.; Lapson, L.; Anderson, J.G. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment. Appl. Opt. 2001, 40, 4904–4910. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.Y.; Zheng, C.T.; He, Q.X.; Yao, D.; Hu, L.; Zhang, Y.; Wang, Y.D.; Tittel, F.K. Near-infrared acetylene sensor system using off-axis integrated-cavity output spectroscopy and two measurement schemes. Opt. Express 2018, 26, 26205–26216. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, M.; Tetzlaff, D.; Soulsby, C. No influence of CO2 on stable isotope analyses of soil waters with off-axis integrated cavity output spectroscopy (OA-ICOS). Rapid Commun. Mass Spectrom. 2017, 31, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Chandran, S.; Ruth, A.A.; Martin, E.P.; Alexander, J.K.; Peters, F.H.; Anandarajah, P.M. Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514μm. Sensors 2019, 19, 5217. [Google Scholar] [CrossRef] [Green Version]
- Leen, J.B.; O’Keefe, A. Optical re-injection in cavity-enhanced absorption spectroscopy. Rev. Sci. Instrum. 2014, 85, 093101. [Google Scholar] [CrossRef] [Green Version]
- Centeno, R.; Mandon, J.; Cristescu, S.M.; Harren, F.J.M. Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser. Sens. Actuators 2014, 203, 311–319. [Google Scholar] [CrossRef]
- Centeno, R.; Mandon, J.; Cristescu, S.M.; Harren, F.J.M. Sensitivity enhancement in off-axis integrated cavity output spectroscopy. Opt. Express 2014, 22, 27985–27991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadeem, F.; Postma, B.R.; Postma, G.; Cristescu, S.M.; Mandon, J.; Harren, F.J.M. Comprehensive three-dimensional ray tracing model for three-mirror cavity-enhanced spectroscopy. Appl. Opt. 2018, 57, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, F.; Mandon, J.; Cristescu, S.M.; Harren, F.J.M. Intensity enhancement in off-axis integrated cavity output spectroscopy. Appl. Opt. 2018, 57, 8536–8542. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.X.; Huang, Y.B.; Lu, X.J.; Yuan, Z.H.; Cao, Z.S. Design and experiment of re-injection off-axis integrated cavity output spectroscopy technology in 2 μm band. Acta Phys. Sin. 2019, 68, 339–349. [Google Scholar]
- Zhou, Z.X.; Huang, Y.B.; Lu, X.J.; Yuan, Z.H.; Cao, Z.S. Method of suppressing interference noise for re-injection off-axis integrated cavity output spectroscopy. Chin. J. Quantum Electron. 2019, 36, 651–657. [Google Scholar]
- Fiedler, S.E.; Hese, A.; Ruth, A.A. Incoherent broad-band cavity-enhanced absorption spectroscopy. Chem. Phys. Lett. 2003, 371, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.X. Integrated Cavity Output Spectroscopy and Its Application; Chinese Academy of Sciences: Hefei, China, 2008. [Google Scholar]
- Zhao, W.X.; Gao, X.; Chen, W.; Zhang, W.; Huang, T.; Wu, T.; Cha, H. Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared. Appl. Phys. B 2007, 86, 353–359. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Reid, J.; Labrie, D. Second-harmonic detection with tunable diode lasers-Comparison of experiment and theory. Appl. Phys. B Photophysics Laser Chem. 1981, 26, 203–210. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Huang, Y.; Lu, X.; Huang, J.; Liu, Q.; Qi, G.; Cao, Z. Measurement of CO2 by Wavelength Modulated Reinjection Off-Axis Integrated Cavity Output Spectroscopy at 2 μm. Atmosphere 2021, 12, 1247. https://doi.org/10.3390/atmos12101247
Yuan Z, Huang Y, Lu X, Huang J, Liu Q, Qi G, Cao Z. Measurement of CO2 by Wavelength Modulated Reinjection Off-Axis Integrated Cavity Output Spectroscopy at 2 μm. Atmosphere. 2021; 12(10):1247. https://doi.org/10.3390/atmos12101247
Chicago/Turabian StyleYuan, Zihao, Yinbo Huang, Xingji Lu, Jun Huang, Qiang Liu, Gang Qi, and Zhensong Cao. 2021. "Measurement of CO2 by Wavelength Modulated Reinjection Off-Axis Integrated Cavity Output Spectroscopy at 2 μm" Atmosphere 12, no. 10: 1247. https://doi.org/10.3390/atmos12101247
APA StyleYuan, Z., Huang, Y., Lu, X., Huang, J., Liu, Q., Qi, G., & Cao, Z. (2021). Measurement of CO2 by Wavelength Modulated Reinjection Off-Axis Integrated Cavity Output Spectroscopy at 2 μm. Atmosphere, 12(10), 1247. https://doi.org/10.3390/atmos12101247