The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Design
2.2. Blood and Synovial Specimen Collection and Processing
2.3. Transplantation and Processing of Microfragmented Adipose Tissue with Ad-MSCs
2.4. Immunoglobulin G Isolation from Plasma and Synovial Fluid Samples
2.5. N-glycan Release, Labeling and Analysis by Ultra-Performance Liquid Chromatography
2.6. Radiography
2.7. MR Imaging
2.8. dGEMRIC Protocol
2.9. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Safety and Chondrotoxicity Profile of Intra-Articular Injection of Autologous Microfragmented Adipose Tissue
3.3. Basic Clinical Outcomes: Visual Analogue Scale for Pain Assessment and C-Reactive Protein
3.4. N-Glycan Profile Analysis
3.5. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC)
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kurz, B.; Lemke, A.K.; Fay, J.; Pufe, T.; Grodzinsky, A.J.; Schunke, M. Pathomechanisms of cartilage destruction by mechanical injury. Ann. Anat. 2005, 187, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Boshuizen, H.C.; Poos, M.J.; van den Akker, M.; van Boven, K.; Korevaar, J.C.; de Waal, M.W.; Biermans, M.C.; Hoeymans, N. Estimating incidence and prevalence rates of chronic diseases using disease modeling. Popul. Health Metr. 2017, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Schofield, D.; Callander, E. The individual and socioeconomic impact of osteoarthritis. Nat. Rev. Rheumatol. 2014, 10, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Orchard, J.; Moen, M.H. Has reimbursement for knee osteoarthritis treatments now reached ‘postfact’ status? Br. J. Sports Med. 2017, 29, 2017-097605. [Google Scholar] [CrossRef] [PubMed]
- Primorac, D.; Stover, M.L.; Clark, S.H.; Rowe, D.W. Molecular basis of nanomelia, a heritable chondrodystrophy of chicken. Matrix Biol. 1994, 14, 297–305. [Google Scholar] [CrossRef]
- Primorac, D.; Johnson, C.V.; Lawrence, J.B.; McKinstry, M.B.; Stover, M.L.; Schanfield, M.S.; Andjelinovic, S.; Tadic, T.; Rowe, D.W. Premature termination codon in the aggrecan gene of nanomelia and its influence on mrna transport and stability. Croat. Med. J. 1999, 40, 528–532. [Google Scholar] [PubMed]
- Horton, W.E., Jr.; Bennion, P.; Yang, L. Cellular, molecular, and matrix changes in cartilage during aging and osteoarthritis. J. Musculoskelet. Neuronal Interact. 2006, 6, 379–381. [Google Scholar] [PubMed]
- Rahmati, M.; Nalesso, G.; Mobasheri, A.; Mozafari, M. Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Res. Rev. 2017, 40, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Brinker, M.R.; O’Connor, D.P. Articular tissues. In Review of Orthopaedics, 6th ed.; Miller, M., Thompson, S., Hart, J., Eds.; Elsevier Saunders: Philadelphia, PA, USA, 2012; pp. 39–48. [Google Scholar]
- Buckwalter, J.A.; Woo, S.L.; Goldberg, V.M.; Hadley, E.C.; Booth, F.; Oegema, T.R.; Eyre, D.R. Soft-tissue aging and musculoskeletal function. J. Bone Joint Surg. Am. 1993, 75, 1533–1548. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Matta, C.; Zakany, R.; Musumeci, G. Chondrosenescence: Definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 2015, 80, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Greene, M.A.; Loeser, R.F. Aging-related inflammation in osteoarthritis. Osteoarthr. Cartil. 2015, 23, 1966–1971. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Sharma, A.R.; Chakraborty, C.; Saibaba, B.; Ahn, M.E.; Lee, S.S. Review of prospects of biological fluid biomarkers in osteoarthritis. Int. J. Mol. Sci. 2017, 18, 601. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Henrotin, Y. Biomarkers of (osteo)arthritis. Biomarkers 2015, 20, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Lauc, G.; Pezer, M.; Rudan, I.; Campbell, H. Mechanisms of disease: The human N-glycome. Biochim. Biophys. Acta 2016, 1860, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Drake, P.M.; Cho, W.; Li, B.; Prakobphol, A.; Johansen, E.; Anderson, N.L.; Regnier, F.E.; Gibson, B.W.; Fisher, S.J. Sweetening the pot: Adding glycosylation to the biomarker discovery equation. Clin. Chem. 2010, 56, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.H.; Kraus, V.B.; Setton, L.A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Derendorf, H.; Mollmann, H.; Gruner, A.; Haack, D.; Gyselby, G. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration. Clin. Pharmacol. Ther. 1986, 39, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.R.; Kimpton, W.G.; Pierscionek, B.K.; Cahill, R.N. The kinetics of hyaluronan in normal and acutely inflamed synovial joints: Observations with experimental arthritis in sheep. Sem. Arthritis Rheum. 1993, 22, 9–17. [Google Scholar] [CrossRef]
- Caplan, A.I. Adult mesenchymal stem cells: When, where, and how. Stem Cells Int. 2015, 2015, 628767. [Google Scholar] [CrossRef] [PubMed]
- Cuti, T.; Antunovic, M.; Marijanovic, I.; Ivkovic, A.; Vukasovic, A.; Matic, I.; Pecina, M.; Hudetz, D. Capacity of muscle derived stem cells and pericytes to promote tendon graft integration and ligamentization following anterior cruciate ligament reconstruction. Int. Orthop. 2017, 41, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Lee, Y.G.; Shin, W.H.; Kim, H.; Chai, J.W.; Jeong, E.C.; Kim, J.E.; Shim, H.; Shin, J.S.; Shin, I.S.; et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells 2014, 32, 1254–1266. [Google Scholar] [CrossRef] [PubMed]
- Pers, Y.M.; Rackwitz, L.; Ferreira, R.; Pullig, O.; Delfour, C.; Barry, F.; Sensebe, L.; Casteilla, L.; Fleury, S.; Bourin, P.; et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: A phase I dose-escalation trial. Stem Cells Transl. Med. 2016, 5, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Tremolada, C.; Colombo, V.; Ventura, C. Adipose tissue and mesenchymal stem cells: State of the art and Lipogems® technology development. Curr. Stem Cell Rep. 2016, 2, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, M.M.; Mlynarik, V.; Zbyn, S.; Szomolanyi, P.; Apprich, S.; Windhager, R.; Trattnig, S. New technology in imaging cartilage of the ankle. Cartilage 2017, 8, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Eagle, S.; Potter, H.G.; Koff, M.F. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J. Orthop. Res. 2017, 35, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Tiderius, C.J.; Olsson, L.E.; Nyquist, F.; Dahlberg, L. Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: Delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum. 2005, 52, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Young, A.A.; Stanwell, P.; Williams, A.; Rohrsheim, J.A.; Parker, D.A.; Giuffre, B.; Ellis, A.M. Glycosaminoglycan content of knee cartilage following posterior cruciate ligament rupture demonstrated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC). A case report. J. Bone Joint Surg. Am. 2005, 87, 2763–2767. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Gillis, A.; McKenzie, C.; Po, B.; Sharma, L.; Micheli, L.; McKeon, B.; Burstein, D. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced mri of cartilage (dGEMRIC): Potential clinical applications. AJR Am. J. Roentgenol. 2004, 182, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Burstein, D.; Velyvis, J.; Scott, K.T.; Stock, K.W.; Kim, Y.J.; Jaramillo, D.; Boutin, R.D.; Gray, M.L. Protocol issues for delayed Gd(DTPA)2--enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn. Reson. Med. 2001, 45, 36–41. [Google Scholar] [CrossRef]
- Tiderius, C.J.; Olsson, L.E.; Leander, P.; Ekberg, O.; Dahlberg, L. Delayed gadolinium-enhanced mri of cartilage (dGEMRIC) in early knee osteoarthritis. Magn. Reson. Med. 2003, 49, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Maioli, M.; Leonardi, E.; Olivi, E.; Pasquinelli, G.; Valente, S.; Mendez, A.J.; Ricordi, C.; Raffaini, M.; Tremolada, C.; et al. A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transp. 2013, 22, 2063–2077. [Google Scholar] [CrossRef] [PubMed]
- Trbojevic-Akmacic, I.; Ugrina, I.; Lauc, G. Comparative analysis and validation of different steps in glycomics studies. Methods Enzymol. 2017, 586, 37–55. [Google Scholar] [PubMed]
- Pucic, M.; Knezevic, A.; Vidic, J.; Adamczyk, B.; Novokmet, M.; Polasek, O.; Gornik, O.; Supraha-Goreta, S.; Wormald, M.R.; Redzic, I.; et al. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol. Cell. Proteom. 2011, 10, M111.010090. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Crema, M.D.; Roemer, F.W.; Marra, M.D.; Burstein, D.; Gold, G.E.; Eckstein, F.; Baum, T.; Mosher, T.J.; Carrino, J.A.; Guermazi, A. Articular cartilage in the knee: Current mr imaging techniques and applications in clinical practice and research. Radiographics 2011, 31, 37–61. [Google Scholar] [CrossRef] [PubMed]
- Sonin, A.H.; Pensy, R.A.; Mulligan, M.E.; Hatem, S. Grading articular cartilage of the knee using fast spin-echo proton density-weighted mr imaging without fat suppression. AJR Am. J. Roentgenol. 2002, 179, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Tiderius, C.J.; Tjornstrand, J.; Akeson, P.; Sodersten, K.; Dahlberg, L.; Leander, P. Delayed gadolinium-enhanced mri of cartilage (dGEMRIC): Intra- and interobserver variability in standardized drawing of regions of interest. Acta Radiol. 2004, 45, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Bittersohl, B.; Hosalkar, H.S.; Haamberg, T.; Kim, Y.J.; Werlen, S.; Siebenrock, K.A.; Mamisch, T.C. Reproducibility of dgemric in assessment of hip joint cartilage: A prospective study. J. Magn. Reson. Imag. 2009, 30, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Barry, F.; Murphy, M. Mesenchymal stem cells in joint disease and repair. Nat. Rev. Rheumatol. 2013, 9, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I.; Dennis, J.E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 2006, 98, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Mokbel, A.N.; El Tookhy, O.S.; Shamaa, A.A.; Rashed, L.A.; Sabry, D.; El Sayed, A.M. Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet. Disord. 2011, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Moy, O.J.; Peimer, C.A.; Nakamura, T.; Howard, C.; Ko, S.H.; Lee, T.C.; Nishiwaki, Y. An experimental study on costal osteochondral graft. Osteoarthr. Cartil. 2012, 20, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I.; Correa, D. The msc: An injury drugstore. Cell Stem Cell 2011, 9, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Goldring, S.R.; Goldring, M.B. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin. Orthop. Relat. Res. 2004, S27–S36. [Google Scholar] [CrossRef]
- Roughley, P.J.; Mort, J.S. The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthop. 2014, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.L.; Burstein, D.; Kim, Y.J.; Maroudas, A. 2007 elizabeth winston lanier award winner. Magnetic resonance imaging of cartilage glycosaminoglycan: Basic principles, imaging technique, and clinical applications. J. Orthop. Res. 2008, 26, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H.J. Comparison of magnetic properties of mri contrast media solutions at different magnetic field strengths. Investig. Radiol. 2005, 40, 715–724. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Novokmet, M.; Lukic, E.; Vuckovic, F.; Ethuric, Z.; Keser, T.; Rajsl, K.; Remondini, D.; Castellani, G.; Gasparovic, H.; Gornik, O.; et al. Changes in IgG and total plasma protein glycomes in acute systemic inflammation. Sci. Rep. 2014, 4, 4347. [Google Scholar] [CrossRef] [PubMed]
- Gornik, O.; Lauc, G. Glycosylation of serum proteins in inflammatory diseases. Dis. Markers 2008, 25, 267–278. [Google Scholar] [CrossRef] [PubMed]




| Initial (M0) | First Follow-up (M3) | Second Follow-up (M6) | Third Follow-up (M12) | p * (M0–M3) | p * (M0–M6) | p * (M0–M12) | |
|---|---|---|---|---|---|---|---|
| C-reactive protein (CRP); mean ± SD (min-max) | 6.54 ± 7.83 (1–20.3) | - | 3.86 ± 3.71 (0.6–12) | 5.17 ± 5.83 (0.6–23.1) | - | 0.158 | 0.330 |
| Visual analogue scale pain rating, resting; mean ± SD (min-max) | 3.94 ± 2.56 (0–8) | 1.24 ± 1.48 (0–4) | 1.17 ± 1.62 (0–5) | 0.56 ± 1.2 (0–4) | 0.001 | <0.001 | <0.001 |
| Visual analogue scale pain rating, movement; mean ± SD (min-max) | 7.33 ± 1.72 (4–10) | 3.82 ± 2.07 (1–7) | 3.67 ± 2.03 (0–7) | 3.17 ± 1.98 (0–7) | <0.001 | <0.001 | <0.001 |
| Glycan | Initial Measurement (M0) | First Follow-up (M6) | Second Follow-up (M12) | p * (M0–M6) | p * (M0–M12) |
|---|---|---|---|---|---|
| GP1 | 0.125 ± 0.063 (0.046–0.277) | 0.138 ± 0.055 (0.083–0.258) | 0.127 ± 0.052 (0.044–0.254) | 0.417 | 0.996 |
| GP2 | 1.458 ± 0.97 (0.255–4.007) | 1.131 ± 0.632 (0.249–2.167) | 1.424 ± 0.955 (0.283–3.999) | 0.769 | 0.523 |
| GP3 | 0.113 ± 0.02 (0.09–0.151) | 0.121 ± 0.021 (0.099–0.161) | 0.12 ± 0.023 (0.085–0.162) | 0.065 | 0.142 |
| GP4 | 27.9 ± 8.246 (12.755–46.784) | 29.926 ± 7.142 (22.454–43.436) | 28.143 ± 7.034 (14.145–43.06) | 0.861 | 0.957 |
| GP5 | 0.168 ± 0.028 (0.136–0.218) | 0.167 ± 0.027 (0.139–0.21) | 0.172 ± 0.032 (0.132–0.237) | 0.793 | 0.366 |
| GP6 | 7.135 ± 1.299 (4.313–9.109) | 7.157 ± 1.683 (4.274–10.042) | 7.545 ± 1.663 (4.196–10.429) | 0.142 | 0.050 |
| GP7 | 0.728 ± 0.679 (0.137–2.773) | 0.506 ± 0.207 (0.14–0.759) | 0.709 ± 0.634 (0.203–2.717) | 0.667 | 0.575 |
| GP8 | 18.487 ± 2.753 (13.198–24.336) | 17.622 ± 2.368 (13.641–20.534) | 18.142 ± 2.626 (13.685–23.972) | 0.315 | 0.074 |
| GP9 | 9.416 ± 1.873 (7.167–14.423) | 9.299 ± 2.26 (7.039–14.446) | 9.377 ± 1.8 (6.998–14.379) | 0.611 | 0.562 |
| GP10 | 4.974 ± 0.983 (4.049–7.72) | 5.031 ± 1.159 (3.922–7.585) | 5.145 ± 0.991 (4.072–7.557) | 0.742 | 0.374 |
| GP11 | 0.657 ± 0.082 (0.476–0.756) | 0.672 ± 0.093 (0.526–0.785) | 0.695 ± 0.13 (0.47–0.977) | 0.753 | 0.169 |
| GP12 | 0.973 ± 0.773 (0.186–3.166) | 0.712 ± 0.298 (0.189–1.078) | 0.953 ± 0.732 (0.265–3.121) | 0.600 | 0.152 |
| GP13 | 0.276 ± 0.049 (0.2–0.356) | 0.251 ± 0.041 (0.189–0.31) | 0.275 ± 0.046 (0.207–0.37) | 0.034 | 0.841 |
| GP14 | 10.123 ± 3.266 (3.746–15.708) | 9.512 ± 3.073 (4.507–13.431) | 9.94 ± 2.932 (4.349–14.829) | 0.550 | 0.691 |
| GP15 | 1.506 ± 0.27 (0.999–1.974) | 1.475 ± 0.253 (1.092–1.867) | 1.517 ± 0.221 (1.158–1.875) | 0.197 | 0.786 |
| GP16 | 2.939 ± 0.592 (2.209–4.089) | 2.929 ± 0.613 (2.248–4.007) | 2.878 ± 0.547 (2.263–3.912) | 0.057 | 0.143 |
| GP17 | 0.956 ± 0.186 (0.611–1.159) | 0.904 ± 0.181 (0.664–1.186) | 0.939 ± 0.194 (0.658–1.232) | 0.198 | 0.992 |
| GP18 | 6.668 ± 1.498 (3.225–8.798) | 6.682 ± 1.786 (3.503–9.145) | 6.566 ± 1.449 (3.412–9.026) | 0.822 | 0.961 |
| GP19 | 1.675 ± 0.534 (0.487–2.582) | 1.802 ± 0.366 (1.271–2.326) | 1.682 ± 0.482 (0.481–2.416) | 0.941 | 0.755 |
| GP20 | 0.283 ± 0.066 (0.138–0.393) | 0.257 ± 0.055 (0.169–0.33) | 0.274 ± 0.06 (0.14–0.343) | 0.100 | 0.460 |
| GP21 | 0.48 ± 0.106 (0.312–0.577) | 0.477 ± 0.114 (0.286–0.647) | 0.458 ± 0.091 (0.27–0.578) | 0.886 | 0.151 |
| GP22 | 0.133 ± 0.049 (0.041–0.191) | 0.129 ± 0.037 (0.079–0.19) | 0.131 ± 0.04 (0.046–0.178) | 0.164 | 0.765 |
| GP23 | 1.278 ± 0.414 (0.48–2.001) | 1.375 ± 0.432 (0.753–2.048) | 1.243 ± 0.437 (0.489–1.996) | 0.331 | 0.903 |
| GP24 | 1.55 ± 0.542 (0.427–2.266) | 1.723 ± 0.39 (1.076–2.238) | 1.544 ± 0.521 (0.407–2.515) | 0.453 | 0.748 |
| Glycan | Initial Measurement (M0) | Final Measurement (M12) | p * |
|---|---|---|---|
| GP1 | 0.16 ± 0.06 (0.09–0.29) | 0.16 ± 0.05 (0.09–0.26) | 0.698 |
| GP2 | 1.22 ± 0.61 (0.23–2.06) | 1.15 ± 0.51 (0.26–1.91) | 0.146 |
| GP3 | 0.13 ± 0.02 (0.11–0.17) | 0.14 ± 0.02 (0.1–0.17) | 0.620 |
| GP4 | 31.05 ± 6.46 (22.45–46.8) | 30.45 ± 6.74 (22.52–45.05) | 0.945 |
| GP5 | 0.17 ± 0.03 (0.13–0.26) | 0.18 ± 0.03 (0.14–0.27) | 0.171 |
| GP6 | 7.43 ± 1.47 (4.26–10.88) | 7.68 ± 1.62 (4.29–10.53) | 0.049 |
| GP7 | 0.52 ± 0.21 (0.12–0.77) | 0.51 ± 0.19 (0.15–0.79) | 0.514 |
| GP8 | 17.39 ± 1.98 (13.2–20.59) | 17.66 ± 2.2 (13.4–20.54) | 0.980 |
| GP9 | 9.41 ± 1.69 (7.19–14.29) | 9.06 ± 1.97 (7.11–14.55) | 0.105 |
| GP10 | 4.89 ± 0.99 (4.08–7.73) | 5.3 ± 1.23 (4.02–7.6) | 0.158 |
| GP11 | 0.71 ± 0.11 (0.53–0.99) | 0.73 ± 0.12 (0.53–0.98) | 0.045 |
| GP12 | 0.72 ± 0.33 (0.16–1.2) | 0.72 ± 0.32 (0.18–1.18) | 0.562 |
| GP13 | 0.28 ± 0.06 (0.18–0.43) | 0.28 ± 0.06 (0.18–0.42) | 0.541 |
| GP14 | 8.96 ± 2.58 (3.78–13.55) | 9.28 ± 2.76 (4.01–13.61) | 0.928 |
| GP15 | 1.45 ± 0.26 (1.03–2.08) | 1.5 ± 0.28 (1.11–1.94) | 0.576 |
| GP16 | 3.01 ± 0.57 (2.27–4.19) | 2.85 ± 0.58 (2.25–4.04) | 0.152 |
| GP17 | 0.95 ± 0.17 (0.67–1.21) | 0.94 ± 0.18 (0.68–1.31) | 0.975 |
| GP18 | 5.96 ± 1.38 (3.15–8.54) | 6 ± 1.52 (3.01–8.26) | 0.895 |
| GP19 | 1.82 ± 0.34 (1.25–2.38) | 1.75 ± 0.28 (1.25–2.16) | 0.232 |
| GP20 | 0.31 ± 0.06 (0.22–0.41) | 0.33 ± 0.1 (0.2–0.48) | 0.664 |
| GP21 | 0.45 ± 0.07 (0.32–0.55) | 0.47 ± 0.18 (0.24–0.94) | 0.675 |
| GP22 | 0.15 ± 0.04 (0.1–0.2) | 0.15 ± 0.04 (0.1–0.22) | 0.943 |
| GP23 | 1.17 ± 0.35 (0.57–1.77) | 1.07 ± 0.37 (0.53–1.78) | 0.015 |
| GP24 | 1.71 ± 0.4 (1.04–2.33) | 1.63 ± 0.36 (1.01–2.35) | 0.501 |
| Cut-off | n (Improvements) | n (Deteriorations) | Chi-Square for Randomness |
|---|---|---|---|
| 0.07 | 175 | 37 | 2.60 × 10−21 |
| 0.15 | 123 | 13 | 4.01 × 10−21 |
| 0.20 | 77 | 8 | 7.20 × 10−14 |
| 0.25 | 57 | 6 | 1.32 × 10−10 |
| 0.30 | 45 | 4 | 4.71 × 10−9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudetz, D.; Borić, I.; Rod, E.; Jeleč, Ž.; Radić, A.; Vrdoljak, T.; Skelin, A.; Lauc, G.; Trbojević-Akmačić, I.; Plečko, M.; et al. The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis. Genes 2017, 8, 270. https://doi.org/10.3390/genes8100270
Hudetz D, Borić I, Rod E, Jeleč Ž, Radić A, Vrdoljak T, Skelin A, Lauc G, Trbojević-Akmačić I, Plečko M, et al. The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis. Genes. 2017; 8(10):270. https://doi.org/10.3390/genes8100270
Chicago/Turabian StyleHudetz, Damir, Igor Borić, Eduard Rod, Željko Jeleč, Andrej Radić, Trpimir Vrdoljak, Andrea Skelin, Gordan Lauc, Irena Trbojević-Akmačić, Mihovil Plečko, and et al. 2017. "The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis" Genes 8, no. 10: 270. https://doi.org/10.3390/genes8100270
APA StyleHudetz, D., Borić, I., Rod, E., Jeleč, Ž., Radić, A., Vrdoljak, T., Skelin, A., Lauc, G., Trbojević-Akmačić, I., Plečko, M., Polašek, O., & Primorac, D. (2017). The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis. Genes, 8(10), 270. https://doi.org/10.3390/genes8100270

